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Abstract: Human poses are difficult to estimate due to the complicated body structure and the
self-occlusion problem. In this paper, we introduce a marker-less system for human pose estimation
by detecting and tracking key body parts, namely the head, hands, and feet. Given color and depth
images captured by multiple red, green, blue, and depth (RGB-D) cameras, our system constructs
a graph model with segmented regions from each camera and detects the key body parts as a set of
extreme points based on accumulative geodesic distances in the graph. During the search process,
local detection using a supervised learning model is utilized to match local body features. A final set
of extreme points is selected with a voting scheme and tracked with physical constraints from the
unified data received from the multiple cameras. During the tracking process, a Kalman filter-based
method is introduced to reduce positional noises and to recover from a failure of tracking extremes.
Our system shows an average of 87% accuracy against the commercial system, which outperforms
the previous multi-Kinects system, and can be applied to recognize a human action or to synthesize
a motion sequence from a few key poses using a small set of extremes as input data.

Keywords: human motion; dynamic pose; body parts detection; motion tracking; depth images;
action recognition; motion synthesis

1. Introduction

The detection of human body parts has been popularly researched in the computer vision and
pattern recognition fields. Accurate detection of body parts is important in human pose estimation
for activity recognition, which is utilized by various smart systems including: Human computer
interaction (HCI), surveillance, healthcare, and entertainment. Recently, it has converged with the
virtual reality (VR) and augmented reality (AR) techniques in the training field [1].

Early approaches using a single camera tried to detect the region of interest by extracting the
features from illumination, color, and edge information on 2D images. In these approaches, machine
learning algorithms such as adaptive boosting (AdaBoost), support vector machine (SVM), and
gaussian mixture model (GMM) are used to extract key body features such as face, torso, hands, and
feet from a large data set. However, a reliable detection of such features is difficult to achieve due to
the background noises and illumination changes on the images. The recent availability of red, green,
blue, and depth (RGB-D) cameras, such as Microsoft Kinect [2] and Intel RealSense [3] provides depth
data and suggests a more reliable way to detect the features. Using depth information retrieved from
an infrared sensor, the region of interest on the human body can be segmented more precisely without
background ambiguities.

The joints of the human body can provide useful information for motion analysis. Using a single
RGB-D camera, the approach introduced by Shotton et al. [4] has been widely used to detect human
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body parts as a hierarchical skeleton structure. In their approach, a list of joint positions is estimated
from a user who faces the RGB-D camera by using the random statistical model. However, its accuracy,
especially for internal joints, is sensitive to the input pose. For example, the joint positions of occluded
body parts might be either skipped or incorrectly estimated from unknown poses. Using multiple
cameras around the user, a set of depth images captured from different viewpoints can be combined to
complement the occluded body parts [5–11]. In these approaches, an optimization problem should be
solved to track a list of joints in an articulated model from the depth volume.

In this paper, we introduce a marker-less system for human pose estimation by detecting and
tracking key body parts, namely, the head, hands, and feet. Given color and depth images captured
by multiple RGB-D (two Kinect) cameras, our system detects a set of extreme points on the key body
parts from each camera (i.e., the single camera process) and tracks them from the unified data received
from the multiple cameras (i.e., the multi-camera process) as shown in Figure 1. During the single
camera process, a quadtree-based graph model with segmented regions is constructed from the color
and depth images received from a single camera. Using geodesic distances on the graph, a set of
candidate points is searched and selected as extreme points through a supervised learning model.
During the multi-camera process, the optimal extreme points are selected and tracked from the unified
data received from the multiple cameras. For a better tracking performance, a Kalman filter-based
method is introduced to reduce positional noises and to recover from a failure of tracking extremes.

Unlike the previous approaches, our system does not reconstruct a full skeleton structure from
input data. Instead, input poses are abstracted with a small set of extreme points on the key body
parts, making the detecting and tracking processes easier without solving the optimization problem
for skeleton reconstruction. Using a small set of extremes as input data, our system can be applied
to recognize a human action or to synthesize a motion sequence from a few key poses in real time.
As demonstrated in the experimental results, our system shows an average of 87% accuracy against
the commercial system, which outperforms the multi-Kinects system with more RGB-D cameras used.

Figure 1. Overview of the proposed system: Human pose estimation using multiple red, green, blue,
and depth (RGB-D) cameras.

