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Abstract: In-air signature is a new modality which is essential for user authentication and access
control in noncontact mode and has been actively studied in recent years. However, it has been
treated as a conventional online signature, which is essentially a 2D spatial representation. Notably,
this modality bears a lot more potential due to an important hidden depth feature. Existing methods
for in-air signature verification neither capture this unique depth feature explicitly nor fully explore
its potential in verification. Moreover, these methods are based on heuristic approaches for fingertip
or hand palm center detection, which are not feasible in practice. Inspired by the great progress
in deep-learning-based hand pose estimation, we propose a real-time in-air signature acquisition
method which estimates hand joint positions in 3D using a single depth image. The predicted 3D
position of fingertip is recorded for each frame. We present four different implementations of a
verification module, which are based on the extracted depth and spatial features. An ablation study
was performed to explore the impact of the depth feature in particular. For matching, we employed
the most commonly used multidimensional dynamic time warping (MD-DTW) algorithm. We
created a new database which contains 600 signatures recorded from 15 different subjects. Extensive
evaluations were performed on our database. Our method, called 3DAirSig, achieved an equal error
rate (EER) of 0.46%. Experiments showed that depth itself is an important feature, which is sufficient
for in-air signature verification. The dataset will be publicly available (https://goo.gl/yFdfdL).

Keywords: in-air signature; depth sensor; convolutional neural network (CNN); 3D hand pose
estimation; multidimensional dynamic time warping (MD-DTW)

1. Introduction

Electronic identity authentication plays a vital role for access control and security in modern
age. In e-authentication, a protected token (e.g., a cryptographic key) is used to access a system or
an application on a network. Biometric-based authentication uses physical, behavioral, or adhered
human characteristics for identification. These characteristics include, for instance, a fingerprint, iris
scan, handwritten signature, color, gait, and facial scan. Biometric authentication is more secure and
less prone to identity theft [1]. With the rapid growth of technology, emerging concepts, such as
classroom of the future http:/ /iql-lab.de [2], would allow smart interactions in a virtual and augmented
reality environment. In such a noncontact mode of interaction, biometric in-air signature verification
is important for access control and authentication. Traditionally, signature verification methods
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are classified into two types, namely, offline and online signature verification. In offline signature
verification, a handwritten signature is acquired on a document and verified using a scanned or
camera-captured image of the 2D signature [3-5]. The artificial neural network (ANN), support vector
machine (SVM), and pixel matching technique (PMT) are famous classification algorithms, which
have been used by offline methods. On the other hand, in online methods, e-signatures are taken
on a touch device (e.g., tablet or pad) using an e-pen or finger movement on a digital screen [6-13].
These methods are difficult to forge due to various dynamic features, such as velocity, acceleration,
and pen pressure. The signature acquisition techniques mentioned above exploit the 2D spatial and
temporal information taken from a digital touch screen or a document. For verification, dynamic time
warping (DTW) is the most effective and widely used technique [14,15], mainly because of its ability
to well align temporal signals. Other prominent approaches based on a. neural network (NN) [12],
SVM [13], and the hidden Markov model (HMM) [9] have also been employed for online verification.

