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Abstract: In this paper, a novel algorithm based on the combination of a fading filter (FF) and an
extreme learning machine (ELM) is presented for Global Positioning System/Inertial Navigation
System (GPS/INS) integrated navigation systems. In order to increase the filtering accuracy of the
model, a variable fading factor fading filter based on the fading factor is proposed. It adjusts the fading
factor by the ratio of the estimated covariance before and after the moment which proves to have
excellent performance in our experiment. An extreme learning machine based on a Fourier orthogonal
basis function is introduced that considers the deterioration of the accuracy of the navigation system
during GPS outages and has a higher positioning accuracy and faster learning speed than the typical
neural network learning algorithm. In the end, a simulation and real road test are performed to verify
the effectiveness of this algorithm. The results show that the accuracy of the fading filter based on a
variable fading factor is clearly improved, and the proposed improved ELM algorithm can provide
position corrections during GPS outages more effectively than the other algorithms (ELM and the
traditional radial basis function neural network).

Keywords: fading filter; extreme learning machine; GPS/INS; integrated navigation

1. Introduction

With the rapid development of the intelligent transportation system (ITS), vehicle navigation and
positioning has attracted more and more researchers in recent years. In most systems, a combination
of the Global Positioning System (GPS) and the Inertial Navigation System (INS) is used as the main
positioning system. GPS receivers can provide high-precision navigation and positioning information
by tracking at least four satellites. However, the performance of standalone GPS receivers may
deteriorate under conditions such as GPS signal outages due to multipath effects [1,2]. However, INS
is a self-contained system with excellent concealment, which makes it free from external environment
interference. It obtains the position and velocity of a vehicle using the inertial measurement unit
(IMU), which consists of three-axis accelerometers and three-axis rate gyros [3]. Unfortunately,
errors in INS may increase over time because of noise, bias instability errors, dependent random
noise, and random-work errors. Therefore, GPS is usually integrated with INS to restrain the
accumulated positioning errors [4]. Currently, GPS/INS is considered to be the best style of vehicle
navigation system.

GPS and INS data are processed synchronously by the fusion algorithm, which plays an important
role in the accuracy of GPS/INS integrated navigation systems. As a linear optimal estimation
algorithm, the Kalman filter (KF) is known as the most popular algorithm for GPS/INS integrated
navigation at present. Scholars have conducted many studies based on KF to enhance the performance
of combined navigation systems. So, an extended Kalman filter (EKF) algorithm was introduced in
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reference [5] to overcome the deficiencies of KF, which cannot handle non-linear data. EKF truncates
the first-order linearization of Taylor’s expansion of the nonlinear function and ignores the remaining
higher-order terms, thereby transforming the nonlinear problem into a linearity. Therefore, the
estimation error caused by the linearization is reduced. References [6,7] introduced an unsupervised
Kalman filter (UKF) into an integrated navigation system. Based on the unscented transform (UT), the
UKF uses UT to estimate the mean and covariance, the accuracy of which can reach the fourth-order of
the Taylor series, so it is better than EKF. Due to the volatile working environment of the integrated
navigation system, the parameters of the navigation model as well as the statistical characteristics
of the noise may also change from time to time. An adaptive Kalman filter that can correct system
errors in real-time was proposed to allow adaptation to environmental changes [8]. Many studies have
been based on the adaptive Kalman filter, such as the information adaptive estimation Kalman filter
(IAE-KF) and the multi-model adaptive estimation Kalman filter (MMAE-KF), as well as the robust
adaptive cubature Kalman filter (RACKF) [9–11]. Although the conventional algorithm-based Kalman
filter has greatly improved the accuracy of the GPS/INS integrated navigation system, it does not
suppress error divergence when the GPS signal is missing. Therefore, it is necessary to find a better
way to solve the problem of combined GPS/INS systems during GPS outages in harsh environments.

In recent years, with the rapid development of artificial intelligence (AI) technology, a lot of
scholars began to apply AI-aided KF to GPS/INS integration in order to reduce the GPS signal
loss. The most common method is to estimate the error by AI instead of the Kalman filter to correct
the inertial navigation system when the GPS signal is interrupted. Some AI algorithms have been
widely used to improve the performance of the system, for instance, fuzzy logic and neural networks.
An adaptive fuzzy logic method was introduced in reference [12] which suppressed the divergence of
inertial navigation errors by establishing an INS error model. Reference [13] proposed a combined
navigation method based on the back propagation neural network (BPNN), which trains the model
parameters when GPS is available, predicts the output of the Kalman filter, and corrects the result of
the INS solution when GPS is unavailable. However, it has difficulty meeting the highly dynamic
requirements of the navigation system due to its slow training speed and poor real-time performance.
In references [14–16], the radical basis function neural network (RBFNN) was used to improve the
accuracy of the navigation system during GPS outages. The RBFNN was shown to have a faster
training speed and better real-time performance than BPNN.