The rest of this paper is organized as follows. Previous approaches for human pose estimation
are reviewed in Section 2. The detection of key body parts from each camera is described in Section 3,
while tracking them from the unified data received from multiple cameras is detailed in Section 4. The
experimental results for tracking accuracy, action recognition, and motion synthesis are demonstrated
in Section 5. We conclude this paper with a discussion of potential improvements in Section 6.
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2. Related Work

Detecting and tracking human body parts from sensor data has been actively researched in
computer vision and recognition fields. Using single or multiple RGB-D cameras, the majority of
the detection approaches can be differentiated into three categories: Generative (aka top-down),
discriminative (aka bottom-up), and hybrid.

The generative approaches [12–14] rely on a template model of the human body and try to estimate
the model parameters that best describe the pose in an input image. Using the iterative closest point
(ICP) algorithm, Grest et al. [12] defined a nonlinear optimization function and estimated a human
pose by applying the analytically simplified Jacobian. Based on the probabilistic inferencing algorithm,
Zhu et al. [13] performed feature detection on depth images and estimated relatively simple poses from
the detected features. Ganapathi et al. [14] performed real-time detection from a sequence of depth
images based on the probabilistic temporal model. In their approach, a set of physical and free space
constraints are derived to deform the template model. Shuai et al. [15] used multiple depth cameras to
minimize occlusion and designed an ellipsoid-based skeleton model to capture the geometry detail of
a tracked object. In these ICP-based approaches, the external template model and its parameters need
to be configured in advance to initiate the tracking process, which is computationally expensive for
a complicated model such as a human body. On the other hand, our system uses no template model
and its parameters to track human poses.

The discriminative approaches [4,16–19] try to detect the body parts directly from the observed
data without using an initialization process with a template model. Shotton et al. [4] estimated
a list of 3D joint positions on a single depth image by performing per-pixel classification which
uses a randomized decision tree with a large image set. Their approach was further exploited by
Girshick et al. [16], in which they anticipated the occluded joint positions using the regression forest
with relative 3D offset information. Shen et al. [17] introduced an example-based approach which
corrects occluded body parts, such as a side view. In their approach, a regression forest is learned based
on the differences between the motion capture and Kinect data. Recently, Jung et al. [18] improved the
performance of joint estimation using a random tree walk, while Shafaei and Little [19] improved the
joint estimation accuracy by applying a convolutional neural network (CNN) based pixel classification.
Using the discriminative approaches, the joint positions can be estimated in real time given a large
set of high quality data for the training process. For example, Shotton et al. [4] trained each tree with
300,000 images while Shafaei and Little [19] collected a six million data set for their classification.
However, our approach searches for a set of key body parts from the hierarchical graph structure using
a much smaller set of samples (i.e., less than 1000).

Given a database of human motion, the hybrid approaches [20–23] try to improve the tracking
accuracy by combining the generative and discriminative methods (i.e., solving the optimization
problems with the database reference). Ganapathi et al. [20] demonstrated an interactive system
that estimates body parts in a kinematic chain structure using the hill-climbing method. In their
method, a local detector for body parts (i.e., a discriminative model) is used to initiate a tracking failure.
Ye et al. [21] stored a set of a 3D skeleton and its mesh data into a database and obtained the optimal
pose by matching the point cloud data through the shape refinement process. Baak et al. [22] showed
a method of comparing the joint positions at previous frames and the salient body parts extracted from
the depth information to search for similar poses. Later, Helten et al. [23] presented a similar approach
with a personalized body tracker that improves the lookup accuracy from the regenerated database.
Like the discriminative approaches, an extensive set of samples needs to be prepared in advanced
for most hybrid approaches to estimate accurate human poses. For example, Ye et al. [21] captured
19,000 samples from a motion capture system, and Baak et al. [22] selected about 25,000 samples.
Furthermore, these approaches are sensitive to the physical property of a user such as a body size
and require an additional fitting process to track poses from unknown users, making the approaches
less applicable to general users. Using multiple cameras, our approach does not require prior body
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information to track poses from unknown users; hence, it is more applicable to real-time human action
recognition and motion synthesis for unspecified individuals.