In-air signatures are a new modality which allows a user to sign in the air by making free hand
movements, thereby eliminating the need for a writing surface. Notably, this modality inherently
contains important information in the third dimension (i.e., depth), in addition to the 2D spatial pattern.
Existing methods for in-air signature verification use either an RGB or depth camera, a wearable
camera (e.g., Google Glass) or a movement sensor in a cell phone [1,16-18]. However, these methods
address the problem of in-air signature acquisition and verification in the conventional way. More
precisely, the focus of these approaches has been inclined towards the utilization of the 2D spatial
and temporal features. Lack of consideration towards the hidden depth information has restricted
the exploration of the full potential in the 3D signature trajectory. In this work, we investigate the
potential of the unique depth pattern. We show that the depth itself is a strong feature, which is
sufficient for in-air signature verification. On the other hand, fingertip tracking is a challenging
problem, especially due to the occlusions of fingers and viewpoint changes during signing freely in
the air. The acquisition of a correct in-air signature trajectory is crucial to verification. This problem
has not been well-addressed because the existing approaches try to locate only the fingertip using
heuristics. Some of the approaches rely on palm center point tracking [17,19] which does not accurately
mimic the pointing finger movement while signing in the air. Furthermore, due to their complex in-air
signature acquisition systems, they are not suitable for real-time applications. In principle, the skeleton
of a human hand is a kinematic structure where each child joint is connected to its parent joints [20,21].
Therefore, for a stable and reliable tracking of the position of a fingertip, the complete 3D pose of
a hand should be estimated. In contrast to existing fingertip-tracking approaches, we exploited the
huge progress of the convolutional-neural-network (CNN) based hand pose estimation using a low
cost multimodal depth sensor [22] and trained a CNN to estimate the hand joints” keypoints in 3D;
see Section 4.3. Estimating a full hand pose is more stable, especially in the case of occluded fingertips,
as it learns to estimate all features of the hand. We created our own database of in-air signatures for
analysis and verification. The dataset will be publicly available. We performed a detailed ablation
study, which especially reveals the significance of the hidden depth feature in verification. We propose
an improved spatial-features-based verification strategy which incorporates the depth information;
see Section 6.1. We employed the most common and effective multidimensional dynamic time warping
(MD-DTW) algorithm for matching, since our focus is to investigate and highlight the potential in
individual features of the in-air signature using the best practice for verification.

2. Related Work

Comprehensive reviews on offline and online signature verification have been reported in
References [23-25]. Keeping in view the relevance with our work, here we discuss the published
literature on in-air signature verification. Katagiri et al. [26] proposed the first free space personal
authentication system. They adopted a high-speed video camera to acquire an in-air signature trajectory.
For verification, they employed a commercial signature verification engine provided by CyberSIGN
Japan Inc. (Tokyo, Japan) http:/ /www.cybersign.com. In Reference [27], Takeuchi et al. combined
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hand shape features with an RGB camera to capture handwriting motion in the air. Keeping in view
the extended use of smartphones in various applications, Diep et al. [28] used a motion sensor in a
smartphone to record signature data. They used SVM for verification. Matsuo et al. [29] introduced
an adaptive template update method in order to improve long-term stability in arm-swing motion.
Jeon et al. [17] adapted a low-cost depth camera to capture an in-air signature trajectory. In order to
record the signature trajectory, they introduced a heuristic approach to detect the palm center position.
Bailador et al. [18] investigated various pattern recognition techniques, i.e., HMM, Bayes classifier, and
DTW, for authentication. The best performance was shown by the DTW algorithm. In order to capture
in-air signature trajectory, the authors used an embedded 3D accelerometer in a mobile phone. With the
recent trend towards wearable technology, Sajid et al. [1] proposed a new in-air signature acquisition
method using Google Glass. They used a motion-based video segmentation algorithm along with a
skin-color-based hand segmentation in order to acquire signature data. A video-based in-air signature
verification system using a high-speed RGB camera was introduced by Fang et al. [16]. They traced
the fingertip using an improved tracking learning detection (TLD) algorithm. For the verification
phase, the authors developed a fusion algorithm based on an improved DTW and the fast Fourier
transform (FFT). Recently, Khoh et al. [19] proposed a predictive palm segmentation algorithm to create
a motion history image (MHI) using a depth sensor. Afterwards, they produced a two-dimensional
representation of a hand-gesture signature based on the MHI. All of the methods mentioned above treat
and process in-air signature trajectories in the conventional online form. However, we emphasize that
in-air signatures enclose a unique hidden depth feature, which should not be ignored in acquisition
and verification. In this work, we investigate the potential of this important feature. On the other hand,
the reported methods for fingertip tracking are based on heuristics, which are not feasible for practical
applications. Inspired by the recent progress in deep-learning-based hand pose estimation using a
depth sensor [22], we propose a new real-time algorithm for in-air acquisition which regresses the 3D
hand pose rather than detecting only the fingertip or palm center. Therefore, the proposed method is
not restricted to any specific hand pose and has the ability to perform well in cases of occlusion.