More algorithms with faster training and more generalization ability have been proposed
following the massive amount of research on AI algorithms. An extreme learning machine (ELM)
algorithm was proposed by Professor Huang Guangbin in 2004 [17]. In contrast to the traditional neural
network, ELM is a single-layer feed-forward neural network in which all the hidden layer parameters
are randomly generated and do not require a tedious iterative process. There are many advantages
of ELM, such as fast training, good classification results, and so on. Therefore, it is widely used in
the fields of model prediction, fault diagnosis, speech recognition, and image recognition [18–20].
Li et al. [21] presented a method based on map matching and an extreme learning machine for taxi
GPS data, which has superior performance in matching accuracy. Reference [22] presented an extreme
learning machine as a mechanism for learning stored digital elevation information to aid unmanned
aerial vehicles in navigation through terrain.

To achieve good performance for GPS/INS during GPS outages, an extreme learning machine is
introduced and improved in this paper. The improved extreme learning machine based on a Fourier
orthogonal basis function, named IELM, is proposed. This algorithm has the advantages of fast
training, satisfying the real-time requirements of the navigation system, and good generalization
performance, which can improve the convergence performance of network training of conventional
ELM. This algorithm can slow down the process of error accumulation in neural network prediction,
maintain the stability of the system, and restrain the divergence of navigation information when the
GPS signal is out of lock. In order to further improve the navigation accuracy of GPS/INS, an improved
fading filter (IFF) is proposed in this paper. The improved fading filter algorithm adaptively changes
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the fading factor in real-time according to the covariance in a fading filter (FF), which effectively
overcomes the problem of filter divergence.

The rest of this paper is organized as follows: in Section 2, the GPS/INS integrated navigation
error models are introduced, such as the equation of state, the speed error equation, the position
error equation, and so on. In Section 3, the proposed algorithms—the improved fading filter and the
improved extreme learning machine—are described. A novel fusion algorithm for GPS/INS systems
is introduced in Section 4. In Section 5, the performance of the proposed algorithm is verified by
simulation experiments and vehicle tests. The conclusions are given in Section 6.

2. The Position from the GPS/INS System

In this section, the error model of INS is listed and the loosely coupled GPS/INS integrated
navigation system with a 15-state vector is discussed in detail.

2.1. Error Modeling

Select the “East, North, Up (ENU)” geographical coordinate system (g) as the inertial navigation
system navigation reference frame, remembered as the n department. The n department, as the
reference frame of the differential equation of attitude, can be expressed as

.
C

n
b = Cn

b

(
ωb

nb×
)

(1)

where b denotes the body frame; Cn
b denotes the attitude matrix or direction cosine matrix, which

can be used to transform from frame b to frame n; ωb
nb denotes the angular rate vector of frame b

with respect to the navigation frame n; (·×) denotes the skew-symmetric matrix. Since the gyroscope
outputs the angular rate vector of frame b to the inertial frame n, the velocity information ωb

nb cannot
be directly measured. So, Equation (1) needs to be transformed, as follows [23]:

.
C

n
b = Cn

b

(
ωb

ib×
)
− (ωn

in×)Cn
b (2)

where ωb
ib denotes the output of the gyroscope, and ωn

in is the rotation of frame n to inertial frame i,
which can be expressed as

ωn
in = ωn

ie + ωn
en (3) ωn

ie =
[

0 ωie cos L ωie sin L
]T

ωn
en =

[
− VN

RM+h
VE

RN+h
VE

RN+h tan L
]T (4)

where ωn
ie denotes the earth self-rotation rate in frame n; ωn

en denotes the angle rate of frame n relative to
frame e in frame n; e denotes the earth frame; L and h denote the local latitude and altitude, respectively;
VN and VE denote the north and east speeds of the vehicle, respectively; RM denotes the radius of
curvature in the meridian; and RN denotes the radius of the curvature the prime vertical direction.

The specific force equation of INS is another basic equation, which can be expressed as

.
V

n
en = Cn

b f b
s f − (2ωn

ie + ωn
en)×Vn

en + gn (5)

where f b
s f is the vehicle ground specific force measured by the accelerometer; Vn

en is the vehicle velocity
in frame n; and gn is the gravitational acceleration.

Last, the position information of INS can be given follows:
.
λ = sec L

RN+h Vn
E.

L = 1
RM+h Vn

N.
h = Vn

U

(6)
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where:

RM =
RN
(
1− d2)

1− d2 sin2 L
, RN =

Re(
1− d2 sin2 L

)1/2 , d =
√

2 f − f 2 (7)

where λ is the local longitude, which is provided by GPS; d is the Earth’s elliptical eccentricity; and
f is the flattening of the earth.

By ignoring the effects of some small quantities, the linear and simple error equations of INS can
be expressed as

.
φ = φ×ωn

in + δωn
in − δωn

ib (8)

δ
.

V
n
= f n

s f × φ + Vn × (2δωn
ie + δωn

en)× δVn + δ f n
s f + δgn (9)

δ
.
L =

1
RM + h

δVN −
VN

(RM + h)2 δh (10)

δ
.
λ =

sec L
RN + h

δVE +
VE sec L tan L

RN + h
δL− VE sec L

(RN + h)2 δh (11)

δ
.
h = δVU (12)

where Equation (8) denotes the attitude error equation; Equation (9) denotes the speed error equation;
and Equations (10)–(12) denote the position error equation.