Recently, multiple depth cameras [5–11] have been adopted to overcome the joint occlusion
problems by using the unified data captured at different view points. Zhang et al. [5] used multiple
Kinects for non-skeletal motion data while Kaenchan et al. [6] applied them for a walking analysis.
Kitsikidis et al. [7] adopted a hidden conditional random fields (HCRF) classifier to detect patterns in
dance motion. With two synchronized cameras, Michel et al. [8] solved an optimization problem using
stochastic optimization techniques to track a human body from the depth volume. Moon et al. [9]
adopted a Kalman filter framework to combine the multiple depth data to improve the occlusion
problem. Recently, Kim et al. [10,11] demonstrated a large scale of multi-Kinects system to capture
dynamic motion in dance and martial arts. Most of the time, these approaches rely on the Kinect
method [4] to configure the skeleton structure in an articulated model, which often requires an
expensive and complicated post process to enhance naturalness in an output pose. On the other hand,
our system detects a small set of key body parts and uses them as inputs to refer to the existing motion
data for estimating a dynamic human pose.

3. Single Camera Process

Our system acquires a continuous sequence of RGB-D images from multiple cameras. For each
camera, major body parts are detected through three steps: Background subtraction, quadtree-based
graph construction, and part joint detection using accumulative geodesic distances and a local detector.
The details of the steps are described in the subsequence sections.

3.1. Background Subtraction

In our system, the RGB-D cameras provide a continuous sequence of color and depth images
with same resolution, and both images are calibrated. Given a sequence of color and depth images
streamed from a single RGB-D camera, the background information is subtracted from the images
to isolate a human object based on the depth information as it is robust to the illumination changes.
We captured the first frame of the depth sequence, where no human is visible and subtracted it from
subsequent frames. For the depth images with a human object, a threshold value (i.e., the minimum
depth value for each pixel) is used to distinguish between the background and foreground objects.
This simple method is sensitive to background noises and can generate false positives, especially at the
edges of the human object [24]. As a post-processing step, a morphological erode operation and Sobel
kernels are applied to reduce such false positive areas. We compute approximation of vertical and
horizontal derivatives using Sobel kernels and remove noises from depth images based on gradient
magnitudes. From a filtered depth image, ID, a corresponding color image, IC, can be obtained.
We refer a filtered image, I = {ID, IC}. This simple technique works well for a low-resolution depth
image. However, a more sophisticated method for the background subtraction could be used using
a hardware acceleration [25].

3.2. Graph Construction

Inspired by the work identifying geodesic extreme positions using a graph structure [26,27],
our detection method assumes the nature of an invariant body structure such that the accumulative
geodesic distances between the center of body and key body parts such as head (H), right hand (RH),
left hand (LH), right foot (RF), and left foot (LF) do not change regardless of the human poses as
shown in Figure 2. For example, let PC be a center position of the human object averaged from ID

and the positions of extreme points, Pi, on the key body parts are located farthest from PC, where
PC, Pi ∈ R3 and i ∈ {H, RH, LH, RF, LF}. Based on this geodesic characteristic, both ID and IC can be
represented as a graph model, G. As shown in Algorithm 1, a quadtree-based segmentation is used to
group neighboring data efficiently, and each node has a representative value with the center position.
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Figure 2. Accumulative geodesic distances between the center of body and key body parts such head,
hands, and feet. Here, the poses are colored white if the distances are closer to the center of the body
and red if they are closer to key body parts.

Algorithm 1 Graph construction: Here, δD and δC are threshold values to split a node into four children.

1: Input: image I = {depth(D), color(C)}, init tree depth tD = 0
2:
3: Output: decomposed image with quadtree structure
4:
5: function QUADTREE(I, tD)
6:
7: if (tD >= tmax) then
8:
9: return node(I)

10:
11: else
12:
13: σD = standard deviation of ID
14:
15: δD = divider of ID
16:
17: σC = standard deviation of IC
18:
19: δC = divider of IC
20:
21: if (σD > δD ‖ σC > δC) then
22:
23: Isub = split I as four sub images
24:
25: return QUADTREE(Isub, tD + 1)
26:
27: end if
28:
29: end if
30:
31: end function

3.3. Body Parts Detection

Algorithm 1 generates an undirected G with a vertex, vj ∈ Isub, which is a leaf node of the
quadtree, and a weighted edge which connects to the neighboring vertices of vj. The weight value can
be estimated from the Euclidean distance between the neighboring vertices of vj.