3. Framework Overview

The block diagram of our proposed 3D in-air signature acquisition and verification framework
is shown in Figure 1. For the signature acquisition, we propose a CNN-based hand pose estimation
method to predict the 3D hand joint positions from a single depth image. The input depth frame D; is
captured using Intel’s creative senz3D depth camera [30]; see Section 4.1 for details of our acquisition
setup. The hand region is segmented from D; using center of hand mass (CoM) followed by a crop
function; see Section 4.2. The output D is fed to the PoseCNN, which predicts the 3D hand pose; see
Section 4.3. The estimated joint position of the index fingertip in each depth frame is used to record the
3D signature trajectory. The recorded in-air signature trajectory is preprocessed for normalization and
smoothing; see Section 5.1. Thereafter, spatial and depth features are extracted from the 3D signature.
For matching, MD-DTW is used to obtain a similarity measure between the selected feature of the
preprocessed test signature and the corresponding precomputed feature template. In the final step, the
test signature is verified by the decision threshold; see Sections 5.3 and 5.4.

4. In-Air Signature Acquisition

In this section, we explain our 3D in-air signature acquisition setup, fingertip-tracking approach,
and the dataset creation.

4.1. Data Acquisition Setup

Figure 2 shows our in-air signature acquisition setup. A user is allowed to sign freely in the
air within the field of view (FoV) of Intel’s creative senz3D depth camera mounted on top of the
screen. The FoV of the camera is 74° diagonal. Two position markers are placed on either side
of the depth camera to provide an approximate start and end position for recording the signature.
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Our acquisition system allows to easily select between left or right hand before signing. During the
signature acquisition, the user’s hand should be the closest object to the camera. Notably, our method
is not restricted to a specific hand pose for signing in the air. However, most of the users participating
in our database creation used a natural pointing index finger pose (as shown in Figure 1). Our system
allows a user to see a 2D projection of the 3D signature trajectory in real-time on a signature pad,
which is displayed on a monitor screen. Our acquisition system is robust to variations in ambient light
intensity in indoor environments.
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Figure 1. An overview of our method for in-air signature acquisition and verification. In the acquisition
phase, the hand region is first segmented from a raw depth frame. Then, the estimated 3D position
of the index fingertip is recorded for every frame using a CNN-based hand pose estimation method.
For verification, the test signature is scaled and filtered. Thereafter, the spatial and depth features are
extracted for matching using the MD-DTW algorithm. Finally, the test signature is verified by the
decision threshold.

Figure 2. Our setup for in-air signature acquisition. The depth camera is mounted on top of the screen.
The position markers on both sides of the depth camera allow capturing of in-air signature within the
field of view (FoV) of the camera. Three GoPro cameras are placed around a user to record the hand
motion in 3D space from different view points. Camera 3 specifically records the depth variation.

4.2. Hand Segmentation

An accurate segmentation of the hand region from a raw depth frame is important for
learning-based hand pose estimation approaches. We used a hand segmentation method similar
to that described in Reference [31] (Figure 3a). The segmentation process has two steps. The first
step is to find an accurate 3D location of the hand palm center. As mentioned earlier, the hand is
assumed to be the closest object to the camera; therefore, a simple depth value-based thresholding
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can be used to separate the human body from the hand. We used a depth threshold of 600 mm. Then,
the 3D location of the palm center is calculated by averaging all the pixels which belong to the hand
region (i.e., pixel values less than 600 mm). The second step is to preprocess or crop the hand region
in 3D using the obtained palm center. In Figure 3a, the function f crops the hand region around the
calculated palm center using a bounding box. The size of the bounding box is 150 mm. Then, depth
values are normalized to [—1, 1]. The resultant image is of a size of 96 x 96. The runtime of our hand
segmentation method is 0.47 ms.
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Figure 3. (a) shows our approach for hand segmentation from a raw depth frame. First, the center of
hand mass (CoM) is calculated, provided that the hand is the closest object to the depth camera. Then,
the function f crops the hand region in 3D. (b) The PoseCNN takes the cropped hand image as input
and regresses 3D sparse joints keypoints.

