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Abstract: The diverse operating environments change GNSS measurement noise covariance in
real time, and different GNSS techniques hold different measurement noise covariance as well.
Mismodelling the covariance causes undependable filtering results and even degenerates the
GNSS/INS Particle Filter (PF) process, due to the fact that INS error-state noise covariance is much
smaller than that of GNSS measurement noise. It also makes the majority of existing methods for
adaptively adjusting filter parameters incapable of performing well. In this paper, a feasible Digital
Track Map-aided (DTM-aided) adaptive extended Kalman particle filter method is introduced in
GNSS/INS integration in order to adjust GNSS measurement noise covariance in real time, and the
GNSS down-direction offset is also estimated along with every sampling period through making full
use of DTM information. The proposed approach is successfully examined in a railway environment,
and the on-site experimental results reveal that the adaptive approach holds better positioning
performance in comparison to the methods without adaptive adjustment. Improvements of 62.4%
and 14.9% in positioning accuracy are obtained in contrast to Standard Point Positioning (SPP) and
Precise Point Positioning (PPP), respectively. The proposed adaptive method takes advantage of
DTM information and is able to automatically adapt to complex railway environments and different
GNSS techniques.

Keywords: adaptive filtering; extended Kalman particle filter; digital track map; train navigation
application

1. Introduction

The Global Navigation Satellite System (GNSS) has been broadly utilized in aviation for decades.
Subject to RAMS (Reliability, Availability, Maintainability and Safety) requirements, as well as economic
reasons of safety-critical applications in railways, GNSS has not been popularly accepted by rail
authorities. Due to its global capability of high accuracy and availability, GNSS, as a localization sensor,
nevertheless plays a strategic role in the train control system of the next generation, e.g., the European
Train Control System Level 3 (ETCS-3), the Chinese Train Control System (CTCS)and Positive Train
Control (PTC) [1–3], and some pioneer lines have been deployed worldwide to testify the performance
in actual train operating environments [4].

Standalone GNSS techniques, such as multi-constellation [5], carrier-phase-based GNSS [6,7] and
tracking loop design [8,9], improve positioning accuracy and availability. GNSS generally integrates
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with other sensors, for instance Inertial Measurement Units (IMUs) [10,11], composing GNSS/Inertial
Navigation System (INS) integration architectures, to better adapt to some GNSS restricted
environments, for instance urban canyons and tunnels. The drawbacks and benefits of INS and GNSS
are complementary. INS operates continuously, prevents hardware faults and provides high-bandwidth
output; however, errors accumulate along with time; meanwhile, GNSS provides a long-term position
within an absolute accuracy of a few meters [12]. There are two methods of solving the GNSS/INS
nonlinear issue in the system or measurement model. The first option is to adopt linearized algorithms,
e.g., the Extended Kalman Filter (EKF) [13–15], an improved Kalman Filter [16–18] optimal for linear
systems where process noise and measurement noise are characterized by white noise, which is the
most mature one, since it fully takes advantage of small angle approximation applied to INS error-state
propagation and linearizes the measurement equation. The alternative methods are nonlinear filtering
algorithms, e.g., Particle Filter (PF) [19,20].

This paper focuses on the PF-based algorithm due to its better capability of modelling
nonlinear/non-Gaussian system propagation. Classical particle filter algorithms are prone to
degeneration because of small state noise in INS error-state propagation. Some improved PFs
have been investigated to tackle this issue, among which GNSS/INS Extended Kalman Particle
Filter (EPF) [21] and Unscented Kalman Particle Filter (UPF) [22,23] are proven effective with great
success. Another fact is GNSS measurement noise covariance is subject to either diverse environmental
conditions or variable GNSS positioning techniques, e.g., multi-constellation, Differential GNSS
(DGNSS), Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) [24]. Therefore, an adaptive
PF is requisite for applying PF in a real operating environment. The augmented PF [25] had been
proposed; however, it deals with an uncertain dynamic system model and is unable to estimate and
dynamically adjust measurement noise covariance. Meanwhile, some Kullback-Leibler Divergence
(KLD)-based algorithms [26–28] were proposed for the adaptive measurement model. The KLD-based
approach requires that the functional form of the measurement model is known, but not the value
of its parameters. In addition, it is sensitive to true measurements since minimizing KLD shifts the
probability distribution of the system process model to the measurement model [28]. That is, the noisy
measurements will cause the failure of filtering, which holds the truth in GNSS/INS PF, because
GNSS measurements are much noisier in comparison to INS error-state prediction. Other adaptive
PF approaches [29–31] emphasize optimized particle set sizes and are inappropriate for adjusting
measurement noise covariance.

Alternatively, extra information introduced to filters is able to aid the filtering process. In railways,
the trains are constantly constricted on tracks, and the Digital Track Map (DTM) precisely incorporates
track information, i.e., 3D position, even attitude. The map provides environmental information
to deter particles from being in impossible real physical space, like crossing a wall [32]. The work
in [33] used the particle filter to estimate a topological position directly in the track map. The work
in [34] introduced the track constraint to create eligible particles. None of these methods showed
any improved performance if a misleading GNSS measurement noise covariance were adopted.
The proposed adaptive EPF in this paper is constructed on DTM, which provides train position
information to adjust GNSS measurement noise covariance over the period of PF, so as to model the
GNSS measurement noise adaptively.