Let Nk be the number of candidate extreme points and Dk represent the shortest paths from the
kth starting vertex, sk, where k = [1, . . . , Nk], to other nodes in G. Using Dijkstra’s algorithm, a set of
the candidate extreme points, Ṕk, from G can be searched in an iterative way as follows,

When k = 1,

(1) Set PC as a start vertex, sk, and search G.
(2) Save the accumulative geodesic distances of (1) to Dk.
(3) Set Ṕk to the longest accumulative geodesic end point of Dk.
(4) Update Ṕk to sk+1.

When 1 < k < Nk + 1,

(1) Set sk as a start vertex and partially search G such that vj is nearer to sk than to sk−1.

(2) Update Dk−1 to Dk using the result of (1).
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(3) Set Ṕk to the longest accumulative geodesic end point of Dk.
(4) Update Ṕk to sk+1.

Given Ṕk, Pi for the key body parts can be classified by matching local features. The supervised
learning model like SVM requires a relatively small amount of sample data and is well suited for the
detection of specific human parts [28,29]. For Pi classification, the image patches of major joints are
collected from IC, and data augmentation is used to increase the number of the patches. The histograms
of gradients for the patches are arranged into a 1D feature vector and used to train the SVM [30]. During
the test process, Pi is classified within the region of interest for Ṕk (i.e., 80 by 80 pixels) by applying
a sliding window (i.e., 5 to 20 pixels) with multi-scales for scale-invariant detection. Figure 3 shows
the results of each step with tmax = 8, δD = 8, δC = 5, and Nk = 10 to specify Pi.

Figure 3. Results of each step in the single camera process: (a) a filtered human object (foreground),
(b) a quadtree-based decomposition of color and depth images, (c) accumulative geodesic end points
(candidate extreme points), and (d) selected extreme points on the head (H) (yellow), right hand (RH)
(white), left hand (LH) (green), right foot (RF) (red), and left foot (LF) (blue) in searched regions.

4. Multi-Camera Process

Our system combines a set of key body parts detected from each camera into a single space
and tracks the body parts with minimum errors. This multi-camera process consists of four steps:
Data unification in a single coordinate system, body part tracking based on a voting scheme, noise
removal and failure recovery with a Kalman-filtered method, and body orientation estimation using
principal component analysis (PCA). The details of each step are described in the subsequent sections.

4.1. Data Unification

Using multiple RGB-D cameras, a set of extreme points, Pc
i , detected from the cth camera can be

unified into the same coordinate system by using a rigid transformation, T. If one of the cameras is
selected as a reference coordinate system, T can be estimated from the ICP method [31] by minimizing
the error function, E(T) = E(RT, LT), where RT and LT are the rotation and translation of the camera
data to the reference system, respectively. This convergence method is capable of an online performance
with the input data obtained from multiple cameras; however, the unified result may be erroneous
without enough matching points, Mt, where Mt ∈ R3 and t ∈ [1, . . . , Nt]. As shown in Figure 4, PRH of
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the calibration pose is traced from the reference, MR
t , and the cth camera, Mc

t , respectively. Given Mt,
E(RT, LT) can be evaluated as follows:

E(RT, LT) ∝
1

Nt

Nt

∑
t=1
||MR

t − RB(RTMc
t + LT)||2. (1)

Here, LT = M̄R − RTM̄c, where M̄R = 1
Nt

∑Nt
t=1 MR

t and M̄c = 1
Nt

∑Nt
t=1 Mc

t . Given a correlation
matrix, W, between MR

t and Mc
t ,

W =
Nt

∑
t=1

(MR
t − M̄R

t )(Mc
t − M̄c

t )
> = UCV>. (2)

Here, the optimal solution for E(RT, LT) is RT = UV> with W = UCV> derived from a single
value decomposition (SVD). Furthermore, RB is the body rotation between the depth images from the
reference camera, IR

D, and the cth camera, Ic
D. This is estimated by a plane defined by the upper three

extremes, namely, PH, PLH, and PRH and used to enhance the ICP performance. In our system, Mt is
collected at every 33 ms until Nt = 500.

Figure 4. Data unification for a multi-camera process: (a) a calibration pose for the coordinate
unification and (b) two depth images in the same coordinate system (oriented toward a viewer).

