
sensors

Article

Reinforcement Learning-Based Multi-AUV Adaptive
Trajectory Planning for Under-Ice Field Estimation

Chaofeng Wang 1, Li Wei 1, Zhaohui Wang 1,*, Min Song 2 and Nina Mahmoudian 3

1 Department of Electrical and Computer Engineering, Michigan Technological University,
Houghton, MI 49931, USA; cwang8@mtu.edu (C.W.); liwei@mtu.edu (L.W.)

2 Department of Electrical and Computer Engineering, Stevens Institute of Technology,
Hoboken, NJ 07030, USA; msong6@stevens.edu

3 Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University,
Houghton, MI 49931, USA; ninam@mtu.edu

* Correspondence: zhaohuiw@mtu.edu; Tel.: +1-906-487-2054

Received: 1 October 2018; Accepted: 4 November 2018; Published: 9 November 2018
����������
�������

Abstract: This work studies online learning-based trajectory planning for multiple autonomous
underwater vehicles (AUVs) to estimate a water parameter field of interest in the under-ice
environment. A centralized system is considered, where several fixed access points on the ice layer
are introduced as gateways for communications between the AUVs and a remote data fusion center.
We model the water parameter field of interest as a Gaussian process with unknown hyper-parameters.
The AUV trajectories for sampling are determined on an epoch-by-epoch basis. At the end of each
epoch, the access points relay the observed field samples from all the AUVs to the fusion center,
which computes the posterior distribution of the field based on the Gaussian process regression and
estimates the field hyper-parameters. The optimal trajectories of all the AUVs in the next epoch are
determined to maximize a long-term reward that is defined based on the field uncertainty reduction
and the AUV mobility cost, subject to the kinematics constraint, the communication constraint and the
sensing area constraint. We formulate the adaptive trajectory planning problem as a Markov decision
process (MDP). A reinforcement learning-based online learning algorithm is designed to determine
the optimal AUV trajectories in a constrained continuous space. Simulation results show that the
proposed learning-based trajectory planning algorithm has performance similar to a benchmark
method that assumes perfect knowledge of the field hyper-parameters.

Keywords: underwater communication networks; under-ice exploration; field estimation; AUVs;
adaptive trajectory planning; reinforcement learning

1. Introduction

Autonomous underwater vehicles (AUVs) are attractive platforms for remote underwater
exploration and monitoring, e.g., seafloor mapping [1,2] and under-ice hydrographic observations [3].
The AUV trajectories can be determined prior to the deployment or adjusted online based on recent
observations. Given the high deployment cost of AUVs, adaptive trajectory planning is desirable
for the collection of the “best” data over scalar or vector fields that vary in a range of spatial and
temporal scales [4–7]. This work studies the online adaptive trajectory planning of multiple AUVs in
the under-ice environment for the estimation of a scalar water parameter field of interest.

Adaptive trajectory planning has been under extensive investigation in terrestrial robotic
networks. Both myopic solutions and non-myopic solutions have been proposed in different contexts
(e.g., mapping, physical phenomenon monitoring and field maxima tracking). In myopic solutions,
the trajectories (or sampling positions) in the next time step are determined to optimize some
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predefined performance metric, such as the reduction of the field estimation error [8,9] and the
conditional information entropy [10]. Both a single robot [9] and multiple robots [8,10] have been
considered in existing solutions. In non-myopic solutions, the trajectories are determined to optimize
a long-term performance. Specifically, the trajectory planning is often formulated as a partially
observable MDP, in which the state is formed by the robot status and the collected field knowledge,
and the action corresponds to the waypoints to travel or parameterized continuous trajectories [11–14].
The partially observable Markov decision process is typically solved via Bayesian optimization
methods and Monte Carlo tree search [11,13,14]. Due to the high computational complexity of
Bayesian optimization and Monte Carlo tree search, existing solutions mainly consider a single
robot. For multiple robots, the objective function can be designed to have a certain structure (e.g., local
submodular) to make the problem computationally tractable [12]. In both myopic and non-myopic
solutions, the field is typically modeled as a Gaussian process, and the field covariance function is
assumed known a priori, which can be estimated based on historical measurements.

Relative to terrestrial robotic networks, studies on adaptive trajectory planning of underwater
AUVs have been very limited. Existing solutions have been developed for feature tracking
(e.g., tracking of thermal fronts) at relatively small spatial scales using gradient climbing strategies and
for coverage of a field of interest at large spatial scales. This work focuses on the latter applications,
such as mapping of the temperature, salinity, flow or biological variables in a two- or three-dimensional
water region. To achieve synoptic coverage of the field of interest, coordination among the AUVs via
wireless communications is critical to keep the AUVs appropriately distributed in space according to
the field spatial variability [4]. Thus far, satellite links are the most common solution for information
exchange between an AUV and the control center when the AUV surfaces every few hours (e.g., 2 h).
Such a large communication latency prevents timely uploading of data from AUVs and timely update
of AUV trajectories, especially in the presence of strong currents.