2.2. The Model of the GPS/INS Loosely Coupled Integrated System

The navigation system based on GPS/INS can overcome the shortcomings of each navigation
device and enhance the performance of the overall system. At present, there are two commonly
used navigation methods: loosely coupled and tightly coupled. Considering that the loosely coupled
method is easy to implement and the calculation process is simple [24], this method was chosen as
the research object in this paper. The architecture of the loosely coupled GPS/INS integrated system
is shown as Figure 1. The velocity difference and position difference, which are calculated by the
information between GPS and INS, are the KF inputs. The INS navigation information is corrected by
the output information of KF, which includes the velocity difference, position difference, gyro biases,
and accelerometer biases.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 22 

 

sec

1

n
E

N

n
N

M
n

U

L V
R h

L V
R h

h V

λ = +


= +
 =









 (6) 

where: 

( )
( )

2
2

2 2 1 22 2

1
, , 2

1 sin 1 sin

N e
M N

R d R
R R d f f

d L d L

−
= = = −

− −
 (7) 

where λ is the local longitude, which is provided by GPS; d is the Earth’s elliptical eccentricity; 
and f  is the flattening of the earth. 

By ignoring the effects of some small quantities, the linear and simple error equations of INS 
can be expressed as 

n n n
in in ibφ φ ω δω δω= × + −  (8) 

( )2n n n n n n n n
sf ie en sfV f V V f gδ φ δω δω δ δ δ= × + × + × + +  (9) 

( )2

1 N
N

M M

V
L V h

R h R h
δ δ δ= −

+ +
  (10) 

( )2

sec tan secsec E E
E

N N N

V L L V LL V L h
R h R h R h

δλ δ δ δ= + −
+ + +

  (11) 

Uh Vδ δ=  (12) 

where Equation (8) denotes the attitude error equation; Equation (9) denotes the speed error 
equation; and Equations (10)–(12) denote the position error equation. 

2.2. The Model of the GPS/INS Loosely Coupled Integrated System 

The navigation system based on GPS/INS can overcome the shortcomings of each navigation 
device and enhance the performance of the overall system. At present, there are two commonly used 
navigation methods: loosely coupled and tightly coupled. Considering that the loosely coupled 
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Figure 1. Architecture of the loosely coupled Global Positioning System (GPS)/Inertial Navigation 
System (INS) integrated system. 

Figure 1. Architecture of the loosely coupled Global Positioning System (GPS)/Inertial Navigation
System (INS) integrated system.

According to the loosely coupled integrated system based on the Kalman filter, the state equation
and measurement equation can be expressed as{ .

X = FX + GW
Z = HX + V

(13)

where F represents the state transition matrix; G represents the state noise matrix; W represents the
process noise vector; Z represents the measurement vector; H represents the measurement matrix; and
V represents the measurement noise matrix. A 15-state vector was proposed for the experiment in this
paper. The state vector X is given by
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X =
[

φE φN φU δVE δVN δVU δL δλ δh ∇x ∇y ∇z εx εy εz

]T
. (14)

The details of the state vectors are listed in Table 1.

Table 1. The state vector with 15 dimensions.

State Definition Coordinate System

φE, φN , φU Attitude errors (misalignment angles) Geographical frame g
δVE, δVN , δVU Velocity errors Geographical frame g

δL, δλ, δh Position errors Geographical frame g
∇x,∇y,∇z Accelerometer biases Body Frame b

εx, εy, εz Gyro biases Body Frame b

A 6-dimension measurement vector was designed in the loosely coupled GPS/INS integrated
system in this study, which includes a 3-dimension speed error and 3-dimension position error between
INS and GPS. The measurement vector Z can be expressed as

Z =

[
Vn

INS −Vn
GPS

PINS − PGPS

]
(15)

where Vn
INS and PINS denote the speed and location of the inertial navigation system, and Vn

GPS and
PGPS denote the speed and location information provided by GPS.

3. Proposed Algorithms

In this section, the principle of the fading filter is described, and a new, improved fading factor
algorithm is proposed. Then, an ELM algorithm based on a single hidden layer feed-forward neural
network is discussed, while an improved ELM algorithm with a Fourier orthogonal basis function
is introduced.

3.1. Principles of the Fading Filter

All of the historical measurements are utilized comprehensively in the standard Kalman filter, and
the optimal estimation of the state can be obtained theoretically when the filtering model is accurate.
After long-time filtering, the filtering gain calculation loop generally converges gradually and the
filtering gain decreases, which makes the inertia of the filter increase, and the correction effect of
the new measurement value on the state estimation decreases gradually. In order to overcome this
problem, researchers proposed a fading filter algorithm to modify the system noise and the weight of
measurement noise in the filtering process to gradually reduce the weight of the historical information
and achieve the purpose of reducing the filter inertia. A fading filter improves the filtering accuracy
under the condition of inaccurate system modeling; it is a sub-optimal filtering algorithm.