4.2. Body Parts Tracking

Given a set of extreme points for each body part in a single coordinate system, our tracking method
uses a voting scheme to set a priority for each point. At first, a set of Pc

i for each body part i from the
cth camera forms a candidate group. Within this group, the distance between Pc

i below a threshold
value (150 mm) is regarded as the same point and counted as a vote, νD

i . Next, the characteristics of
human physical constraints are considered using the accumulative geodesic distance for the vote count.
For example, starting from PC, the end joints such as head, hands, and feet are generally located further
than the internal joints such as neck, elbows, and knees. Similarly, the accumulative geodesic distances
from PC to the end joints are longer than ones to the internal joints. Another vote, νR

i , is counted for the
point if the distance from PC is larger than another threshold value (a quarter of user’s height). A total
vote, νi, for Pc

i is counted as follows:

νi = wD
i νD

i + wR
i νR

i . (3)

Here, νD
i and νR

i , where νD
i , νR

i ∈ [0, 1], are the vote counts from the distance measure and the
range measure, respectively. Furthermore, wD

i and wR
i are the weight values for νD

i and νR
i , respectively.

In our system, wD
i and wR

i are set to 2 and 1 to emphasize the importance of the neighboring factor, νD
i .
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Once νi is counted for Pc
i , Pi,t is tracked based on the minimum Euclidean distance between

a tracked point at a previous frame, Pi,t−1, and candidate points at a current frame, Pc
i,t, by maximizing

νi as follows:
Pi,t = arg min

Pc
i,t

‖〈Pc
i,t, νi〉 − Pi,t−1‖2, (4)

where 〈Pc
i,t, νi〉 is the extreme point from the cth camera at the t frame with νi votes. Here, Pc

i,t is
compared to Pi,t−1 in order from the largest νi to the smallest one. If the maximum of νi is 0, the tracking
attempt fails and enters a recovery process described in the following section.

4.3. Noise Removal and Failure Recovery

Whenever the tracking process fails or causes positional noises such as jerky movements in
a trajectory of Pi,t, our system applies a Kalman filter-based method to correct the erroneous Pi,t.
Assuming a linear system used for a state-space model in a Kalman filter, the system state model and
its measurement model can be defined as follows:

xt+1 = Axt + wt,
zt = Hxt + vt,

(5)

where t is the time index, A is the state transition model, xt is the state vector, wt is the state noise
vector, H is the measurement matrix, zt is the measurement vector, and vt is the measurement noise
vector. Here, wt and vt are considered to be white noises, which comply to the Gaussian normal
distribution with a mean value of 0, a covariance matrix of Q = ww>, and R = vv>. As input
arguments to xt, the position and velocity of Pi,t are used, and zt returns a corrected position of Pi,t.
In our system, σ2 in Q and R is set to 0.01 and 1.0, respectively.

Given the state-space model, the Kalman filter estimates a predicted position, P̃i,t from the
prediction and correction steps with Pi,t. For example, the prediction step estimates P̃i,t while
the correction step removes the noises in Pi,t. During the prediction step, a predicted state vector,
x̃t, and a predicted covariance matrix, P̃t, are estimated from a posteriori at t− 1 as follows:

x̃t = Axt−1,
P̃t = APt−1A> + Q,

(6)

where xt−1 and Pt−1 are the posteriori state estimate and the posteriori error covariance matrix at
time t− 1, respectively. Here, x̃t replaces P̃i,t, which failed to be located during the tracking process.
During the correction step, x̃t and the Kalman gain matrix, Kt, are used to update xt as follows:

Kt = P̄tH>(HP̃tH> + R)−1,
ẋt = x̃t + Kt(Pi,t −Hx̃t).

(7)

Here, ẋt is the updated state vector, which removes the noises and sets a corrected position of Pi,t.
Finally, the posteriori error covariance matrix at time t, Pt, is estimated as follows:

Pt = P̃t −KtHP̃t, (8)

which will be used during the prediction step at t + 1. To summarize, x̃t from the prediction step and
ẋt from the correction step determines Pi,t which fails to track or needs to be corrected for its position,
respectively. The result of this process for PLF,t is shown in Figure 5.
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Figure 5. Comparison of foot trajectories: Initially tracked (green) and Kalman filtered (white).
Here, the tracking noises cause sudden positional changes (the white circle) while the tracking failure
skips the foot positions (the red circle), which are corrected in the filtered trajectory.