For the estimation of an unknown water field, due to the communication constraint, existing works
have mainly focused on offline AUV trajectory planning. Specifically, the unknown field is typically
represented as an uncertainty field described by a Gaussian process with known covariance, and the
AUV trajectories are determined to maximize the uncertainty reduction (i.e., the collected information)
subject to the constraints on, e.g., the primary motion, anti-curling, vicinity, communications
and obstacle avoidance. The AUV trajectory is represented by a series of waypoints on a discrete
grid in the region of interest [5,15,16] or parameterized by a restricted number of parameters [4].
For a single AUV, the branch and bound algorithm [5], the recursive greedy algorithm [15] and the
sampling-based redundant roadmap method [16] have been applied to find the near-optimal solution.
In the presence of multiple AUVs, the AUV trajectories can be jointly computed prior to the deployment
by the control center [5].

Although with a human in the loop, the trajectory of an AUV can be adjusted during its
deployment via satellite links once it surfaces [4], research on the machinery and online adaptation
of AUV trajectories to maximize the collected information has been limited. Two existing myopic
solutions to adaptive AUV trajectory planning are described in the following. In References [17,18],
to prevent the existence of a single point of failure and to achieve the scalability to the number of AUVs,
a decentralized strategy for multi-AUV sampling and patrolling is developed. The region of interest
is dynamically partitioned into multiple Voronoi cells according to the AUV locations. Based on the
samples collected by all or neighboring AUVs in the past, each AUV computes the next visiting point
within its own Voronoi cell in a myopic way to maximize the amount of information to be collected.
The above operation requires information exchange among the AUVs. Field experimental results were
presented with two AUVs exchanging information via acoustic communications [19] and three surface
vehicles exchanging information via radio frequency links [17]. In the above works, the unknown field
is modeled as a Gaussian process with known covariance function. Such a priori field knowledge,
however, could be difficult to obtain in practice, particularly in the presence of large field dynamics.
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This work studies the non-myopic adaptive trajectory planning of multiple AUVs in the under-ice
environment for the estimation of a water parameter field of interest. In particular, we consider a
centralized system as illustrated in Figure 1, where the fixed access points on the ice layer serve as
gateways for communications between the AUVs and a remote data fusion center. The AUV trajectories
are determined by the fusion center on a time epoch-by-epoch basis based on the samples collected in
the past epochs. Different from the open-water AUV network in which the AUVs can access satellite
links wherever they surface, the under-ice AUVs can only communicate with the fusion center when
they are within the communication range of an access point.

AUV

Fixed access point

Acoustic link

coverage area

Interested Water Area

Server

Fusion center

Fixed access pointFixed access point

Fixed access point

Acoustic links below water

Radio frequency links above water

Figure 1. An illustration of the system layout with three autonomous underwater vehicles (AUVs) and
four access points.

In this work, the water parameter field of interest is modeled as a Gaussian process with an
unknown covariance function specified by hyper-parameters [20]. At the end of each epoch, the field
samples collected by the AUVs are relayed via the access points to the fusion center where the field
hyper-parameters are estimated via the maximum likelihood method [20], and the posterior field
distribution and the field uncertainty are computed via the Gaussian process regression [21]. The AUV
trajectories in the next epoch will then be determined by the fusion center based on the current
system state including the current positions of all the AUVs and the field knowledge, with the aim
of maximizing a long-term system reward that is defined based on the field uncertainty reduction
and the AUV mobility cost. The AUV trajectories are expected to satisfy several practical constraints,
including the kinematics constraint, the constraint on communications and the constraint of being
within the area of interest.

The adaptive trajectory planning problem is formulated as a MDP [22] with a constrained
continuous action space. A reinforcement learning-based method is designed for online learning of the
optimal action, i.e., the trajectories of all the AUVs, which satisfies the constraints. The knowledge
for determining the optimal trajectories in each epoch is first obtained by transferring the historical
knowledge of determining the trajectories in the previous epoch and then is further adjusted based
on the newly-collected reward. The proposed reinforcement learning-based trajectory planning
algorithm is validated using simulated two-dimensional (2D) fields. The simulation results show that
the proposed algorithm achieves performance similar to a benchmark method that assumes perfect
knowledge of the field hyper-parameters.

The main contributions of this work are summarized in the following.
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• The developed algorithm is non-myopic and for multiple AUVs, while existing works consider
either non-myopic planning for a single vehicle [11–14] or myopic planning for multiple
vehicles [8,10,17,18]. To tackle the high computational cost of non-myopic multi-vehicle planning,
instead of using Monte Carlo tree search, we employ a learning algorithm which can be
implemented via parallel computation. To further speed up the convergence of the planning
algorithm, the decision-making strategy is adjusted on the fly by transferring the knowledge
learned in previous epochs.

• By introducing a deep deterministic policy gradient (DDPG) method, the developed algorithm
allows adaptive trajectory planning in a continuous action space, while many existing
works consider either a discrete action space or a finite number of pre-determined trajectory
patterns [10,12–14].

• This work performs the online learning of the field hyper-parameters according to the
maximum likelihood principle, while many existing works assume those parameters known
a priori [5,8,15,17].

Remark 1. The proposed solution for adaptive trajectory planning can be directly implemented on AUVs that
are equipped with an autonomy package, appropriate sensors and an acoustic communication unit. Specifically,
with the support of wireless communications between AUVs and a remote fusion center, the field samples
collected by AUVs can be sent periodically to the fusion center for centralized processing and planning for the
AUV trajectories in the near future. To ensure the communication reliability, both forward error control via
error correction coding and backward error control via automatic repeat request can be applied [23]. Different
from mission adaptive systems where the AUV uses an on-board decision-making system for online mission
planning [24], the decision-making in this work occurs at the fusion center, which can have access to sufficient
computational and storage resources. The AUVs are mainly responsible for navigation according to the
determined trajectories by the fusion center, taking field samples around waypoints and sending the field samples
to the fusion center via gateways (access points).