4.3. Fingertip Tracking

Stable and reliable fingertip tracking is essential for the correct recording of a 3D in-air signature.
For this purpose, we exploited the huge progress of CNN-based hand pose estimation methods. One
of the major advantages associated with these methods is that they estimate the complete hand pose
rather than detecting only the fingertip or palm center. This is particularly important in cases of severe
occlusions of fingers during signing in the air. An overview of our method is shown in Figure 3b.
The PoseCNN is used to estimate the 16 3D joint positions of the hand skeleton from a single depth
image. The first part of the PoseCNN (i.e., Regressor) is adopted from [31], which originally regressed
3D hand poses using a single shared CNN for feature extraction and a powerful yet simple region
ensemble (REN) strategy. In our implementation, the final fully connected (FC) layer of the regressor
outputs features ¢ € R°!2 instead of joint positions.

Architecture of the Regressor: The architecture of the shared CNN for feature extraction comprises
six convolution layers using 3 x 3 kernel sizes. A rectified Linear Unit (ReLu) is connected with each
of the convolution layers as an activation function. A max pooling layer with a stride of 2 is connected
after every consecutive pair of convolution layers. Two residual connections are incorporated between
the pooling layers. The output features are of size 12 x 12 x 64. Then, two FC layers of dimension
2048 are connected with a dropout ratio of 0.5. As shown in Figure 3b, the feature maps from different
regions of the input depth image are divided into a 2 x 2 grid. Thereafter, the features from the FC
layers of the grid regions are simply concatenated. The final FC layer after the concatenation produces
pE R512, We refer the reader to Reference [31] for further details of the shared CNN architecture and
the REN strategy.

IEF module: We integrate an iterative error feedback (IEF) module to the end of the regressor for
refinement of the estimated hand pose. The output of the regressor ¢ is concatenated with an initial
estimate of hand pose Hy i.e., ¢ = {¢, Hy}. Hp is obtained by averaging all the joint positions from the
ground truth annotations of the datasets. ¢ is fed to the IEF module, which comprises two FC layers
with 512 neurons each. Both the FC layers use dropout layers with a ratio of 0.3. The last FC layer
contains 48 neurons, corresponding to the 16 3D joint positions. The IEF module basically refines Hj,
in an iterative feedback manner such that Hy(t + 1) = Hy(t) + dHp(t). We use three iterations.
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Training of the PoseCNN: In order to improve the generic performance of the PoseCNN, especially
for varying hand shapes, we trained on a combined dataset (i.e., HandSet) proposed in Reference [21].
The HandSet encapsulates three famous public hand pose datasets in a single unified format. These
datasets include NYU [32], ICVL [33], and MSRA-2015 [34]. Our network runs on a desktop using
Nvidia’s Geforce GTX 1080 Ti GPU. We used a learning rate (LR) of 0.001 with a 0.9 stochastic gradient
descent (SGD) momentum and a batch size of 256. One forward pass through the PoseCNN takes
3.2 ms.

Accuracy of predicted fingertips positions: We quantitatively evaluated the accuracy of estimated
fingertips positions on the NYU test dataset. The 3D joint location error on fingertips comes out to be
13.2 mm, which is better than the lowest reported error (15.6 mm) in Reference [35]; see Table 1.

Table 1. The table shows the mean 3D joint location error (mm) for fingertips of various methods on
the NYU [32] hand pose test dataset.