4.4. Body Orientation Estimation

The body orientation of each pose from ID, serve as a useful parameter for motion analysis. In our
system, the normal vector at PC, nC, is estimated using PCA, which finds the best fitting plane from the point
locations in ID. When PCA is applied to the selected locations in ID, the first two eigenvectors define the
plane. For example, when a covariance matrix (i.e., a size of 3 by 3) is estimated for the matrix of coordinates
from ID (i.e., a size of Ns by 3), where Ns is the number of points to be fit, it can be decomposed into a set of
eigenvectors and eigenvalues. Here, the first two eigenvectors with the largest eigenvalues define a plane;
thus, the cross product of these two eigenvectors defines a normal vector (i.e., body orientation), nD, on the
plane. Figure 6 shows a set of Pi tracked and a body orientation represented by nC. In our system, nC is
placed 300 mm higher from PC for better recognition.

Figure 6. A set of extreme points on the body parts tracked and the body orientation represented by
a normal vector (cyan).
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5. Experimental Results

Figure 7 shows the prototype of our system, which tracks various dynamic movements of
Taekwondo from general users. In this system, two RGB-D (Kinect v2 [2]) cameras (Microsoft,
Redmond, WA, USA) are placed in front of the user with two displays. From the cameras, only RGB
and depth data are retrieved to track a set of extreme points on key body parts such as head, hands, and
feet, and the body orientation. A smart sandbag, equipped with pressure sensors, is self-manufactured
and used to detect the hitting moments such as punches and kicks from input motion. Our system is
best understood through examples of its uses, as described in following sections, and the accompanying
video (located at https://drive.google.com/open?id=1IJjt0TTs0TimcEcsTSoIbWrxZiiNYv9g).

Figure 7. System setup for action recognition and motion synthesis: Two RGB-D cameras with displays,
a smart sandbag to detect user kicks and punches, and the Xsens system (a wearable suit) used for
accuracy comparison.

5.1. Tracking Accuracy

To evaluate the tracking accuracy between different systems, the ground-truth data are captured
by the Xsens system [32]. As shown in Figure 7, this commercial system uses a set of inertial sensors
embedded in a wearable suit such that user motions can be tracked from both camera-based and
Xsens systems at the same time. Owing to the differences in the sensing locations on key body parts
between the two systems, a set of joint vectors, j, is defined from the center of the body to each of the

https://drive.google.com/open?id=1IJjt0TTs0TimcEcsTSoIbWrxZiiNYv9g
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end-effector joints (i.e., hands and feet) and used to compare the angular differences between two
outputs as follows:

Err = 1− ∑Na
0 (jX · jC + 1)

2Na
, (9)

where jC and jX are measured with a total of Na frames from the camera-based and Xsens system, respectively.
For this and next comparisons, a total of 3845 frames are collected from six Taekwondo actions in

Figure 8. As shown in Table 1, it is notable that the head part shows the highest accuracy, which is
visible most of time during the tracking process. However, the hand parts are less accurate than the
head and foot parts. This is mainly because larger noises arise in the hand areas whenever a user takes
poses with hands on the torso areas. These poses are frequent in Taekwondo actions in Figure 8 and
make the local detection ambiguous between the hand and torso areas.

Table 1. Tracking accuracy of our system.

Action Type
Accuracy (%)

H RH LH RF LF

Front Kick (FK) Left 92.1 88.2 87.8 86.4 87.8

Right 91.8 87.8 88.1 87.1 86.9

Side Kick (SK) Left 90.2 87.9 88.0 87.8 88.3

Right 90.8 87.7 87.9 89.1 87.1

Round Kick (RK) Left 91.8 88.1 88.2 87.2 89.2

Right 91.5 88.3 88.1 88.9 87.9

Front Punch (FP) Left 94.2 81.8 84.1 85.6 85.8

Right 94.1 83.8 82.7 86.1 86.2

Forward Punch (WP) Left 93.8 80.9 82.8 86.2 86.5

Right 94.0 83.1 80.5 86.1 86.4

Front Punch Opposite Side (FPOS) Left 93.8 80.2 82.7 85.8 86.0

Right 93.1 83.8 80.9 85.4 85.9

Average 92.6 85.1 85.2 86.8 87.0

Next, our system is compared against the multi-Kinects system [11]. In this comparison, the body
parts tracked by our system are compared against the major joints (i.e., HEAD, HAND_RIGHT,
HAND_LEFT, ANKLE_RIGHT, ANKLE_LEFT) recovered from the Kinect skeletal data. As shown
in Table 2, our system with two Kinect cameras outperforms the multi-Kinects system with two or four
cameras throughout all of tracked body parts. As expected, the head part shows the highest accuracy
as it is visible most of time from all cameras. However, for other parts, the multi-Kinects system
suffers from the erroneous skeleton reconstruction, especially the foot areas, and shows relatively less
accuracy. It is noteworthy that using four cameras for our system shows negligible improvements on
tracking accuracy due to the majority of frontal movements in the collected data.