Remark 2. The proposed solution has several advantages for field missions. First, the proposed solution does
not require prior knowledge about the field spatial variability, benefiting from the online estimation of the field
spatial correlation parameters (the hyper-parameters). Secondly, the trajectory obtained in the proposed solution
is not constrained to a set of predetermined discrete points, rather it can be an arbitrary path in the continuous
water region of interest. Thirdly, the proposed trajectory planning algorithm is non-myopic, benefiting from the
relatively large computational power of the remote fusion center.

The rest of this paper is organized as follows. The system model is presented in Section 2.
The online adaptive trajectory planning is formulated into an optimization problem in Section 3.
A reinforcement learning-based algorithm is developed to solve the optimization problem in Section 4.
Evaluation of the proposed algorithm is included in Section 5. Conclusions are drawn in Section 6.

Notation 1. Bold upper case letters and lower case letters are used to denote matrices and column
vectors, respectively. AT denotes the transpose of matrix A. [a]m denotes the m-th element of vector a.
For a = [a1, a2, · · · , an]T, ‖a‖2 :=

(
a2

1 + a2
2 + · · ·+ a2

n
)1/2 denotes the Euclidean norm (also known as

the two-norm) of a. [A]i,j denotes the (i, j)-th element of matrix A. A−1 denotes the inverse matrix of
A. det(A) denotes the determinant of matrix A. IN denotes an identity matrix of size N × N. |A| denotes the
cardinality of set A.

2. System Model

2.1. System Description

The system under consideration consists of multiple AUVs, several fixed access points and a
remote fusion center. Denote the AUV index set as M = {1, 2, ..., M}. The AUVs are equipped
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with sensors and acoustic communication units. They take field measurements at discrete sampling
locations as they navigate along their trajectories. A total number of NAP access points are placed
at fixed locations, serving as gateways for communications between AUVs and the fusion center.
The acoustic links are used for underwater information exchange between AUVs and access points,
and the radio frequency links are used for in-air information exchange between access points and the
fusion center. With the access points, the data collected by AUVs can be sent to the fusion center for
centralized processing. An illustration of the system layout with three AUVs and four access points is
shown in Figure 1.

We consider a water parameter field within an area of interest Xarea ⊂ RDim,
with Dim = 2 or 3 denoting the dimension of the area. The water parameter field is represented
by z(x), with x ∈ Xarea. Within the area Xarea, a discrete set of target points X is selected based on
application requirements. The overall system mission is to minimize the field uncertainty (namely,
the estimation inaccuracy) over those target points.

The system operates on an epoch-by-epoch basis. An illustration of the system operation within
each epoch is shown in Figure 2. The trajectories for all the AUVs in the `-th epoch are determined
at the end of the (`− 1)-th epoch based on the collected field samples. For each AUV, the planned
trajectory consists of K waypoints. It takes one time slot for the AUV to travel from one waypoint to
the next. Each AUV collects field measurements around the waypoints. After the AUV reaches the
last waypoint in the current epoch, it transmits the observed data and the corresponding sampling
locations to the nearest access point via underwater acoustic links. The access points then relay all
the information to the fusion center via radio frequency links. The fusion center estimates the field
values at target points in X based on all the observations and updates the estimation of the field
spatial correlation parameters. It then determines the trajectories for all the AUVs in the next epoch
and transmits via access points the planned trajectories to all the AUVs. At the end of the `-th epoch,
all the AUVs receive their planned trajectories in the next epoch.

......

AUVs navigate and sample the field

Fusion center receives samples via access

points, estimates field, and plans trajectories

Fusion center distributes trajectory

information to AUVs via access points

... ...time slot 1

Sampling time Sampling time

time slot 2 time slot K

... ...

Figure 2. System operation within an epoch. The AUV samples at the end of each time slot. There are
K time slots within an epoch for AUV navigation and sampling.

2.2. Autonomous Underwater Vehicles Trajectory Modeling

For the i-th AUV and the `-th epoch, the planned trajectory that consists of K waypoints is
represented as X̆i(`) := {x̆i,`(1), x̆i,`(2), · · · , x̆i,`(K)}. The last waypoint in the `-th epoch is the AUV
starting position in the (`+ 1)-th epoch, namely x̆i,`(K) = x̆i,`+1(0).

Based on the system description, the AUV trajectories need to satisfy some practical constraints.
We consider three constraints in the following.

• Kinematics constraint: Due to the limited travel speed of an AUV, the distance between any two
consecutive waypoints for each AUV is constrained as:

‖x̆i,`(k)−x̆i,`(k + 1)‖2 ≤ κup, 0 ≤ k ≤ K− 1, ∀i ∈ M (1)

where κup is the maximal distance that an AUV can travel within one time slot.
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• Communication constraint: For each epoch, since the AUV needs to send its field samples to an
access point when it arrives at the last waypoint, the AUV should be within the communication
range of at least one of the NAP access points, namely,

‖x̆i,`(K)− x(j)
AP‖2 ≤ κcomm, ∃j ∈ IAP, ∀i ∈ M (2)

where IAP := {1, 2, · · · , NAP} is the access point index set, x(j)
AP is the location of the j-th

access point and κcomm is the communication range that ensures reliable transmission between an
access point and an AUV.