The loosely coupled integrated system model in Equation (13) is transformed into the discrete
time formula: {

Xk = Φk,k−1Xk−1 + GkWk
Zk = HkXk + Vk

. (16)

The time update is
X̂k,k−1 = Φk,k−1X̂k−1 (17)

Pk,k−1 = SkΦk,k−1Pk−1ΦT
k,k−1 + Gk,k−1Qk−1GT

k,k−1 (18)

where X̂k,k−1 denotes the predicted state estimate; Φk,k−1 denotes the state transition matrix; Pk,k−1
denotes the predicted estimate covariance; Sk denotes the fading factor; and Sk ≥ 1.
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The measurement update is

Kk = Pk,k−1HT
k

[
HkPk,k−1HT

k + Rk

]−1
(19)

{
X̂k = X̂k,k−1 + Kk

[
Zk − HkX̂k,k−1

]
Pk = [I − Kk Hk]Pk−1

(20)

where Kk represents the Kalman filter gain, and Qk and Rk represent the covariance matrices of the
state noise and measurement noise, respectively, which can be calculated as

Qk = E
[
WkWT

k

]
, Rk = E

[
VkVT

k

]
. (21)

All of the above processes make up the fading filter. It can be regarded as a traditional Kalman
filter when Sk = 1 is satisfied in the fading filter. If Sk is greater than 1, the historical information is
forgotten faster in the fading filter [25].

3.2. The Improved Fading Factors

The choice of fading factor plays a key role in the performance of the fading filter. The fading
factor of conventional fading filtering algorithms is usually chosen empirically. In reference [26], a
recursive least squares (RLS) based variable fading factor algorithm was proposed. Reference [27]
introduced a multiple fading factor calculation method. It is very difficult to apply these methods to
the GPS/INS system because of the complex computation required. So, a simplified and well-behaved
algorithm is proposed in this section.

The covariance matrix of the measurement prediction error σ2
k is defined as

σ2
k = E

[(
Zk − HkX̂k,k−1

)(
Zk − HkX̂k,k−1

)T
]
. (22)

When σ2
k increases, it satisfies σ2

k − σ2
k−1 > 0; at the same time, the filter is in a divergent state. We

should increase the Kalman filter gain and the system noise variance matrix to emphasize the effect of
the new data on the filtering—the larger the σ2

k value is, the greater the correction must be. According
to the above description, an algorithm for calculating variable fading factor is proposed:

Sk = Sk−1 + u · β (23)

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 +

1
Sk

Gk,k−1Qk−1GT
k,k−1 (24)

Kk =
1
Sk

Pk,k−1HT
k

[
HkPk,k−1HT

k + Rk

]−1
(25)

where u represents the filter step, and β represents the ratio of estimated covariance before and after
the moment. In the filtering process, β = −1 is taken if the covariance of the estimated error σ2

k tends
to increase and the ratio of the previous two times exceeds the limits, otherwise, β = 1.

β =


1 , σ2

k
σ2

k−1
≥ m

−1 , σ2
k

σ2
k−1

< m
. (26)

On the other hand, the value of Sk needs to be corrected in order to prevent the filter from
diverging out of the limited range.
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Sk =


1 , Sk > 1

Smin , Sk < Smin

Sk , other

. (27)

In summary, in the filtering process, if σ2
k is not high, then Sk will eventually approach 1, and

the filter will be in a steady state. If there is a large deviation σ2
k , Sk is reduced to achieve the

purpose of highlighting the new data correction. Figure 2 shows the proposed improved fading
filtering algorithm (IFF).
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3.3. Extreme Learning Machine 

An extreme learning machine is a single hidden layer feed-forward neural network (SLFNN) 
algorithm, the most prominent feature of which is that it can be faster than the traditional neural 
network algorithm under the premise of ensuring learning accuracy. Moreover, it can randomly 
generate the link weights between the input layer and the hidden layer as well as the thresholds of 
the hidden layer neurons which need not be adjusted in the training process so that the optimal 
solution can be obtained by only setting the number of neurons in the hidden layer [28,29]. The 
architecture of the ELM is illustrated in Figure 3. 
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3.3. Extreme Learning Machine

An extreme learning machine is a single hidden layer feed-forward neural network (SLFNN)
algorithm, the most prominent feature of which is that it can be faster than the traditional neural
network algorithm under the premise of ensuring learning accuracy. Moreover, it can randomly
generate the link weights between the input layer and the hidden layer as well as the thresholds of the
hidden layer neurons which need not be adjusted in the training process so that the optimal solution
can be obtained by only setting the number of neurons in the hidden layer [28,29]. The architecture of
the ELM is illustrated in Figure 3.Sensors 2018, 18, x FOR PEER REVIEW  8 of 22 
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There are three layers in ELM—the input layer, the hidden layer, and the output layer from
Figure 3—that have M input neurons, I hidden neurons, and J output neurons. Supposing there are N
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samples (xi, ti), where xi = [xi1, xi2, · · · , xiM]T ∈ RM and oi =
[
oi1, oi2, · · · , oi J

]T ∈ RJ , an ELM with I
hidden neurons can be expressed as

oj =
I

∑
i=1

βig
(
wi · xj + bi

)
, (j = 1, 2, · · · , N) (28)

g(x) =
1

1 + e−x (29)

where g(x) is the activation function, which is often used as a sigmoid function in traditional ELM and
is also selected in this paper; wi = [wi1, wi2, · · · , wiM]T denotes the weight between the input neurons
and the hidden neurons; βi = [βi1, βi2, · · · , βiI ]

T represents the weight connecting the hidden neurons
and the output neurons; and bi is the bias of the hidden neuron. The stand SLFNN tries to minimize
the difference between oj and tj, which can be expressed as

I

∑
i=1

βig
(
wi · xj + bi

)
= tj, (j = 1, 2, · · · , N). (30)

At the same time, Equation (30) can also be expressed as a matrix:

Hβ = T (31)

where H is the output of the hidden layer neuron; β is the output weight; and T is the target matrix of
the N training samples.