Table 2. Tracking accuracy comparison between our system and multi-Kinects system [10].

System Type
Average Accuracy (%)

H RH LH RF LF

Ours (Two Kinects) 92.6 85.1 85.2 86.8 87.0

Multi-Kinects (Two Kinects) 91.2 78.9 79.2 76.5 77.1

Multi-Kinects (Four Kinects) 91.3 80.3 80.8 79.8 80.0
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5.2. Action Recognition

As shown in Figure 8, our system recognizes various kick and punch motions from a user through
three phases:Iinput motion segmentation, feature vector extraction, and motion type recognition.
First, an input motion is segmented by detecting starting and ending moments of key poses.
The starting moment is determined based on the speed and position of the hands and feet. For example,
an input motion starts at a moment when the speed of the hands and feet are under a threshold value
(1 m/s) while the positions of both feet stay under a height threshold value (10% of the user’s height).
The motion ends at the moment when the sandbag system detects a hit from the user. To recognize
a motion piece by comparing it to a reference, these motions should be aligned in the time-space
domain as each of the segmented motions differ in temporal length and the user’s body size. Using
a number of samples (10 to 15 depending on the complexity of the input poses), a sample set, PS

i,t and
nS

C,t, are linearly interpolated from the trajectories of Pi,t and nC,t in the segmented motion and defines
the feature vector. For a normalization of the feature vector, PS

i,t is translated to an origin using the
average positions between PS

i,0 of a foot and dividing them by the user’s height. In addition, nS
C,t is

normalized by 360 degrees.

Figure 8. Recognition of various Taekwondo actions: Input RGB (left) and output depth data with
tracked extreme points (right).

Given the feature vector for each input motion, a SVM is utilized to recognize different motion
types. Table 3 shows training and test sets (a total of 67,925 frames from 1465 training and 392 test
samples) used for recognizing 12 types of Taekwondo motions in an offline manner. For the data set,
10 general users performed each motion type. Table 4 shows that our system is capable of recognizing
the motion types with over an average of 96% accuracy from the test set. However, some of the similar
motions are incorrectly tracked and misclassified from the test set. For example, about 9% of a front
punch with the right hand was recognized as a front punch with a left hand due to the fast exchanges
of the left and right hands from user input motions.
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Table 3. Training and test sets used for action recognition in Taekwondo. The first column represents
the action type and motion side to be recognized. A total of 1465 and 392 samples are collected from
10 general users to train (the second column) and to test (the third column) the action recognition,
respectively. Here, the total frames for each action (the fourth column) combine the frames used in the
training and test samples while each action has a different temporal length (the last column).

Action Type Training Samples Test Samples Total Frames Average Frames (σ)

FK Left 123 34 4160 26.50 (±3.37)
Right 120 34 4488 29.14 (±6.84)

SK Left 123 30 4886 31.93 (±5.48)
Right 123 30 5305 34.67 (±4.41)

RK Left 124 37 3470 21.55 (±3.68)
Right 125 35 4403 27.52 (±5.82)

FP Left 120 33 4758 31.10 (±6.22)
Right 120 32 7617 32.16 (±4.45)

WP Left 124 30 6243 40.54 (±4.33)
Right 121 32 6380 41.01 (±4.14)

FPOS Left 121 31 7617 50.11 (±7.20)
Right 121 34 8598 55.47 (±5.79)

Total 1465 392 67,925

Table 4. Accuracy of action recognition in Taekwondo.