• Sensing area constraint: All the AUVs should stay within the area of interest, namely,

x̆i,`(k) ∈ Xarea, 1 ≤ k ≤ K, ` ≥ 0, ∀i ∈ M. (3)

Due to the water current and obstacles, the AUVs may not arrive at each planned waypoint exactly.
In field missions, the “arrival” is defined based on the allowable location discrepancy specified in the
mission file. For the i-th AUV, we model the k-th sampling location within the `-th epoch as:

xi,`(k) = x̆i,`(k) + ei,`(k), (4)

where ei,`(k) ∈ RDim is a noise vector, which describes the location inaccuracy, and each of its elements
is assumed following an independent and identical uniform distribution U (−ε, ε) with ε � κcomm

and ε� κup [25].

2.3. Unknown Field Modeling

We model the unknown field z(x) as a Gaussian process with zero mean,

z(x) ∼ GP
(
0,K(x, x′)

)
, ∀x, x′ ∈ Xarea (5)

where K(x, x′) is the covariance function of the field values at locations x and x′.
There are various types of covariance functions that can be employed to describe the field spatial

correlation [20]. In this work, we consider the squared exponential covariance function,

K(x, x′) = σ2
f exp

(
− (x− x′)TΛ−2(x− x′)

)
, (6)

where Λ = diag([d1, · · · , dDim]) with Dim = 2 or 3 being the dimension of the water area and di being
the distance scale that determines the field spatial correlation at two locations and σ2

f is the signal

variance. The matrix Λ and σ2
f are referred to as field hyper-parameters. In this work, we consider the

lack of prior knowledge about the field hyper-parameters θhyper := {σ2
f , Λ} and develop a method to

estimate the hyper-parameters based on the sequentially-collected field samples by AUVs.
For the i-th AUV, the field observation at the k-th sampling location in the `-th epoch is

described as:
yi,`(k) = z(xi,`(k)) + wi,`(k), (7)

where wi,`(k) is the observation noise and assumed following a Gaussian distribution N (0, σ2
w).

3. Problem Formulation for Adaptive Trajectory Planning

In this section, we develop a mathematical model for the field estimation. The trajectory planning
for multiple AUVs is then formulated as a constrained optimization problem, to maximize the field
estimation accuracy while minimizing the AUV mobility cost.
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3.1. Gaussian Process Regression for Field Estimation

Based on the field observations, we use the Gaussian process regression to estimate the field
values at target locations and estimate the field hyper-parameters θhyper using the maximum
likelihood method.

Stack the observations of all the AUVs in the `-th epoch into a vector y` of length MK. Stack
all the observations up to the `-th epoch into a long vector ycum,` := [yT

0 , · · · , yT
` ]

T. The observation
vector follows a Gaussian distribution,

ycum,` ∼ N (0, C`), (8)

where C` is the covariance matrix. The (i, j)-th element of C` is computed as:

[C`]i,j = K(xi, xj) + δijσ
2
w, (9)

where xi and xj denote the sampling location of the i-th element and the j-th element in ycum,`,
respectively, and δij denotes the Dirac delta function.

We stack the field values at target locations within the set X into a vector z of length |X |.
Its posterior distribution based on the observations collected up to the `-th epoch is:

z ∼ N (µ`, Σ`), (10)

with:

µ` = Cz,ycum,`C
−1
` ycum,`, (11)

Σ` = Cz − Cz,ycum,`C
−1
` CT

z,ycum,`
, (12)

where Cz is the covariance matrix of z, its (i, j)-th element is obtained as [Cz]i,j = K(xi, xj) with xi
and xj being the location of the i-th and the j-th element in z, respectively, Cz,ycum,` is the covariance
matrix between z and ycum,` and its (i, j)-th element is obtained as [Cz,ycum,` ]i,j = K(xi, xj) with xi and
xj being the location of the i-th element in z and the j-th element in ycum,`, respectively.

Based on the observation vector ycum,`, the field hyper-parameters θhyper = {σ2
f , Λ} can be

estimated by maximizing the log likelihood function [26],

θ̂hyper = max
θhyper

ln f (ycum,`; θhyper),

= max
θhyper

{
−1

2
yT

cum,`C
−1
` ycum,` −

1
2

log det(C`)

}
, (13)

where f (ycum,`; θhyper) = N (0, C`) is the probability density function (also known as the likelihood
function) of vector ycum,` (cf. Equation (8)) and C` is related to the hyper-parameters θhyper through
Equations (6) and (9). The optimization problem Equation (13) can be solved using a quasi-Newton
method, i.e., the L-BFGS-B (limited memory Broyden–Fletcher–Goldfarb–Shannon algorithm for
bound constrained optimization) method [27]. The optimization Equation (13) is used to estimate
the field spatial correlation parameters, i.e., the field hyper-parameters, based on the collected field
measurements at the end of each epoch. The estimated field spatial correlation parameters will then be
used for trajectory planning.