H(w1, · · · , wI , b1, · · · , bI , x1, · · · , xN) =

 g(w1x1 + b1) · · · g(wI x1 + b1)
... · · ·

...
g(w1xN + b1) · · · g(wI xN + bI)

. (32)

The training target is to meet the following requirements:

‖H(w1, · · · , wI , b1, · · · , bI)β̂− T‖ = min
β
‖H(w1, · · · , wI , b1, · · · , bI)β− T‖. (33)

Thus, the output weight vector can be calculated by the smallest norm least square solution as
follows:

β̂ = H†T (34)

where H† is the Moore–Penrose generalized inverse of matrix H. The specific steps of the extreme
learning machine are shown in Table 2.

Table 2. Extreme learning machine algorithm.

Number Content

Step 1 Giving the training samples set (xi, ti), activation function g(x), and hidden neurons I
Step 2 Randomly generate hidden layer node parameters (wi, bi)
Step 3 Calculate the hidden layer output matrix H
Step 4 Calculate the output weight vector β = H†T

3.4. The Improved Extreme Learning Machine

One of the biggest problems for the traditional extreme learning machine is that the activation
function is fixed which leads to poor convergence of network training [30]. Therefore, an improved
extreme learning machine is proposed in this section, which uses a Fourier orthogonal basis function
instead of a sigmoid function for network activation function.
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Any nonlinear function y = f (x) can be represented linearly by a set of orthogonal basis functions:

y = f (x) =
I

∑
i=1

ωi · gi(x) + R(x) = WTG(x) + R(x) (35)

where G(x) is the orthogonal basis function; W is the correlation coefficient; and R(x) is the
approximation accuracy error. According to Equation (35), the ELM mathematical model based
on a Fourier orthogonal basis function can be expressed as

ŷ = f̂ (x) =
I

∑
i=1

βi · gi(x) + R(x) = βTG(x) + R(x) (36)

where G(x) = [g1(x), g2(x), · · · , gI(x)]. Substituting a Fourier orthogonal basis function for a sigmoid
activation function in Formula (29) gives

gi(x) =


1 i = 0

cos
(

i+1
2 ·

πx
l

)
i = 1, 3, 5, · · ·

sin
(

i
2 ·

πx
l

)
i = 2, 4, 6, · · ·

(37)

where i denotes ith hidden neuron. The IELM has a different activation function for each neuron,
which improves the training convergence rate while ensuring the training accuracy.

4. System Structure for GPS and INS

In the proposed system structure for GPS and INS, the IELM works in two modes. The IELM
works in training mode when GPS signals are available, as shown in Figure 4. Through the specific
force f b

ib and angular velocity ωb
ib measured from IMU, the attitude AINS, speed VINS, and position PINS

information of the vehicle’s motion are calculated by the INS. Meanwhile, the heading H, speed Vx,
and speed Vy are selected as the inputs of the IELM. In this system, the GPS provides the pseudo-range
position and speed, which are used to loosely couple the navigation with the INS information, while
the pseudo-GPS position and pseudo-GPS velocity information are collected as the inputs of the IELM.
The proposed IFF algorithm is used to process the speed errors and position errors between INS and
GPS. Finally, Vx, Vy, PE and PN are used in the final output of the system as the inputs of the IELM.
The velocity error and the position error are introduced into the IELM as the target vectors of the
training. Another mode is the prediction mode, which is based on the IELM in the presence of GPS
outage, as shown in Figure 5. δVx, δVy, δPE, and δPN are predicted by IELM as input information of the
IFF algorithm. We can obtain the final output through the INS and the IFF-processed δV, δP during
GPS signals outages.
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Figure 4. Training mode based on the improved extreme learning machine (IELM) when GPS data is
available. IFF: improved fading filter.
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5. Discussion

5.1. Simulation Test

The proposed algorithm was simulated under the GPS/INS loosely coupled mode. The biases
caused by drift and the random walk noise of the accelerometer were set as 100µg and 100µg/

√
Hz,

respectively. The biases and random walk noise of the gyroscope were set as 0.02
◦
/h and 0.02

◦
/
√

h,
respectively. The initial misalignment angle was set as 0.01

◦
for heading, pitching, and roll. The GPS

speed and position errors were set as 1 m and 0.1 m/s, respectively. The out frequency of the inertial
sensors and GPS receiver were set as 100 Hz and 1 Hz, respectively. The vehicle movement start
position was set to latitude 32.05

◦
N and longitude 118.79

◦
E. The process of the vehicle’s motion is

listed in Table 3.

Table 3. The process of the vehicle’s motion.