Action Type
FK SK RK FP WP FPOS

Left Right Left Right Left Right Left Right Left Right Left Right

FK
Left 0.97 0 0.03 0 0 0 0 0 0 0 0 0

Right 0 0.94 0 0.06 0 0 0 0 0 0 0 0

SK
Left 0.03 0.03 0.94 0 0 0 0 0 0 0 0 0

Right 0 0.03 0 0.97 0 0 0 0 0 0 0 0

RK
Left 0 0 0 0 1.00 0 0 0 0 0 0 0

Right 0.03 0 0 0 0 0.97 0 0 0 0 0 0

FP
Left 0 0 0 0 0 0 1.00 0 0 0 0 0

Right 0 0 0 0 0 0 0.09 0.91 0 0 0 0

WP
Left 0 0 0 0 0 0 0 0 0.97 0 0 0.03

Right 0 0 0 0 0 0 0 0 0 0.97 0.03 0

FPOS
Left 0 0 0 0 0 0 0 0 0 0 1.00 0

Right 0 0 0 0 0 0 0 0 0 0 0 1.00

5.3. Motion Synthesis

As shown in Figure 9, our system is tested for synthesizing a sequence of dynamic movements
from a few key poses. The key poses are captured from the Xsens system. Provided with a set of key
poses with input parameters (a set of extremes tracked from our system), a sequence of in-between
poses between the keys can be generated from the motion blending technique with their weight values
estimated from the multi-dimensional scattered interpolation [33].
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Figure 9. Key poses used for motion synthesis: front kick (left), round kick (middle), and front punch (right).

Figure 10 shows an instance of synthesizing three Taekwondo motions, where each of them is
generated using a set of tracked extremes as input parameters and blending five key poses from
example motions. As demonstrated in the results, the synthesized motions are comparable to the input
motions, exhibiting key movements of each Taekwondo motion type. It is noteworthy that some of
movement details, such as relative hand and foot positions, are not synthesized in the output motions
due to the small number of key poses used to generate the in-between poses. In these results, it took
about 3.43 s, 2.98 s, and 5.78 s to synthesize 1406, 1335, and 2485 frames, respectively. Thus, our system
can produce over 400 frames per second, showing a real-time performance for motion synthesis.

Figure 10. Motion synthesis from a set of key poses and input parameters: Front kick (top), round kick
(middle), and front punch (bottom).

6. Conclusions

In this paper, we introduced a marker-less system for human pose estimation by detecting
and tracking key body parts: Head, hands, and feet. Using multiple RGB-D cameras, our system
minimizes the self-occlusion problems by unifying the depth data captured at different viewpoints into
a single coordinate system. To accelerate the search process of the candidate points on the body parts,
a quadtree-based graph is constructed from the RGB-D image, and the accumulative geodesic distances
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on the graph is used to select a set of extreme points on the key body parts. During the tracking process,
these points are used as input parameters for motion analysis. Whenever there are tracking noises or
failures, a Kalman filter-based method for noise removal and recovery is introduced to correct and expect
the extreme positions. Unlike the previous approaches using a learning-based model, our approach does
not reconstruct a full skeleton structure to estimate human poses from input data. Instead, the input poses
are abstracted with a small set of extreme points, making the detecting and tracking process easier without
solving the optimization problem for skeleton reconstruction. Using a small set of extremes as input data,
our system can be applied to recognize a human action or to synthesize a motion sequence from a few
key poses in real time. As demonstrated in the experimental results, our system shows a higher accuracy
over the multi-Kinects system with more RGB-D cameras used.

The current system can be easily scalable by adding more RGB-D cameras as needed. For example,
placing two more RGB-D cameras behind the user might provide better accuracy for the occluded poses
in turning motion if the space and system cost are permitted. Using other RGB-D camera such as Intel
RealSense [3] was problematic due to noisy depth data and unstable support for the software library.
Furthermore, our system is mainly designed to capture one user at a time. For the multi-person pose
estimation, the current detection method can be exploited to extract multiple independent keys, possibly
other than hands and feet, from the input images and to map each set of the keys to a different person.

The proposed system causes higher tracking errors when there are frequent crossing of hands
and feet in an input pose. We are currently improving the tracking recovery process of such cases
by analyzing the velocity gradients of hands and feet. In addition, there is no synchronization in the
times between the input data received from multiple Kinect cameras that do not support a triggering
signal. An external sync generator can be adopted with more sophisticated cameras; however, such
a configuration increases the overall system cost, making the system less applicable for general users.
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Abbreviations

The following abbreviations are used in this manuscript:

RGB-D Red, green, blue, and depth
HCI Human computer interaction
VR Virtual reality
AR Augmented reality
AdaBoost Adaptive boosting
SVM Support vector machine
GMM Gaussian mixture model
ICP Iterative closest point
CNN Convolutional neural network
H Head
RH Right hand
LH Left hand
RF Right foot
LF Left foot
SVD Single value decomposition
PCA Principal component analysis
FK Front kick
SK Side kick
RK Round kick
FP Front punch
WP Forward punch
FPOS Front punch opposite side
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