The rest of the paper is organized as follows, GNSS/INS PF and EPF algorithms are firstly
introduced in Section 2. Then, combined with EKF in Section 2, the theory and implementation of
DTM-aided adaptive GNSS/INS EPF are described in detail in Section 3. Later on, an application in a
real train positioning scenario is presented in Section 4, and the on-site experimental results compare
the performance of positioning with conventional EPF and EKF algorithms, which do not adjust GNSS
measurement noise covariance adaptively. Finally, Section 5 concludes this paper and discusses some
possible application challenges.
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2. GNSS/INS Extended Kalman Particle Filter

The GNSS/INS EKF and an improved Sampling Importance Resampling (SIR) filter are described
in this section. The EKF will be used in Section 3 to assist the SIR filter to estimate and update GNSS
measurement noise covariance matrix; thus, a better described density can be obtained to guide the
importance sampling of the SIR filter, which is described in Section 3 as well.

2.1. GNSS/INS Extended Kalman Filter

2.1.1. System Model

The most common GNSS/INS fusion method is the loosely-coupled integration of 15 error-state
vector xk [10], which is given by:

xk =


δψe

eb
δve

eb
δre

eb
ba

bg

 (1)

where δψe
eb denotes angular-rate error, δve

eb represents velocity error, δre
eb is position error and ba and

bg denote accelerometer biases and gyro biases, respectively. The error-state vector-based system
continuous model is thus:
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|r̂e

eb|2
(r̂e
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T (3)

where Ωe
ie is the skew-symmetric matrix of the angular rate, Ĉα

β denotes the coordinate transformation
matrix, which transforms a vector from the β coordinate frame to the α coordinate frame, g0 is the
surface gravity, r̂e

eb denotes an estimate of re
eb, which is the INS Cartesian position of the origin of Frame

b with respect to the origin of Frame e, resolved about the axes of Frame e. re
eS is the distance of a point

S with respect to the Earth’s centre. f̂b
ib is the IMU measurement specific force along the body-frame

resolving axes. L̂b denotes INS latitude estimate. G and ws denote the system noise distribution matrix
and the system noise vector, respectively.

The system state vector transition matrix is given by:

Φk−1 ≈ I + Fk−1τs (4)

where τs denotes the Kalman Filter interval, not the IMU output interval.

2.1.2. Measurement Model

GNSS/INS integration uses GNSS position re
ebG and velocity ve

eb measurements, thus:

δzk =

(
re

ebG − re
eb

ve
ebG − ve

eb

)
(5)
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and measurement matrix Hk is given by:

Hk =

(
03 03 −I3 03 03

03 −I3 03 03 03

)
(6)

2.1.3. Extended Kalman Filter Algorithm

The EKF algorithm comprises the following steps [12]:

(a) Calculate the transition matrix, Φk−1;
(b) Calculate the system noise covariance matrix, Qk−1;
(c) Propagate the state vector estimate from x̂+k−1 to x̂−k−1:

x̂−k−1 = Φk−1 x̂+k−1 (7)

(d) Propagate the error covariance matrix from P+
k−1 to P−k :

P−k = Φk−1P+
k−1Φ>k−1 + Qk−1 (8)

(e) Calculate the measurement matrix Hk;
(f) Calculate the measurement noise covariance matrix Rk;
(g) Calculate the Kalman gain matrix Kk:

Kk = P−k H>k (HkP−k H>k + Rk)
−1 (9)

(h) Calculate the innovation δzk;
(i) Update the state vector estimate from x̂−k to x̂+k :

x̂+k = x̂−k + Kkδzk (10)

(j) Update the error covariance matrix from P−k to P+
k :

P+
k = (I− Kk Hk)P

−
k (11)

2.2. Improved Sampling Importance Resampling Filter

The SIR filter, also known as the bootstrap filter [35], along with the Sequential Importance
Sampling (SIS) filter are basic particle filters. The SIS filter turns to an SIR filter by choosing the
importance density to be the transitional prior; in addition, unlike the SIS filter conducting resampling
if and only if a significant degeneracy is observed, SIR performs the resampling step in everyfiltering
recursive cycle.

Firstly, let us introduce Xk = {xj, j = 0, ..., k}, which represents the system state sequence up
to time k, Xi

j = {xi
j, j = 0, ..., k, i = 1, ..., N}, which is the sequence of N sampling points at time j.

Suppose the multidimensional integral I(Xk) is given by:

I(Xk) =
∫

Xk(x)dx (12)

where x ∈ Rnx . Based on Monte Carlo (MC) integration, it is possible to draw N � 1 sample sequence
Xi

k; therefore, the MC estimate of integral I(Xk) is the sample mean:

IN(Xk) =
1
N

N

∑
i=1

xi
k (13)
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where Xk(x) = xk ·π(xk) and π(xk) is a probability density function. The law of large numbers reveals
that IN(Xk) will converge to I(Xk). Unfortunately, it is usually impossible to sample system states Xi

k
properly, which means we cannot use Equation (13) to estimate system states at time k.