3.2. Problem Formulation for Optimal Trajectory Planning

The field uncertainty can be computed based on the posterior distribution of z. Specifically,
we define u` := diag(Σ`−1) to describe the uncertainty of all the target points in X based on the
observations up to the (`− 1)-th epoch. Denote p` := {x1,`(0), x2,`(0), · · · , xM,`(0)} as the locations
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of all the AUVs at the beginning of the `-th epoch. Denote s(`) := {p`, u`} as the system state at the
beginning of the `-th epoch. Denote a(`) as the action in the `-th epoch, which consists of the planned
waypoints for all the AUVs in the `-th epoch.

For the long-term AUV deployment, the AUV trajectories in all the future time epochs can be
optimized to maximize the overall system performance. Mathematically, given the the randomness
of the field values (cf. Equations (5) and (7)) and the uncertainty during the AUV navigation
(cf. Equation (4)), the desired trajectories for all the AUVs can be determined to maximize the expected
total discounted reward,

max
{a(`)}∞

`=0

E
{

∞

∑
`=0

γ`R(s(`), a(`))

}
, (14)

where γ ∈ (0, 1] is a discount factor, R(s(`), a(`)) is an application-dependent reward function
and E{·} denotes the statistical expectation of a random variable. Here, the discount factor is
introduced to give more preference to the reward in the near future. In this work, the reward function
takes into account the field uncertainty reduction, the AUV mobility cost based on the planned
trajectories and the constraints in Section 2.2, as defined in the following.

3.2.1. Reward Function

For the ease of exposition, denote the current state as s = {p, u} and the planned trajectories as a.
Denote the next state as s′ = {p′, u′}. The reward, costs and penalties induced by action a under the
current state s and the next state s′ are in the following.

• Uncertainty reduction reward: Given the system mission objective of minimizing the field
uncertainty over target locations in X , the reward associated with the reduction of the field
uncertainty by performing action a at the system state s is defined as:

RU(s, a) :=
αR
|X |

(
||u||1 − ||u′||1

)
, (15)

where αR > 0 is a weighting factor (set as αR = 10 in the simulation) and ||u||1 is the summation
of all the elements in u, which describes the total estimation error over target locations.

• Trajectory cost: Notice that the AUV energy consumption increases with the travel distance and
the turning angle. The mobility cost associated with action a is defined as:

CT(a) := αLL(a) + αA A(a), (16)

where L(a) is the total distance of the planned trajectories based on a, A(a) is the total angle that
the AUVs travel along the planned trajectories based on a and αL > 0 and αA > 0 are weighting
factors and set as αL = 1× 10−3 and αA = 5× 10−2 in the simulation.

• Trajectory constraint penalty: The kinematics constraint in Equation (1) will be addressed in the
algorithm design for solving the optimization problem in Equation (14) (to be clear in Section 4.2).
The constraints in Equations (2) and (3) are tackled by introducing a penalty term into the objective
function, where zero penalty is applied when both constraints are satisfied and an extremely large
penalty is incurred when either of the two constraints cannot be satisfied. The constraint penalty
is defined as:

CP(a) := αp1 I1 + αp2 I2, (17)

where αp1 and αp2 are positive values and I1 and I2 are indication functions for constraint
Equations (2) and (3), respectively, which equal one if the corresponding constraint is not satisfied
and zero otherwise.
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The reward function in Equation (14) is then formulated as:

R(s, a) = RU(s, a)− CT(a)− CP(a). (18)

3.2.2. Bellman Optimality Equation

Directly solving the optimization problem Equation (14) is often intractable due to the large action
and state spaces. Instead, the Bellman optimality equation is used to obtain the optimal actions [22,28].
Denote Q∗(s, a) as the optimal expected reward by performing action a under the current state s,
which is also called the Q-value function. The Bellman optimality equation for the Q-value function is:

Q∗(s, a) = E
{

R(s, a) + γ max
a′∈A

Q∗(s′, a′)
}

, (19)

where s′ is the next state, a′ is the action taken in the next state,A is the action space and the expectation
E{·} is performed with respect to the probability distribution of s′ given s and a. The optimal action
a∗ under the current state s can be obtained by maximizing the optimal expected reward,

a∗ = arg max
a∈A

Q∗(s, a). (20)

In practice, the optimal expected reward Q∗(s, a) is not directly available. In the next section,
we present a reinforcement learning algorithm to approximate the Q-value function and to generate
optimal actions.

4. Reinforcement Learning-Based Adaptive Trajectory Planning

The proposed optimization problem Equation (14) is essentially an MDP if the field
hyper-parameters are known a priori. It has a continuous action space and a continuous state space,
which is generally difficult to solve. In this work, we adopt one type of reinforcement learning
mechanism, the actor-critic method, to solve the proposed MDP [28]. Classic reinforcement learning
algorithms can be categorized into two types. One type is the actor-based method where an actor
is trained to generate optimal actions to maximize the Q-value function directly, while the other
type is the critic-based method where a critic is trained to evaluate actions, i.e., to approximate
the Q-value function and then select the action that yields the maximal Q-value. The actor-critic
method combines the two classic types of reinforcement learning methods to achieve higher learning
performance. Specifically, in actor-critic-based algorithms, the actor is trained to generate optimal
actions, while the critic is trained to provide action evaluation, which helps the actor to improve
its action generation strategy. Among various actor-critic-based algorithms, we employed the deep
deterministic policy gradient (DDPG) algorithm [29], which deals with continuous action spaces and
has high learning efficiency.