Method Fingertips 3D Joint Location Error
DeepModel [20] 24.4 mm
Oberweger et al. [36] 23.2 mm
REN [35] 15.6 mm
Ours 13.2 mm

4.4. The Dataset Creation

There are two main motivations for creating our dataset for in-air signature verification. The
first is to study the potential of the hidden depth feature. The second is to exploit the great progress
in CNN-based hand pose estimation for stable and reliable fingertip tracking. For video recordings
of genuine signatures which are shown to impostors, we used three GoPro cameras in our capture
setup; see Figure 2. Two of the cameras (Cameras 1 and 2) were placed behind and right-front of
the subject to record the spatial pattern of the signature. The third camera (Camera 3) recorded
from the side view to visualize the depth variation in the signature. The users were asked to practice
multiple times before the actual recordings as signing in the air is generally not a well-familiar modality.
We emphasized on making explicit variations in depth during signing, which allows to fully exploit
the hidden depth feature in the in-air signature trajectory. Our database (the dataset will be publicly
available at https://goo.gl/yFdfdL) includes 600 signatures from 15 users. We recorded 15 genuine
signatures from each of the users and obtained 25 forgeries for every original writer from 5 impostors.
Ten out of 15 genuine signatures were used for the testing phase and the remaining were used for the
training phase; see Section 5. Samples of genuine preprocessed signatures with the corresponding 2D
spatial views and unique depth patterns are shown in Figure 4. The color variations in the 3D view of
a signature show variation in the depth pattern; see Figure 4a. Notably, each signature has a unique
depth pattern (Figure 4c) which is challenging to forge jointly with the spatial pattern; see Section 6.
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Figure 4. Samples of genuine in-air signatures from our dataset. Each one of the rows shows (a) the 3D
in-air signature trajectory, (b) the 2D spatial view, and (c) depth pattern. The depth pattern of each
signature is particularly unique and, therefore, it is an important hidden feature.

5. In-air Signature Verification

In this section, we explain the preprocessing, extracted features, training, and testing phases.
We adopted a commonly used MD-DTW algorithm for matching, mainly because it can align temporal
signals well even though they are not consistent in time.

5.1. Preprocessing

The recorded in-air signature is preprocessed for normalization and smoothing. An appropriate
preprocessing of a signature can affect the results of signature verification [11,17]. First, we removed a
few redundant 3D points from the start and end of a signature trajectory whose displacement was
less than 3 pixels. The removed points corresponded to a small wait time before starting the actual
hand motion and a time to close the recording after the end of the signature. In order to remove
discontinuities due to fast hand movements, we applied a moving average filter with a window size
of 5, which resulted in a smoother signature trajectory. Thereafter, we normalized the signatures to
compensate for variations in position and scale. For normalization, the transformation from absolute to
relative values in 3D can be obtained using the following formulas:

X]* = (X]' — Xonin) / (Xmax — Xomin) M)

Y].* = (Y] — Yonin)/ Ymax — Yomin) @
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Z;f = (Z] — Zmin)/(zmax - Zmin)r 3)

where X ]-,Y]-, and Z jare the original or absolute values of a signature. X]’-k, Y]-*, and Z¥ are the transformed
values. X,,in, Xmax,Ymin,Ymax,ZLomin, and Zy0x are the minimum and maximum values of XY, and Z.
A test signature before and after the preprocessing step is shown in Figure 5.
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Figure 5. The flow diagram of the testing phase of our in-air signature verification system. The test
signature is preprocessed for normalization and smoothing. The extracted features include spatial,
depth, and spatial plus depth. Then, a multiplexer with a control input is used to select one of the
extracted features. The selected feature is matched with the corresponding feature template using the
MD-DTW algorithm. Finally, the verification result is produced by the decision threshold.

5.2. Feature Extraction

Figure 6 shows all the feature combinations we used in our verification process. We studied
the impact of the hidden depth feature in different ways. The spatial (X,Y) is a commonly used 2D
representation of in-air signatures; see Figure 6b. However, we argue that only the spatial (X,Y) is
not a complete representative of an in-air signature trajectory. Therefore, we extracted two new types
of spatial features, i.e., spatial (X,Z) and spatial (Y,Z) which implicitly incorporate the depth feature.
We also studied the impact of these two features when combined with the spatial (X,Y); see Section 6.
Nevertheless, the most interesting feature is the hidden depth pattern (Figure 6e) which has not been
fully explored in the previous works.
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Figure 6. Illustration of different features which are used for in-air signature verification. We fully
exploited different combinations of the features inherently present in the in-air signature trajectory
to improve the performance of the verification system. The unique depth feature of a user especially
plays a vital role in verification phase.