The discovery of importance resampling and resampling techniques paves the way for the success
of PF. At an importance resampling stage, it supposes samples from a similar density q(xk) can be
drawn. Then, Equations (12) and (13) can be rewritten respectively as:

I(Xk) =
∫

xk ·
π(xk)

q(xk)
· q(xk)dx (14)

IN(Xk) =
1
N

N

∑
i=1

xi
kω̃(xi

k) (15)

where the importance weights are given by:

ω̃(xi
k) =

π(xi
k)

q(xi
k)

(16)

Furthermore, applying importance sampling in the Bayesian framework, thus π(xk) becomes the
posterior density p(xk|Zk), where Zk denotes measurements up to time k. Therefore, Equations (15)
and (16) can be rewritten as [36,37]:

p(xk|Zk) ≈
N

∑
i=1

ωi
kδ(xk − xi

k) (17)

wi
k ∝

p(Xi
k|Zk)

q(Xi
k|Zk)

= wi
k−1

p(zk|xi
k)p(xk|xi

k−1)

q(xi
k|x

i
k−1, zk)

(18)

where ωi
k denotes normalized weights, i.e., ∑i ωi

k = 1, and Xi
k represents samples drawn from an

importance density q(Xk|Zk).
Ideally, the importance density should be p(Xk|Zk); thus, applying q(Xk|Zk) causes the sample

degeneracy phenomenon due to the increase of the variance of importance weights [37]. A resampling
is introduced to eliminate low importance weight samples by a random measure. It selects some high
weight samples to replace low ones.

The most popular transitional prior is given by:

q(xi
k|x

i
k−1, zk) = p(xk|xi

k−1) (19)

Substitution of Equation (19) into (18) yields:

ωi
k ∝ ωi

k−1 p(zk|xi
k) (20)

However, because the resampling is applied in every SIR filter recursive cycle, it reveals that all
particles have equal weights; thus:

ωi
k ∝ p(zk|xi

k) (21)

In the case of GNSS/INS fusion, if Equation (19) is applied, Equation (21) causes particles to
degenerate rapidly. An improved method is to use EKF to approximate importance density p(Xk|Zk).
The key is that EKF provides mean (Xk) and variance (P̂k) to guide importance resampling:

p(Xk|Zk) ≈ N(Xk, P̂k) (22)
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3. DTM-Aided Adaptive GNSS/INS EPF

In this section, the proposed DTM-aided GNSS covariance matrix estimation approach is firstly
introduced, which is the key of the adaptive EPF algorithm, and then is combined with GNSS/INS EKF
and the SIR filter explained in Section 2. A detailed DTM-aided adaptive GNSS/INS EPF architecture
will be finally described.

3.1. DTM-Aided GNSS Covariance Matrix Estimate

The ultimate goal of different adaptive algorithms is to achieve the ability of estimating unknown
parameters correctly and in real time. In the context of estimating the GNSS noise covariance matrix in
a GNSS/INS integration, it usually involves adjusting the unknown parameter based on INS. In the
rest of this paper, a high-definition DTM representing a central line of tracks is introduced to model
the two parallel tracks. Thanks to the nature of the train navigation application, the train is constantly
running on the tracks. That is, no matter what kind of GNSS technique is adopted and how the
surrounding environment changes, the GNSS equipment mounted on the train is constantly located in
a line described by DTM, if the height between GNSS and tracks is known and deducted previously.
Moreover, assume the GNSS noise errors in Cartesian coordinates are independent and identically
distributed. It is possible to construct an adaptive estimation algorithm, which is reported in Figure 1.

Figure 1 describes the plane of tracks, which mean the surface of two parallel track lines.
The thick line denotes DTM, which includes a series of high-accuracy discrete Points Of Interest
(POI). Define horizontal direction of DTM overlaps with that of plane of tracks, since DTM includes
the centre line information, i.e., POI of tracks, while rG

k , rG
k−1 represent GNSS position measurements

projected on the plane of tracks at time k and k − 1, respectively. rF
k−1 are the GNSS/INS fusion

positioning results projected on the horizontal plane of DTM at time k− 1. r INS
k indicates the distance

the INS reckons along the DTM from the last fusion positioning point at time k− 1 to time k. rk and rk−1
are train real positions at time k and k− 1, respectively. Due to the restriction of the tracks, the train is
constantly running along the centre line of two parallel track lines. pG

k and pG
k−1 are the cross-points

of projecting rG
k , rG

k−1 respectively on DTM.
−→
D1 represents a vector from rk to pG

k ; similar definitions

of vectors
−→
D2 to

−→
D6 have been illustrated in Figure 1. Figure 1 also shows the direction that the train

is running and the alternative positions of point rk, rk−1, which are denoted by ra
k, ra

k−1. Therefore,
the uncertainty of the rk, rk−1 positions is described as:

(rk, rk−1) |
−→
D2−−→D1 =

−→
D6−−→D5

(rk, ra
k−1) |

−→
D2−−→D1 =

−→
D6−−→D5

(ra
k, rk−1) |

−→
D2−−→D1 =

−→
D6−−→D5

(ra
k, ra

k−1) |
−→
D2−−→D1 =

−→
D6−−→D5

(23)

It is further assumed that the distance INS reckons along DTM at time k is approximate to the
GNSS measurement distance along DTM between time k and k− 1. It gives:

−→
D4 ≈ −→D6 (24)

Substituting Equation (24) into (23) gives:

−→
D1−−→D2 ≈ −→D5−−→D4 (25)

If D1 and D2 follow the same zero-mean Gaussian distribution and are independent, σ2
a represents

GNSS measurement noise variance along the DTM direction, σ2
v is the GNSS measurement noise

variance orthogonal to DTM on the plane of tracks, σ2
vv denotes the GNSS measurement noise variance
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orthogonal to DTM in the direction vertical to the plane of tracks, point pG,P
k is the projection of the

GNSS positioning point on the plane of tracks and
−→
D8 denotes a vector from point pG,P

k to rG
k . Therefore:

−→
D5−−→D4

2
∼ N(0, σ2

a ) (26)

−→
D3 ∼ N(0, σ2

v ) (27)
−→
D8 ∼ N(0, σ2

vv) (28)

Equations (26) and (27) combined with (28) provide a way of estimating GNSS measurement
noise covariance matrix Rk. In comparison to other estimate algorithms, DTM considered as a sensor
gives real GNSS measurement errors in two vertical directions. Meanwhile, because INS short-term
error is relatively stable and smaller than that of GNSS, it is reasonable to estimate GNSS measurement
noise along DTM by using INS information. A universal GNSS measurement noise variance σ2

G is
given by:

(

−→
D5−−→D4

2
) +
−→
D3 +

−→
D8 ∼ N(0, σ2

G) (29)

Figure 1. Plane of tracks.

3.2. DTM-Aided Adaptive GNSS/INS EPF Architecture

The proposed algorithm is based on the particle filter. In order to adjust GNSS measurement noise
covariance, the DTM and covariance estimate modules are introduced. The DTM module provides
position points rDTM

k and interpolates these points in support of calculating pG
k . The covariance

estimate module collects information from the GNSS, INS and DTM modules to estimate Rk in
real time. The GNSS/INS EPF module, as the main fusion module, accounts for the particle filter,
e.g., importance resampling. The closed-loop architecture is illustrated in Figure 2.
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Figure 2. DTM-aided adaptive GNSS/INS Extended Kalman Particle Filter (EPF) architecture.

In the closed-loop configuration, the average values of output particles in every recursive process,
which represent estimated accelerometer, gyro, position, velocity and attitude errors, are used to
correct IMU measurements, respectively INS. The IMU output frequency is usually higher than that
of GNSS. k denotes the time when the GNSS measurement arrives. The proposed Algorithm 1 is
given below.

Algorithm 1: Adaptive GNSS/INS EPF algorithm.
Data: Current time t, IMU raw data, GNSS measurements, initial parameters
Output: Object position, velocity and attitude, GNSS measurement noise covariance matrix

1 Initialization, k = 0
2 while k++ do
3 Update INS navigation equations
4 Update GNSS measurement noise covariance matrix Rk:
5 if mod(k,M) = 0 then
6 Collect sample sets:
7 {rG

t , t = k−M, ..., k}, {rINS
t , t = k−M + 1, ..., k}, {rF

t−1, t = k−M + 1, ..., k}
8 Interpolate DTM to produce sample sets:
9 {pG

t , t = k−M, ..., k}, {pG,P
t , t = k−M + 1, ..., k}

10 Calculate σ2
G based on Equations (26)–(29)

11 end
12 for i = 1:N do
13 Importance resampling:

14 Estimate particle set sample mean (X(i)
k ) and variance (P̂(i)

k ) by EKF:
15 Equations (7)–(11)
16 Update i(th) particle:

17 X̂(i)
k ∼ q(X(i)

k |X
(i)
0:k−1, Z1:k) = N(X(i)

k , P̂(i)
k )

18 Estimate GNSS measurements: Zpre(i)

19 Update i(th) particle weight based on Equation (18):

20 w(i)
k ∝

p(Zk |X̂
(i)
k )p(X̂(i)

k |X
(i)
k−1)

q(X̂(i)
k |X

(i)
0:k−1,Z1:k)

21 end
22 Resampling:
23 Residual resampling method [38]
24 end
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mod is modular operation; M denotes sample size; Zk represents GNSS measurements at time k.
During time k and (k−M), the algorithm collects samples to estimate the GNSS measurement noise
covariance matrix. A step of importance resampling is followed, which is the key of the improved
EPF algorithm. It takes advantage of EKF and makes use of the EKF estimated particle mean and
standard deviation to guide the importance resampling process. This means the algorithm uses EKF
to help generate samples, which are approximate to the desired posterior density. randn(15) is a
15 × 15 diagonal matrix, in which the element is a random variable following the standard normal
distribution,