4.1. Deep Deterministic Policy Gradient Basics and Design

In the DDPG algorithm, an actor is represented by a neural network, which takes the system state
s as the input and takes the optimal action a under the system state s as the output. A critic is also
represented by a neural network, which takes the system state s and the action a as the inputs and
takes a Q-value function Q(s, a) as the output. The Q-value Q(s, a) indicates the expected reward
after taking action a under the system state s. In the learning process, the actor network provides
the action a to be executed under the state s. After performing action a, the corresponding reward
R(s, a) can be obtained. Based on the obtained reward, the weights of the critic network are adjusted
to better approximate the Q-value function Q(s, a). Then, the weights of the actor are adjusted using
the policy gradient method such that the action obtained by the actor could result in higher expected
reward, i.e., higher output of the critic network, which takes the output of the actor network as the
input. For more details about the DDPG method, please refer to [29].
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A critical issue of the DDPG method is how to design the actor and critic neural networks.
In this work, the action for each AUV is parameterized by the moving distance within each time
slot along each dimension of the area Xarea for K time slots in total. The structural design of the
actor and the critic is presented as follows. For the actor, as illustrated in Figure 3a, the current field
uncertainty and current locations of all the AUVs go through two fully-connected layers with rectified
linear units as the activation functions. The output layer takes the summation of the outputs of the
second fully-connected layer and uses the tanh activation function to bound the elements of the action
to be within [−1, 1] (the use of the tanh function will be clear shortly). For the critic, as shown in
Figure 3b, the field uncertainty and the current locations and actions of all the AUVs go through
two fully-connected layers with rectified linear units as the activation functions. The output layer of
the critic is the summation of the outputs of the second fully-connected layer. Consider the online
application in this work. The structural design of the actor and critic networks should achieve learning
efficiency to balance the system performance and the computational complexity.

Action

Field uncertainty

Current locations

Actor

Fully 

connected 

layer

Output 

layer

Fully 

connected 

layer

(a)

Q-value

Field uncertainty

Current locations

Action

Critic

Fully 

connected 

layer

Output 

layer

Fully 

connected 

layer

(b)

Figure 3. Neural network design in deep deterministic policy gradient (DDPG). (a) The forward
structure of the actor network; (b) the forward structure of the critic network.

In each training iteration, the weights of the actor and the critic networks are updated based on
one iteration of the backpropagation algorithm [30].

4.2. Training for Actions under Constraints

Consider that the action for each AUV is described by the moving distance within each time slot
along each dimension of the area and that each element in the output of the actor network in Figure 3a
is constrained within [−1, 1] through the employment of the tanh activation function. The kinematics
constraint Equation (1) can be met through multiplying each element in the actor output by κup/

√
Dim

with Dim = 2 or 3 being the dimension of the area, such that the distance that an AUV travels in each
time slot is guaranteed to be no greater than κup.

For the constraint Equations (2) and (3), we introduce a technique called experience replay
used in the DDPG algorithm [29]. Experience replay is a technique to train the agent by transition
samples drawn from a buffer, which consists of historical transitions in previous training experience.
Denote the transition from one epoch to the next by a quadruple (s, a, s′, R), which consists of the
current state s, the action a performed under the state s, the next state s′ by performing a based on
s, the immediate reward R collected by performing a. All the historical transitions are stored in a
replay buffer denoted by B and will be used for training the actor network and the critic network.
Specifically, in each training iteration, the parameters in the actor and critic networks are adjusted by a
mini-batch of samples of transitions, which are randomly taken from B. With mini-batch samples, the
neural networks can be trained more efficiently compared to the case with one sample per learning
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iteration. By training based on samples from the replay buffer rather than sequentially-obtained
samples, the correlation among training samples can be removed, which improves the convergence
performance of the neural networks.

To better learn the actions that satisfy the constraint Equations (2) and (3), we propose a modified
DDPG (MDDPG) algorithm where two replay buffers are used for training. Denote B1 and B2 as two
buffers where B1 consists of transitions whose actions satisfy the constraint Equations (2) and (3) and
B2 consists of transitions whose actions do not. By randomly drawing a sufficient amount of transition
samples from the buffers B1 and B1, the actor network and critic network can learn from both “good”
and “bad” transition samples with high learning efficiency.

Denote the actor network as µ and the critic network as Q. The MDDPG algorithm to obtain
the optimal trajectories with the known field hyper-parameters is described in Algorithm 1. In the
training process, one training episode refers to a process that begins from the initial state when all
the AUVs are at their initial positions (the beginning epoch) and ends at the final state when the
whole sampling task is completed (the last epoch). In each epoch, action a is randomly adjusted based
on the output of the actor according to Algorithm 2. Specifically, an exploration noise is added to
generate travel distances, which yield potential higher rewards, and then, the travel distance along
a randomly-selected dimension (e.g., longitude, latitude or depth) of the area will be set to zero to
introduce trajectories that have less travel angles and also to prevent curling of AUVs. After performing
action a, the immediate reward R and the next state s′ can be obtained based on Equation (18) and the
Gaussian process regression. Instead of learning from the transition quadruple {s, a, s′, R} immediately,
the quadruple is stored in the replay buffers B1 or B2 based on the condition whether a satisfies the
constraint Equations (2) and (3) or not. We will train the actor and the critic by a mini-batch of
transitions drawn from the buffers B1 or B2. To ensure that the actor and the critic learn from sufficient
samples in both B1 and B2, the transition samples from B1 and B2 are drawn, respectively, in two
consecutive learning iterations. With the transition samples, the weights of the actor network are
updated to minimize the prediction error of the Q-value function, and the weights of the critic network
are updated to maximize the Q-value. The stochastic gradient descent method and the target networks
are used to update those weights. The target networks are updated by learning the weights of the
critic and actor networks with a relatively low learning rate. They provide the action evaluation and
generation to update the critic network. The introduction of the target networks improves the learning
stability [29]. At the end of the training iteration, the target critic and actor networks are updated.