5.3. Training Phase

In this phase, we computed the feature templates and the respective feature thresholds using 75
genuine training samples. We used neither forgeries nor original signatures from the test set. It is
worth noting that many pattern recognition researchers use models, e.g., NN, SVM, while training
them on the positive (genuine) and negative (forgery) samples at the same time [37,38]. According to
forensic handwriting examiners [39], this is unrealistic as, in the real world, one can never limit the
forgery set and every signature, other than the concerned genuine signatures, can be considered a
forgery. Furthermore, in real forensic cases, a verification system can only have genuine specimen
samples and one or more questioned signatures. Henceforth, the best approach while using such
models is to train them only on genuine specimen signatures. This can be done using specialized one
class classifiers, like SVM /NN, for one class classification [40-43]. As explained earlier, we used five
features; see Figure 6. Hence, a total of five feature templates and five respective feature thresholds for
each of the 15 users are computed. A feature template is generated by averaging the features of the
five training samples. We calculated a feature threshold value from five training samples of a signee,
which are reserved for the training phase using the 4-fold cross validation strategy (i.e., using limited
signatures for estimating how the system will perform when used to make predictions on data not
used during training.

4-fold cross validation strategy: In this methodology, we randomly shuffled five genuine training
signature samples and divided them into two groups. The first group contained four training samples,
which were taken as the training set. The second group contained only one training sample, which
was considered the dummy test set. More specifically, let S = {S;, St,,St;, St,, S5} be the five
training samples of a signature, where Sy € R™Lx. L, is the length of the signal S, and d is the
number of dimensions of one point in the signal. In the first round, we split S into two subsets,
Sa = {5t,,St;,St,, Sts } and S, = {Sy, }. This is simply taking the first sample S, out of comparison
in this round. For S,;, we make a 4 x 4 confusion matrix C; using Equations (4) and (5). From Cj,
we manually select a threshold value th; such that any compared threshold value greater than th;
will declare the signature as forged. In the second round, we eliminate S, and calculate another 4
x 4 matrix C; and find th; . In a similar way, we calculate C3, C4, and Cs and select the respective
thresholds th3, thy, and ths. Finally, we simply take the mean th;, of these five threshold values. The
thy, is used in the final decision threshold process.

5.4. Testing Phase

Figure 5 shows the flow chart of the testing phase. After the preprocessing step and the feature
extraction, a feature select input of a 3 x 1 multiplexer allows to select one of the features, i.e., spatial,
depth, or spatial plus depth. After the selection of a desired feature, a similarity measure is found with
the corresponding feature template using the MD-DTW algorithm [44] as follows:
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MD-DTW Matching: Let sy € R™Ls1 and Sp € R™Ls; pe the two time series signals, where L, and
Ls, are the lengths of s; and s;, respectively, and d is the dimension of a single point in the signal.
The distance matrix M(i,j) can be computed using the L2-norm without square root operation as:

d

M) = Y (s1(k,i) — s2(k, )% @

k=1

After obtaining the matrix M(ij), the distance or similarity score between the elements of s; and
sy on the DTW path can be found using the following equation:

D(i-1,))
D(i,j) = M(ij) + min ¢ D(i-1,j-1) &)
D(ij-1)

Decision Threshold: In the final step, as shown in Figure 5, the obtained similarity score is simply
compared with the corresponding feature threshold th,,; see Section 5.3. The test signature is verified
if the DTW distance is less than the feature threshold.

6. Experiments and Results

In this section, we detail the experiments performed on our dataset. The performances are
reported using the false rejection rate (FRR), false acceptance rate (FAR), and equal error rate (EER) as
evaluation metrics.