Time (s) State Time (s) State

0–5 Stationary state 325–335 Accelerated motion (a = 0.9 m/s2)
5–25 Accelerated motion (a = 0.3 m/s2) 335–435 Uniform motion (v = 17 m/s)

25–45 Accelerated motion (a = 0.6 m/s2) 435–465 Decelerated motion (a = −0.3 m/s2)
45–145 Uniform motion (v = 18 m/s) 465–565 Uniform motion (v = 8 m/s)

145–165 Decelerated motion (a = −0.5 m/s2) 565–574 Turn right motion (w = 10◦/s)
165–265 Uniform motion (v = 8 m/s) 574–674 Uniform motion (v = 8 m/s)
265–275 Turn right motion (w = 9◦/s) 674–774 Decelerated motion (a = −0.08 m/s2)
275–325 Uniform motion (v = 8 m/s) 774–784 Stationary state

The moving speeds of the vehicle and trajectories are shown in Figure 6a,b; the velocities of
the vehicle in the east and north directions were less than 20 m/s, respectively. The whole trajectory
had two turns representing rotating speeds of 9◦/s and 10◦/s, respectively. In order to verify the
performance of GPS/INS integrated positioning when GPS was out of lock, two simulated GPS outages
are marked by purple lines in Figure 6b, which represent GPS outages times of 50 s (350~400 s) and
100 s (450~550 s).
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Figure 6. Curves of vehicle motion: (a) east and north vehicle velocities; (b) curves of the
moving trajectories.

First, the IFF algorithm proposed in this paper was verified. In the IFF algorithm, the select step
size was set as u = 0.01, error variance ratio threshold was m = 1.3, and the minimum value of fading
factor was Smin = 0.6. In the conventional fading filter (FF), the fading factor was selected to be S = 0.9.
The curves of the east and north position errors for the fading filter (FF) and IFF algorithms are shown
in Figure 7, in which the FF and IFF are marked by black and red lines, respectively, and the simulation
time is 0s to 350s. In Figure 7, we can intuitively see that the red line is less volatile than the black line,
so the IFF performed better than the FF. To compare the performance of each algorithm in a clearer
way, the root-mean-square errors (RMSEs) of the east and north positions for each algorithm were
calculated, and they are listed in Table 4, showing that the RMSE position of the IFF algorithm was
about half the RMSE position of the FF algorithm.
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Table 4. Position (m) root-mean-square error (RMSE) for the FF and the IFF.

Method East Position North Position

FF 0.0429 0.0404
IFF 0.0219 0.0226
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In order to verify the validity of the IELM+IFF algorithm proposed in this paper during GPS
outages, two GPS outages were simulated for (#1) 350s~400 s and (#2) 450s~550 s. Figure 8a shows the
east and north velocity errors for pure INS, ELM-IFF, and IELM-IFF. Meanwhile, Figure 8b displays the
east and north position errors for pure INS, ELM+IFF, and IELM-IFF. Figure 8a,b clearly demonstrate
that when the IFF algorithm is used at the same time, the improved ELM algorithm for the suppression
of speed errors and position errors is obviously superior to the traditional ELM algorithm during
GPS outages.
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Figure 8. Curves of velocity and position errors: (a) east and north velocity errors for pure INS, 
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Figure 8. Curves of velocity and position errors: (a) east and north velocity errors for pure INS,
ELM-IFF, and IELM-IFF; (b) east and north position errors for pure INS, ELM-IFF, and IELM-IFF. ELM:
extreme learning machine.

The RMSEs of the velocities and positions from the pure INS, ELM-IFF, and IELM-IFF with the
first and second GPS outages periods are listed in Table 5. The result show that the proposed IELM-IFF
algorithm was more effective than ELM-IFF as it decreased the RMSEs of the east and north velocities
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by about 38% and 60%, while the RMSEs of the east and north positions decreased by about 45% and
43%, respectively.

Table 5. The RMSEs of the velocity (m/s) and position (m) from the pure INS, ELM-IFF, and IELM-IFF.

GPS Outage Method East Velocity North Velocity East Position North Position

#1
Pure INS 0.0224 0.0381 0.0451 3.1604
ELM-IFF 0.0104 0.0230 0.0341 2.4498
IELM-IFF 0.0035 0.0210 0.0235 0.8027

#2
Pure INS 0.7808 0.4320 0.0871 1.5541
ELM-IFF 0.2461 0.2006 0.0719 1.2410
IELM-IFF 0.1526 0.0779 0.0384 0.7068

5.2. Real Road Test

To evaluate the performance of the proposed algorithm compared to the conventional counterparts
in practical applications, a real road test was designed and is detailed in this subsection. The vehicle
test equipment included an inertial measurement unit (IMU), a GPS receiver, PHINS, and a computer.
The IMU consisted of three fiber optic gyroscopes and three accelerometers; the GPS receiver used
the FlexPark6 GPS receiver, PHINS; from the French IXBLUE Inertial Navigation system; and the
computer used was PC104. PHINS was used to provide accurate navigation reference information.
The detailed performance parameters of IMU and GPS receiver are shown in Table 6, and the PHINS
specifications are listed in Table 7.

Table 6. Performance of the inertial measurement unit (IMU) and the GPS receiver.