X̂(i)
k = X(i)

k + randn(15)× P̂(i)
k (30)

Zpre(i) = HkX̂(i)
k (31)

p(Zk|X̂
(i)
k ) =

1

(2π)3|Rk|
1
2

exp(−1
2
|Rk|−1(Z− Zpre(i))2) (32)

p(X̂(i)
k |X

(i)
k−1) =

1

(2π)
15
2 |Qk−1|

1
2

exp(−1
2
|Qk−1|−1(X̂(i)

k )2) (33)

q(X̂(i)
k |X

(i)
0:k−1, Z1:k) =

1

(2π)
15
2 |P̂(i)

k |
1
2

exp(−1
2
|P̂(i)

k |
−1(X̂(i)

k − X(i)
k )2) (34)

4. Experiments and Results

4.1. Experimental Environment

This section describes the test line selected for the on-site experiments. In order to verify the
performance of the proposed adaptive algorithm, some tests were conducted on the Test Ring of the
China Academy of Railway Sciences in Beijing. As shown in Figure 3, the test ring is around 9 km in
length, and the speed of the train can be as high as 180 km/h.

Figure 3. The Test Ring of the China Academy of Railway Sciences.

The experimental equipment includes the trackside reference station and onboard system,
which are illustrated in Figure 4. The IMAR-FSAS IMU records raw IMU data, and unicorecomm
UR 380 multi-frequency GNSS receivers are adopted as the base station receiver, as well as the rover.
The reference station is set in static mode, so that the RTK positioning solution can be obtained as
the ground truth. Post-processing the rover data, accordingly, the DGNSS, PPP and standard point
positioning (SPP) results are analysed to assess the proposed algorithm. As DTM plays a key role
in it, in order to create an accurate digital track map, RTK results are interpolated to organize DTM,
which consists of a series of point coordinates.
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Figure 4. Onboard and trackside equipment.

4.2. Results

The test train was driven along the tracks with a maximum speed of 65 km/h; meanwhile,
a deceleration and an acceleration in the range of 65 km/h to 0 km/h were included along the period
of running. GNSS measurement output frequency was 1 Hz, Figure 5 reveals the SPP, PPP and DGPS
positioning errors with respect to the RTK solution. It clearly shows that SPP had a meter-level
positioning error, and PPP and DGPS obtained a decimetre-level one. DGPS had the best performance,
especially when the test train was static during the operation.

Figure 5. Positioning errors: (a) Positioning errors of SPP, PPP, DGPS; (b) Down errors of SPP, PPP,
DGPS; (c) North errors of SPP, PPP, DGPS; (d) East errors of SPP, PPP, DGPS.

Without post-processing the results, usually prior GNSS measurement noise variances (σ2) were
applied to model SPP, PPP and DGPS measurement noises, which are metre-level and decimetre-level,
respectively. The positioning results of GNSS/INS EPF with nominal σ2 (for SPP, PPP and DGPS,
σ2 are equal to 10, 1 and 1 respectively) are illustrated in Figure 6. It shows that the nominal variance
values were feasible to be adopted in the filtering process. In general, these variance values are able to
reflect positioning errors.
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Another fact we want to investigate is how different variance values will affect EPF results.
Regarding SPP, typical positioning noise variance, values of 15, 10, 5 and 1 were fed into EPF, while
5, 3 and 1 were adopted for PPP and DGPS; thus, the filtering performance of SPP, PPP and DGPS
with different (σ2) values, as shown in Figure 7, indicates that an exaggerated GNSS measurement
noise covariance will considerably decrease positioning accuracy. On the other hand, a bold
GNSS measurement noise variance (shown in SPP positioning errors in Figure 7) is acceptable for
positioning accuracy, yet it damages the credibility of the positioning results, because the variance was
overconfident. Therefore, it is important to adopt proper measurement noise variance values.

If the filter is able to estimate GNSS measurement noise variance itself, apparently the filter has
the potential of performing better with respect to the accuracy of positioning. The proposed filter is
the one estimating GNSS measurement noise variance based on extra DTM information. In order to
implement GNSS measurement error sampling, a sampling period of 30 s was adopted, due to the
fact that the stability of a small sample size will be affected by random gross error; on the contrary,
a large sample size means more sampling time and less real time performance. The positioning results
of proposed adaptive algorithm are revealed in Figure 8. In these tests, the algorithm set a prior GNSS
measurement noise variance σ2 = 75, which means the sole direction measurement noise standard
deviation was five. The number of particle was 20,000, and the filtering period was 1 s, while the INS
output frequency was 10 Hz. In order to further take advantage of DTM, the GNSS down-direction
offset was estimated along with every sampling period, the GNSS velocity noise variance was set as
one tenth of the position noise variance. Figure 8 shows that the filtering results converged after a
few periods of sampling. The DGPS adaptive filter performed best when the test train was static in
the middle of the test period. Meanwhile, the SPP and PPP adaptive filters showed some turbulence.
Figure 9 describes the estimated GNSS measurement noise variance during adaptive filtering. the PPP
and DGPS filters provided more stable estimation than the SPP filter. It is widely known that GNSS
down-direction error is usually larger than that of other directions, which makes SPP positioning error
much larger than 1 m at most times; however, the SPP measurement noise variance shown in Figure 9
is even less than one, due to the GNSS down-direction offset being estimated and finely eliminated
along with every sampling period. This resulted in a remarkable improvement in accuracy in SPP.
All three filters nonetheless provided more accurate and stable positioning results.