When the field hyper-parameters are known a priori, the MDDPG algorithm can be used to
learn the optimal actions offline. The obtained trajectories can serve as the performance upper bound
for the proposed online learning strategy when the hyper-parameters are unknown prior to the
system deployment.
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Algorithm 1 Modified deterministic policy gradient (MDPPG) algorithm:
MDDPG(Ninitial, Nepisode, Nepoch, Nbatch, γ, τ, η, β2, Q,WQ, µ,Wµ, Q′,WQ′ , µ′,Wµ′ , θhyper, s).

Input: Initial epoch Ninitial, total training episodes Nepisode, total epochs in an episode Nepoch,
mini-batch size Nbatch, discount factor γ, learning rate of the target networks τ, threshold value
η, action adjust variance β2, the critic network Q with its weightsWQ, the actor network µ with its
weightsWµ, the target critic network Q′ with its weightsWQ′ , the target actor network µ′ with its
weightsWµ′ , the field hyper-parameters θhyper and the current system state s
Output: Optimal action set Topt for future epochs, the critic and actor networks Q and µ with weights
WQ andWµ, the target critic and actor networks Q′ and µ′ with weightsWQ′ andWµ′

1: Initialize replay buffers B1 and B2. Set iiter = 0 and Ropt = −∞
2: for episode = 1 to Nepisode do
3: Set Rtot = 0
4: Set the initial state s
5: for epoch = Ninitial to Nepoch do
6: Perform action aepoch = RandomAdjust(µ(s), η, β2) according to Algorithm 2
7: Obtain the immediate reward R based on Equation (18), and observe the next state s′

8: if aepoch satisfies the constraint Equations (2) and (3) then
9: Store the transition sample {s, aepoch, s′, R} into the buffer B1

10: else
11: Store the transition sample {s, aepoch, s′, R} into the buffer B2
12: if iiter mod 2 then
13: Sample a random mini-batch of Nbatch transition sample from B1
14: else
15: Sample a random mini-batch of Nbatch transition sample from B2
16: For the i-th transition sample from the mini-batch {si, ai, s′i, Ri}, 1 ≤ i ≤ Nbatch,

compute ξi ← Ri + γQ′(s′i, µ′(s′i)) based on the weightsW ′Q andW ′µ
17: Update WQ by minimizing the error: L = 1

Nbatch
∑i || (ξi −Q(si, ai)) ||2 using the

backpropagation algorithm [30]
18: UpdateWµ by the deterministic policy gradient theorem to maximize Q(si, µ(si)) using the

backpropagation algorithm [30]
19: Update target networks: WQ′←τWQ+(1−τ)WQ′ andWµ′←τWµ+(1−τ)Wµ′

20: Rtot ← Rtot + R, iiter ← iiter + 1, and s← s′
21: if Ropt < Rtot then
22: Set Topt = {aepoch}

Nepoch
epoch=Ninitial

and Ropt ← Rtot

23: Return (Topt, Q, µ,WQ,Wµ, Q′, µ′,WQ′ ,Wµ′)

Algorithm 2 Random action adjust: RandomAdjust(a, η, β2).

Input: Action a, threshold value η and action adjust variance β2

Output: Adjusted action a

1: Draw w from a Gaussian distribution N (0, β2IDim) where IDim is an identity matrix of size Dim

with Dim = 2 or 3 being the dimension of the area
2: a← a + w and drawn u from a uniform distribution U [0, 1]
3: if u < η then
4: Uniformly select and set to zero the travel distance along one dimension of the area, and adjust

a accordingly

5: Clip elements in a to be within [−κup/
√

Dim, κup/
√

Dim] to meet the kinematics constraint

Equation (1).
6: Return a
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4.3. Online Learning for Trajectory Planning with Unknown Field Hyper-Parameters

In practice, perfect knowledge of the field hyper-parameters is often unavailable. In this work,
we propose an online estimation of the hyper-parameters based on sequentially-collected field
samples. An online trajectory planning algorithm, which incorporates the MDDPG algorithm and
the online estimation of the field hyper-parameters is described in Algorithm 3. Specifically, after the
collection of field samples in each epoch, the unknown field hyper-parameters in the covariance
function Equation (6) can be estimated by solving the optimization problem Equation (13) based
on all the field observations. After obtaining the estimated hyper-parameters, the previous learned
knowledge, including the critic network Q(s, a) with its weightsWQ, the actor network µ(s) with
its weightsWµ, the target critic network Q′(s, a) with its weightsWQ′ and the target actor network
µ′(s) with its weightsWµ′ in the previous epoch, is transferred to the current epoch. The MDDPG
algorithm then takes the available knowledge of the actors and the critics and the estimated field
hyper-parameters as inputs to learn what will be the optimal trajectories for future epochs. In this way,
the optimal trajectories for each epoch can be learned online according to the online estimated field
hyper-parameters.