Sensors Rand Biases Rand Walk Data Rate RMSE

Gyro ≤0.02
◦
/h ≤0.02

◦
/
√

h 200 Hz -
Accelerometer ≤6 mg ≤100 µ g/

√
Hz 200 Hz -

GPS receiver - - 1 Hz Position: 2 m;
Velocity: 0.1 m/s

Table 7. PHINS specifications.

Performance of PHINS

No aid for 2 min/5 min 3 m/20 m
Pure inertial mode 0.6 nm/h

With GPS/Ultra Short Base Line (USBL)/Long Base Line (LBL) 0.01◦ secant latitude
Roll and pitch dynamic accuracy (no aid) 0.01◦

Data output rate 200 Hz

As Figure 9a shows, the PHINS and IMU were installed together, Figure 9b shows the experimental
vehicle, and Figure 9c shows the structure of the vehicle test equipment. We can see from Figure 9b
that the outputs of GPS provided the time-synchronization signal for PHINS and IMU. The raw data
of the outputs of the IMU were transferred via an RS422 port, and the PHINS data were collected via
Ethernet from the computer. The GPS data was acquired through an RS232 communication interface.
At the same time, a real-time operation system, VxWorks, was embedded in the computer.
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test equipment.

Figure 10 shows the vehicle trajectory, which was tested at the Jiulonghu campus of Southeast
University in Nanjing. Figure 10a shows the Google map of the reference trajectory. Meanwhile,
Figure 10b shows the coordinates of the reference trajectory.
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The initial alignment time of the system was 0~300 s; after 300s, the whole system worked under
the GPS/INS loosely coupled mode. The entire testing process took 1850 s and the GPS signal was
good under the test environment. The yaw angle, east velocity, and north velocity information for the
entire exercise are shown in Figure 11, where the yaw angle is depicted by the blue line, and the east
velocity and the north velocity are described by the black and red lines, respectively.
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The proposed algorithm was verified by the data collected in the above real road test. First, the
IFF algorithm and FF algorithm were verified by the east position error and the north position error of
GPS/INS integrated navigation from 350 s to 650 s, which is shown in Figure 12. In the IFF algorithm,
the step size was u = 0.005, the error variance ratio threshold was m = 1.3, and the minimum value
of the fading factor was Smin = 0.6, while in FF, the fading factor was S = 0.9. In order to more
accurately illustrate the superiority of the IFF algorithm, the RMSEs of the east and north positions
were obtained by calculating the root-mean-square error of the error data in Figure 12, which are listed
in Table 8. Compared with the FF algorithm, the RMSEs of the east position and north position of the
IFF algorithm (0.6319 and 0.9639) reduced by about 38% and 15%, respectively.
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Table 8. RMSEs of the positions (m) for FF and IFF.

Method East Position North Position

FF 1.0202 1.1339
IFF 0.6319 0.9639

Second, to validate the performance of the IELM algorithm, the results were compared with the
ELM and RBF neural network algorithms. The number of hidden layer nodes in the IELM, ELM, and
RBF neural network was all 20. The training time was 300 s to 650 s, and the simulation set the GPS
outage time from 650 to 750 s. The east velocity error and north velocity error for the pure INS, RBF-IFF,
ELM-IFF, and IELM-IFF of GPS outages are shown in Figure 13a,b. The error gradually increased from
650 s to 750 s in the order of pure INS, RBF-IFF, ELM-IFF, and then IELM-IFF during the GPS outages.
The east position error and north position error for the pure INS, RBF-IFF, ELM-IFF, and IELM-IFF
during the GPS outages are shown in Figure 14a,b. Compared with other algorithms, the IELM-IFF
algorithm had the smallest position error when the GPS signal lost lock. To compare the performance
of each algorithm in a clearer way, the root-mean-square error and maximum error of the velocity and
position information for each algorithm during the GPS outages are listed in Table 9. The maximum
errors and RMSEs of the velocity and position for IELM-IFF were the smallest compared with the
other algorithms.
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Figure 14. Curves of the east position error (a) and north position error (b) during GPS outages.

Table 9. The RMSEs and maximum error values of the velocity (m/s) and position (m) for the different
algorithms. ASFP: artificial-intelligence-based segmented forward predictor.

Pure INS RBF-IFF ELM-IFF ASFP IELM-IFF

East velocity Max-Error 0.9442 0.6310 0.5261 –0.4763 0.2967
RMSE 0.3348 0.2653 0.1673 0.1689 0.1036

North velocity Max-Error 0.6515 0.4315 0.4148 0.2650 0.1749
RMSE 0.2510 0.2025 0.1709 0.0633 0.0600

East position Max-Error 49.3993 25.4681 20.9953 16.5424 13.0378
RMSE 15.1727 9.8322 7.1433 4.2778 4.5788

North position Max-Error 33.2024 19.5778 19.2637 –14.1796 12.0901
RMSE 10.9098 7.5333 6.4667 5.9954 4.3585

Another existing algorithm was compared to demonstrate the effectiveness of the proposed
approach. The artificial-intelligence-based segmented forward predictor (ASFP) was developed in
reference [31] and uses two RBFNNs and a forward prediction algorithm. The ASFP algorithm was
compared with the proposed IELM-IFF algorithm. Figure 15 presents the results during GPS outages
from 650 to 750 s, where Figure 15a,b show the east and north velocity errors, respectively, and
Figure 15c,d show the east and north position errors, respectively. The maximum errors of the east
and north positions were 13.0378 and 12.0901 for the IELM-IFF algorithm. However, the maximum
position errors for the ASFP algorithm were 16.5424 and –14.1796. So, the proposed IELM-IFF showed
better precision than the ASFP algorithm, and the east and north position errors reduced by 21.18%
and 14.73%, respectively.
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error, where Figures 17 a,b represent good GPS signals, and Figures 17 c,d represent GPS outages 
from 650 to 750 s. When the GPS signal was good, the proposed model showed better accuracy than 
the INS kO X− model in most cases. When the GPS signal was unavailable for 650 to 750 s, the two 
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north position error (d) during GPS outages.