Some details are shown in Tables 1–3. Adaptive EPF after convergence in the following tables
denotes adaptive GNSS/INS EPF filtering results after three periods of sampling. The results in
this section clearly illustrate that the adaptive EPF algorithm took advantage of extra information
provided by DTM. The position error mean reduced 58.6%, 11.5% and 47.6% in the SPP-, PPP- and
DGPS-based filters in comparison to nominal EPF results, respectively. More importantly, the proposed
algorithm obtained 62.4% and 14.9% improvements in position error mean in contrast to stand-alone
SPP and PPP positioning solutions, respectively, considering the fact that usually the fusion results
were approximate to or worse than the GNSS measurements.

Table 1. Summary of the SPP positioning results.

Stand-Alone Nominal EPF Adaptive EPF Adaptive EPF after Convergence

Position error mean (m) 2.938 3.083 1.275 1.104
Position error variance 0.132 0.506 0.724 0.169

Table 2. Summary of the PPP positioning results.

Stand-Alone Nominal EPF Adaptive EPF Adaptive EPF after Convergence

Position error mean (m) 0.537 0.653 0.578 0.457
Position error variance 0.064 0.084 0.389 0.034
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Table 3. Summary of the DGPS positioning results.

Stand-Alone Nominal EPF Adaptive EPF Adaptive EPF after Convergence

Position error mean (m) 0.045 0.414 0.217 0.074
Position error variance 0.015 0.040 0.449 0.014

Figure 6. GNSS/INS EPF positioning errors with nominal variance: (a) SPP positioning errors; (b) PPP
positioning errors; (c) DGPS positioning errors.

Figure 7. GNSS/INS EPF with different variances: (a) SPP positioning errors; (b) PPP positioning
errors; (c) DGPS positioning errors.
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Figure 8. Adaptive filtering results: (a) SPP adaptive filter positioning errors; (b) PPP adaptive filter
positioning errors; (c) DGPS adaptive filter positioning errors; (d) adaptive filter velocity errors.

Figure 9. Adaptive GNSS measurement noise variance.

5. Conclusions

This paper presents the positioning performance of a DTM-aided adaptive extended particle
filter in relation to Standard Point Positioning (SPP), Precise Point Positioning (PPP) and Differential
GPS (DGPS) techniques. The proposed algorithm was designed to estimate GNSS measurement
noise variance adaptively based on added digital track map information, which makes the filter
able to access the actual GNSS measurement noise variance. The GNSS down-direction offset is also
estimated along with every sampling period by making full use of DTM information. Some on-site
experiments were conducted in a nearly real railway environment. The results revealed in this paper
demonstrate that the proposed adaptive algorithm gas the ability to decrease positioning errors in
the fusion process, due to the introduction of DTM. The best performance improvement is observed
in SPP/INS EPF. The adaptive filters even perform better than the SPP and PPP positioning due to
the variance estimation of the adaptive GNSS measurement noise and the correction of the GNSS
down-direction offsets. This paper proves the key role of DTM in positioning. The track map is a



Sensors 2018, 18, 3860 14 of 16

requisite for navigation and localization in railways. A better way of taking advantage of it results in
more accurate positioning solution. In order to improve robustness, a failure detection process may be
added in the proposed algorithm in future research. It can be a Kalman Filter-based scheme, since the
proposed algorithm adopts EKF to estimate the unknown state vector and update the measurement
covariance matrix. Alternatively, taking advantage of the particle filter, the state vector noise can be
modelled as a non-Gaussian distribution.

Author Contributions: Methodology, writing, original draft preparation, C.J. Writing, review and editing, J.W. and
A.K. Supervision, B.C. Project administration, J.W.

Funding: This research was funded by the National Key Research and Development Program of China
(2018YFB1201500), National Nature Science Foundation of China (61603027), Technology Research and
Development Plan of Qinghai-Tibet Railway Company (QZ2017-X12), the Fundamental Research Funds for the
Central Universities of China (2017YJS030) and the the China Scholarship Council (Grant No. CSC 201507090010).

Acknowledgments: We would like to thank the reviewers for their very helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Beugin, J.; Marais, J. Simulation-based evaluation of dependability and safety properties of satellite
technologies for railway localization. Transp. Res. Part C 2012, 22, 42–57. [CrossRef]

2. Neri, A.; Sabina, S.; Rispoli, F.; Mascia, U. GNSS and Odometry Fusion for High Integrity and
High Availability Train Control Systems. In Proceedings of the ION GNSS+ 2015, Tampa, FL, USA,
14–18 September 2015; pp. 639–648.