6.1. Ablation Study

In this subsection, we detail the ablation study, which was performed on the extracted features
(Figure 6). The impact of every feature on the performance of verification was investigated and
the results are reported on our captured dataset. We propose four different implementations of a
verification module based on the extracted features from the in-air signature trajectory. Depth-based
signature verification (DSV) module: To study the effectiveness of the hidden depth feature in verification,
we implemented the verification module based on only the 1D depth Z of the signature trajectory.
In Figure 5, the feature select input of the multiplexer is set to 1 in order to select the extracted
depth feature from the test signature. The distance measure between the depth feature of the test
signature and the precomputed depth feature template was calculated using Equations (4) and (5).
The obtained similarity score was compared with the precomputed depth feature threshold to verify
the test signature. Quantitative results on individual users are shown in Table 2. In Table 3, the
DSV module shows FAR, FRR, and EER of 1.33%, 2.00%, and 0.51%, respectively. Qualitatively, the
depth patterns of the genuine and forged signatures are shown in Figure 7. Despite the fact that the
spatial patterns of the forgeries are closer to the genuine signatures, the depth patterns are distinct.
As mentioned ealier, the impostors were shown the video recordings of the signatures from different
camera views. However, they were either unable to notice exact variations in depth or it was difficult
to forge the depth pattern. These results show the importance of the depth feature, which alone can
provide a reliable verification. We also observed that it is more challenging for the impostor to forge
the depth pattern simultaneously with the spatial pattern.
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Figure 7. Comparison of spatial and depth patterns of the genuine and the corresponding forged
signature. The top row shows a sample of a genuine signature and its corresponding spatial and
depth patterns and the bottom one shows the respective forged signature. The color change shows
the variation in depth pattern (3D view in the first column). Clearly, the depth pattern of the forged
signature is different than the original one, although spatially they seem to be close.

2D spatial-based signature verification (SSV) module: We implemented this verification module using
only the 2D spatial (X,Y) feature; see Figure 6b. The feature select input of the multiplexer was set
to 0; see Figure 5. The similarity score between the extracted spatial feature of the test signature and
the spatial (X,Y) feature template was obtained using Equations (4) and (5). Then, the DTW distance
was compared to the spatial feature threshold for the verification. Quantitative results are shown in
Tables 2 and 3. The performance of this verification module shows that considering only the spatial
feature (X,Y) of the in-air signature trajectory results in a larger number of false acceptances and false
rejections, thereby producing higher error rates.

Table 2. The table shows the results of the four verification modules on our dataset. The number of
false rejections (FR), false acceptances (FA), and total errors are provided for each of the 15 users. The
3D-SV module shows the least number of FA, while its number of FR is equivalent to the DSV module.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Error Number

DSV
FR oo 0000010 0 0 0 1 0 1 3
FA o100 00000 0 1 0 1 2 0 5
sSv
FR o1 0o00O0O0O11O0 0 0 1 2 0 3 8
FA 0o 2000102 0 0 2 0 1 3 0 11
ISSV
FR o100 00000 O 0 1 1 0 2 5
FA o100 00011 0 0 1 0 1 2 0 6
3D-SV
FR o010 0 0 0 0O O O0O O 1T 0 0 1 3

FA o 0 0o0o0O0O0O0OO0OOO0O 1T 0 0 0 O 3
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Table 3. The table shows the person independent FAR, FRR, and EER for each of the four verification
modules. There are a total of 150 genuine test and 375 forged signatures. The 3D-SV module shows the
best results, while the DSV module demonstrates competitive performance.

Verification Module FAR (%) FRR (%) EER (%)
DSV 1.33 2.00 0.51
SSV 2.93 5.33 0.69
ISSV 1.60 3.34 0.58
3D-SV 0.80 2.00 0.46

Improved 2D spatial-based signature verification (ISSV) module: We attempted to improve the
performance of the SSV module by incorporating additional spatial feature combinations (i.e.,
Spatial (X,Z) and Spatial (Y,Z)). The block diagram of the ISSV module is shown in Figure 8.
The DTW matching is performed on these additional features in parallel to the traditional spatial (X,Y)
using precomputed respective feature templates. Thereafter, binary decisions were obtained for each
individual feature using the corresponding feature thresholds. Lastly, the final verification result was
produced by a simple majority voting scheme, which declared the test signature as verified if no less
than 2 features passed the corresponding decision thresholds. The verification results are reported in
Tables 2 and 3 that clearly show an improved performance compared to the SSV module. There is a
notable reduction in the number of false acceptances and false rejections. The EER is reduced by 15.9%
compared to the SSV module. However, the performance is still lagging behind the DSV module.