Third, Figure 16 shows the position prediction errors for ELM-IFF and IELM-IFF in the case of
good GPS signal with training times from 300 to 525 s and a forecast period of 525 to 570 s. In addition,
the RMSEs of the position for these two algorithms under good GPS signal are listed in Table 10. The
RMSEs of the east position and north position predictions were 0.7346 and 1.8919, which is better than
the results for the ELM-IFF algorithm.
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Table 10. Position (m) RMSE for different algorithms in the case of good GPS signal.

Method East Position North Position

ELM-IFF 0.8456 1.9618
IELM-IFF 0.7346 1.8919

Fourth, to evaluate the performance of the proposed model, the OINS − Xk model was utilized as
a comparison [32]. Figure 17 displays the horizontal velocity error and the horizontal position error,
where Figure 17a,b represent good GPS signals, and Figure 17c,d represent GPS outages from 650 to
750 s. When the GPS signal was good, the proposed model showed better accuracy than the OINS − Xk
model in most cases. When the GPS signal was unavailable for 650 to 750 s, the two models showed
different results. It is obvious that the proposed model outperformed the OINS − Xk model. During
the GPS outages for a period of 650 to 680 s, the velocity errors of the OINS − Xk model and proposed
model were similar. This means that during short GPS outages, both models could be employed
to reduce the velocity error. However, when the GPS outage becomes longer, the proposed model
achieves higher accuracy than the OINS − Xk model.

The reason why the proposed model performs better than the OINS − Xk model is that the
predicted pseudo GPS position only relates to the output of INS, while the predicted state vector Xk
is influenced by both the INS information and the accuracy of the loosely-coupled KF. When the last
estimation of the KF is correct, the OINS − Xk can be well utilized. However, the GPS/INS integrated
system cannot ensure absolute accuracy, which means there are always small errors in the estimation
of the KF.
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Fifth, in order to compare the computational costs between different algorithms, RBF, ELM-IFF,
ASFP, and IELM-IFF with the same number of nodes were investigated. To facilitate the observation
of the computational cost, the number of pieces of training sample data was set as 100. The average
time consumption of training procedures for each algorithm in the simulation is listed in Table 11,
showing that the ELM-IFF, ASFP, and IELM-IFF performed faster than RBF. The computational cost
of the proposed IELM-IFF algorithm was 4.71ms, which is almost similar to the ELM-IFF algorithm.
So, the IELM-IFF algorithm performed better than ELM-IFF and, at the same time, it did not increase
the computational cost. In addition, the IELM-IFF method was shown to have a lower computational
coast than the ASFP algorithm proposed in reference [31].

Table 11. Time consumption of different algorithms.

Method Time Consumption (ms)

RBF 6.72
ELM-IFF 4.69

ASFP 5.05
IELM-IFF 4.71

Finally, Figure 18 shows the curves of convergence performance for the ELM and IELM algorithms,
in which the ordinate represents the RMSE values during training, and the abscissa indicates the
training times. It can be seen from Figure 16 that the IELM algorithm achieved higher convergence
accuracy than the ELM algorithm for the same training time.
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6. Conclusions

In this paper, a new algorithm was proposed for GPS/INS integrated navigation during GPS
outages based on a fading filter and an extreme learning machine, and a new training model strategy
was developed. An improved fading filter algorithm was also proposed with the aim of adjusting the
fading factor in the traditional forgetting filter. This algorithm can dynamically adjust the fading factor
so that the fading filter can achieve a better filtering effect in real-time. In order to solve the problem
of the rapid divergence of a GPS/INS loosely coupled navigation system during GPS outages, this
paper introduced the ELM algorithm into the integrated navigation system, which greatly improved
the speed of the network training compared with the traditional radical basis function (RBF) neural
network. In order to solve the problems of the fixed activation function in the ELM algorithm and
the slow convergence speed, this paper presented an improved ELM algorithm based on a Fourier
orthogonal basis function.

In order to verify the performance of the proposed algorithm, this paper proposed simulation
experiments and a real road vehicle test. Regarding the IFF algorithm verification, by comparing and
analyzing the FF algorithm under good GPS signal conditions, the IFF algorithm was shown to have
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a better filtering effect. The performance of the IELM algorithm was verified by the training time,
prediction accuracy, and convergence speed, and compared with a traditional RBF neural network.
The results showed that compared with the RBF and ELM algorithms, IELM can reduce the divergence
of inertial navigation errors and achieve higher positioning accuracy.
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