3. Stallo, C.; Neri, A.; Salvatori, P.; Coluccia, A.; Capua, R.; Olivieri, G.; Gattuso, L.; Bonenberg, L.; Moore, T.;
Rispoli, F. GNSS-based Location Determination System Architecture for Railway Performance Assessment in
Presence of Local Effects. In Proceedings of the IEEE/ION Plans 2018, Monterey, CA, USA, 23–26 April 2018;
pp. 374–381.

4. Marais, J.; Beugin, J.; Berbineau, M. A Survey of GNSS-Based Research and Developments for the European
Railway Signaling. IEEE Trans. Intell. Transp. Syst. 2017, 99, 1–17. [CrossRef]

5. Wang, L.; Groves, P.D.; Ziebart, M.K. Multi-Constellation GNSS Performance Evaluation for Urban Canyons
Using Large Virtual Reality City Models. J. Navig. 2012, 65, 459–476. [CrossRef]

6. Geng, T.; Su, X.; Fang, R.; Xie, X.; Zhao, Q.; Liu, J. BDS Precise Point Positioning for Seismic Displacements
Monitoring: Benefit from the High-Rate Satellite Clock Corrections. Sensors 2016, 16, 2192. [CrossRef]
[PubMed]

7. Wang, L.; Li, Z.; Zhao, J.; Zhou, K.; Wang, Z.; Yuan, H. Smart Device-Supported BDS/GNSS Real-Time
Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services. Sensors 2016,
16, 2201. [CrossRef] [PubMed]

8. Won, J.H.; Dötterböck, D.; Eissfeller, B. Performance Comparison of Different Forms of Kalman Filter
Approaches for a Vector-Based GNSS Signal Tracking Loop. J. Inst. Navig. 2014, 57, 185–199. [CrossRef]

9. Jiang, R.; Wang, K.; Wang, J. Performance analysis and design of the optimal frequency-assisted phase
tracking loop. GPS Solut. 2017, 21, 759–768. [CrossRef]

10. Falco, G.; Pini, M.; Marucco, G. Loose and Tight GNSS/INS Integrations: Comparison of Performance
Assessed in Real Urban Scenarios. Sensors 2017, 17, 27. [CrossRef] [PubMed]

11. Ruotsalainen, L.; Kirkko-Jaakkola, M.; Bhuiyan, Z.; Söderholm, S.; Thombre, S.; Kuusniemi, H. Deeply
Coupled GNSS, INS and Visual Sensor Integration for Interference Mitigation. In Proceedings of the ION
GNSS+ 2014, Tampa, FL, USA, 8–12 September 2014; pp. 2243-2249.

12. Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems; Artech House: Boston,
MA, USA, 2013; ISBN 978-1-60807-005-3.

13. Tawk, Y.; Tomé, P.; Botteron, C.; Stebler, Y.; Farine, P.A. Implementation and Performance of a GPS/INS
Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors. Sensors 2014, 14, 3768–3796.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.trc.2011.12.002
http://dx.doi.org/10.1109/TITS.2017.2658179
http://dx.doi.org/10.1017/S0373463312000082
http://dx.doi.org/10.3390/s16122192
http://www.ncbi.nlm.nih.gov/pubmed/27999384
http://dx.doi.org/10.3390/s16122201
http://www.ncbi.nlm.nih.gov/pubmed/28009835
http://dx.doi.org/10.1002/j.2161-4296.2010.tb01777.x
http://dx.doi.org/10.1007/s10291-016-0565-6
http://dx.doi.org/10.3390/s17020255
http://www.ncbi.nlm.nih.gov/pubmed/28146058
http://dx.doi.org/10.3390/s140203768
http://www.ncbi.nlm.nih.gov/pubmed/24569773


Sensors 2018, 18, 3860 15 of 16

14. Vafamand, N.; Arefi, M.M.; Khayatian, A. Nonlinear system identification based on Takagi-Sugeno fuzzy
modelling and unscented Kalman filter. ISA Trans. 2018, 74, 134–143. [CrossRef] [PubMed]

15. Meda-Campana, J.A. Estimation of complex systems with parametric uncertainties using a JSSF heuristically
adjusted. IEEE Lat. Am. Trans. 2018, 16, 350–357. [CrossRef]

16. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45.
[CrossRef]

17. De Jesús Rubio, J. Stable Kalman filter and neural network for the chaotic systems identification. J. Frankl. Inst.
2017, 354, 7444–7462. [CrossRef]

18. Rubio, J.D.; Lughofer, E.; Plamen, A.; Novoa, J.F.; Meda-Campaña, J.A. A novel algorithm for the modelling
of complex processes. Kybernetika 2018, 54, 79–95.

19. Gustafsson, F.; Gunnarsson, F.; Bergman, N.; Forssell, U.; Jansson, J.; Karlsson, R.; Nordlund, P.J.
Particle Filters for Positioning, Navigation and Tracking; Linköping University Electronic Press: Linköping,
Sweden, 2001.