FZ Spatial DTW Decision

j: / X,V Matching Threshold Verification
Luy T — result
o2 Spatial DTW Decision . Majority
00 —» . . —>
0z (v, 2 Matching Threshold Voting
AN

Spatial DTW Decision

3D Signature Trajectory (X, Z) Matching Threshold

Figure 8. Our framework for an improved 2D spatial-based signature verification (ISSV) module.
The spatial features (i.e., (X,Y), (Y,Z) and (X,Z)) are separately matched with the respective precomputed
feature templates using a 2D-DTW algorithm. Thereafter, binary decisions are made by the decision
thresholds. Lastly, the test signature is verified using a simple majority voting scheme.

3D signature verification (3D-SV) module: In this verification module, we exploited the full 3D
information (i.e., X, Y, Z) altogether. In Figure 5, the feature select input of the multiplexer was set to
2. The spatial plus depth feature (See Figure 6a) of the test signature was matched with the feature
template and verified using the decision threshold. Quantitatively, Tables 2 and 3 show that number of
false rejections and FRR of this verification module are the same as those for the DSV module, whereas
the number of false acceptances, FAR, and EER are reduced. In summary, Our 3D-SV module shows
the best performance, since it includes complete 3D information altogether, which is inherently present
in the in-air signature trajectory.

6.2. Comparison with Other Verification Methods

Since there are no publicly available datasets and codes available for in-air signatures, Table 4
lists the performances of other methods evaluated on their self-built datasets. Alongside, we show the
performance of our two best implementations on our self-built dataset. Our DSV module shows the
competitive performance, whereas the 3D-SV module shows the best results. It shows that the hidden
depth feature in the in-air signature is important for improved performance.
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Table 4. The table shows the performances of the existing in-air signature methods and our method.
Due to unavailability of a public dataset for in-air signatures, we report results on our dataset. While
our 3D-SV module shows the best results, our DSV module, which is based on only depth analysis,
shows the competitive performance.

Method Dataset/Acquisition Method Result
Nguyen et al. [28] self-built/ Accelerometer EER: 0.8%
Hasan et al. [1] self-built/Google glass Accuracy = 97.5%
Nidal et al. [45] self-built/ data glove EER: 2.37%
Jeon et al. [17] self-built/ depth camera EER: 0.68%
Moon et al. [46] self-built/Wifi signal EER: 4.31%
Yuxun et al. [16] self-built/RGB camera FAR: 1.90% and FRR: 2.86%
DSV[Ours] self-built/depth camera EER: 0.51%
3D-SV[Ours] self-built/depth camera EER: 0.46%

7. Conclusions and Future Work

In this paper, we presented a real-time automatic in-air signature acquisition and verification
framework using a low cost multi-modal depth camera. This paper addresses two major limitations in
the existing methods for in-air signature verification. First, given the fact that the existing approaches
use heuristic methods for fingertip tracking, which are unstable and impractical, we proposes a new
CNN-based hand pose estimation method, which reliably tracks fingertips in real-time. The signature
trajectory is recorded using an estimated 3D position of the index fingertip in each depth frame. Second,
to explore the potential of the hidden depth feature in the in-air signature trajectory, we created our
own dataset, which consists of 600 signatures recorded from 15 different subjects. We investigated
the performance of the verification module by performing an ablation study on the spatial and depth
features and performed extensive evaluations on our database. Experiments showed that the depth
feature itself is sufficient for in-air signature verification. In the future, we plan to extend our database
and develop a CNN-based algorithm for in-air signatures classification and matching.
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