20. Ghirmai, T. Distributed Particle Filter for Target Tracking: With Reduced Sensor Communications. Sensors
2016, 16, 1454. [CrossRef] [PubMed]

21. Giremus, A.; Tourneret, J.-Y. Controlling particle filter regularization for GPS/INS hybridization.
In Proceedings of the 2006 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006;
pp. 1–5.

22. Rabbou, M.A.; El-Rabbany, A. Integration of GPS precise point positioning and MEMS-based INS using
unscented particle filter. Sensors 2015, 15, 7228–7245. [CrossRef] [PubMed]

23. Zhou, J.; Stefan, K.; Otmar, L. INS/GPS Tightly-coupled Integration using Adaptive Unscented Particle Filter.
J. Navig. 2010, 63, 491–511. [CrossRef]

24. Gebre-Egziabher, D.; Gleason, S. GNSS Applications and Methods; Artech House: Norwood, MA, USA, 2009.
25. Storvik, G. Particle filters for state-space models with the presence of unknown static parameters. IEEE Trans.

Signal Process. 2002, 50, 281–289. [CrossRef]
26. Fox, D. KLD-sampling: Adaptive particle filters. In Proceedings of the Advances in Neural Information

Processing Systems, Vancouver, UK, 9–14 December 2002; pp. 713–720.
27. Özkan, E.; Šmídl, V.; Saha, S.; Lundquist, C.; Gustafsson, F. Marginalized adaptive particle filtering for

nonlinear models with unknown time-varying noise parameters. Automatica 2013, 49, 1566–1575. [CrossRef]
28. Rabiei, E.; Droguett, E.L.; Modarres, M. Fully Adaptive Particle Filtering Algorithm for Damage Diagnosis

and Prognosis. Entropy 2018, 20, 100. [CrossRef]
29. Fox, D. Adapting the sample size in particle filters through KLD-sampling. Int. J. Robot. Res. 2003, 22,

985–1003. [CrossRef]
30. Liu, Z.; Shi, Z.; Zhao, M.; Xu, W. Mobile robots global localization using adaptive dynamic clustered particle

filters. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, CA, USA, 29 October–2 November 2007; pp. 1059–1064.

31. Cen, G.; Matsuhira, N.; Hirokawa, J.; Ogawa, H.; Hagiwara, I. New Entropy-Based Adaptive Particle Filter
for Mobile Robot Localization. Adv. Robot. 2009, 23, 1761–1778. [CrossRef]

32. Evennou, F.; Marx, F.; Novakov, E. Map-aided indoor mobile positioning system using particle filter.
In Proceedings of the 2005 IEEE Wireless Communications and Networking Conference, New Orleans, LA,
USA, 13–17 March 2005; pp. 2490–2494.

33. Heirich, O.; Robertson, P.; Garcia, A.C.; Strang, T. Bayesian train localization method extended by 3D
geometric railway track observations from inertial sensors. In Proceedings of the 2012 15th International
Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 416–423.

34. Liu, J.; Cai, B.-G.; Wang, J. Track-constrained GNSS/odometer-based train localization using a particle filter.
In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016;
pp. 877–882.

35. Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to nonlinear/non-Gaussian Bayesian state
estimation. In IEE Proceedings F (Radar and Signal Processing); IET: London, UK, 1993; pp. 107–113.

http://dx.doi.org/10.1016/j.isatra.2018.02.005
http://www.ncbi.nlm.nih.gov/pubmed/29455887
http://dx.doi.org/10.1109/TLA.2018.8327386
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1016/j.jfranklin.2017.08.038
http://dx.doi.org/10.3390/s16091454
http://www.ncbi.nlm.nih.gov/pubmed/27618057
http://dx.doi.org/10.3390/s150407228
http://www.ncbi.nlm.nih.gov/pubmed/25815446
http://dx.doi.org/10.1017/S0373463310000068
http://dx.doi.org/10.1109/78.978383
http://dx.doi.org/10.1016/j.automatica.2013.02.046
http://dx.doi.org/10.3390/e20020100
http://dx.doi.org/10.1177/0278364903022012001
http://dx.doi.org/10.1163/016918609X12496340121133


Sensors 2018, 18, 3860 16 of 16

36. Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications;
Artech House: Norwood, MA, USA, 2003.

37. Doucet, A.; Godsill, S.; Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering.
Stat. Comput. 2000, 10, 197–208. [CrossRef]

38. Liu, J.S.; Chen, R. Sequential Monte Carlo Methods for Dynamic Systems. J. Am. Stat. Assoc. 1998, 93, 1032–1044.
[CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1080/01621459.1998.10473765
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	GNSS/INS Extended Kalman Particle Filter
	GNSS/INS Extended Kalman Filter
	System Model
	Measurement Model
	Extended Kalman Filter Algorithm

	Improved Sampling Importance Resampling Filter

	DTM-Aided Adaptive GNSS/INS EPF
	DTM-Aided GNSS Covariance Matrix Estimate
	DTM-Aided Adaptive GNSS/INS EPF Architecture

	Experiments and Results
	Experimental Environment
	Results

	Conclusions
	References