Algorithm 3 Online trajectory planning algorithm in each epoch.
Input: Current epoch Ncurr, total training episodes Nepisode, total epochs in an episode Nepoch,
mini-batch size Nbatch, discount factor γ, learning rate of the target network τ, threshold value η,
action adjust variance β2, the critic network Q with its weights WQ, the actor network µ with its
weightsWµ, the target critic network Q′ with its weightsWQ′ and the target actor network µ′ with its
weightsWµ′

1: All autonomous underwater vehicles (AUVs) take samples of the field according to their planned

trajectories
2: The fusion center receives the field samples from all the AUVs
3: The field hyper-parameters θhyper are estimated based on Equation (13)
4: The fusion center obtained the updated system state s of all the AUVs based on θ̂hyper
5: (Topt, Q, µ,WQ,Wµ, Q′, µ′,WQ′ ,Wµ′ )

← MDDPG(Ncurr, Nepisode, Nepoch, Nbatch, γ, τ, η, β2, Q,WQ, µ,Wµ, Q′,WQ′ , µ′,Wµ′ , θhyper, s)
6: Start to perform the action for the next epoch according to Topt

4.4. Computational Complexity

The main computational load of the proposed MDDPG algorithm is for neural network training
and the hyper-parameter estimation. Denote by I the total number of layers in both the actor network
and the critic network. Denote by Ni the number of nodes within the i-th layer. In each epoch,
the computational complexity of the MDDPG algorithm is CMDDPG = O(NepisodeNbatch(∑

I−1
i=1 Ni+1Ni)).

To estimate the hyper-parameters in each epoch, the computational complexity is Cest = O(`3). Hence,
the total computational complexity in each epoch for trajectory planning is Ctotal = CMDDPG + Cest.

In practice, the computational complexity Ctotal can be reduced by employing low-complexity
algorithms for the matrix multiplication [31] during the neural network training and for the matrix
inversion during the Gaussian process regression [32]. Furthermore, the parameters of neural networks
Nepisode, Nbatch and Ni can be set to relatively small values, which will release the pressure on the
computational time. One reason that we can set those parameter to be small is due to the fact that the
weights of the neural networks are transferred from epoch to epoch for a warm start. Finally, by using
the parallel computation [33], the execution time of the proposed trajectory planning algorithm can be
reduced to an acceptable level for practical applications, e.g., less than two minutes.
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5. Algorithm Evaluation

We consider an under-ice field in a 2D area of interest with size 15 km × 15 km. The target set X
consists of 16× 16 grid points where the latitude and longitude distances between any two consecutive
locations are 1 km. The 2D water parameter field is generated based on the circulant embedding
method [34] with the field hyper-parameters σ2

f = 1 and Λ = diag([0.3, 0.3]).
The duration of one time slot is 1000 s (16.7 min), and one epoch consists of three time slots,

leading to an epoch duration of 50 min. We consider a total of nine epochs in the sampling process,
which yields a deployment time duration of 7.5 h in total. The simulated system consists of four
AUVs and four access points. The four access points are located at (4 km, 4 km), (4 km, 11 km),
(11 km, 4 km) and (11 km, 11 km), respectively. Those four locations are also the initial deployment
sites of the four AUVs. The maximal navigation error is ε = 5 m [35]. The maximal speed of each
AUV is 1 m/s [36], and the maximal distance an AUV can travel within one time slot is therefore
κup = 1 km. The communication range for underwater acoustic links between an AUV and an access
point is κcomm = 3.5 km. The discounted factor is γ = 0.99. The weights in the reward function
Equation (18) are αR = 10, αL = 1× 10−3, αA = 5× 10−2, αp1 = 2 and αp2 = 4.

For both the actor network and the critic network in the proposed MDDPG algorithm, the number
of units in the first hidden layer and in the second hidden layer is 400 and 300, respectively.
The activation functions of the hidden layers are rectified linear units. The batch normalization is used
in the actor network. The learning rate for the actor network and for the critic network is 1× 10−3 and
1× 10−4, respectively. The learning rate for target networks is τ = 1× 10−3. The mini-batch size for
training is Nbatch = 10. The threshold value is η = 0.2. The action adjust variance is β2 = 0.5 km2.

We evaluate the field estimation performance of three schemes.

• Scheme 1: A clairvoyant method that determines the sampling trajectories through the offline
MDDPG algorithm based on the perfect knowledge of the field hyper-parameters, according to
Algorithm 1;

• Scheme 2: The proposed online reinforcement learning algorithm that determines the sampling
trajectories epoch-by-epoch through the MDDPG algorithm where the field hyper-parameters are
online estimated in each epoch based on the collected samples, according to Algorithm 3;

• Scheme 3: All the AUVs sample the water parameter field via a random walk. Here, the simulation
result to be presented is selected among 10,000 Monte Carlo runs, which yields the maximal
total reward.

We take the normalized mean square error (NMSE) as a performance metric for the field estimation,
which describes the normalized difference between the true field values and the estimated field values
over the target points in X ,

NMSE :=
‖z− ẑ‖2

2
‖z‖2

2
, (21)

where z is the vector of field values at target points in X and ẑ is the estimation based on the Gaussian
process regression.

Corresponding to the simulated true field in Figure 4a, the trajectories obtained by the three
schemes are shown in Figure 5. To explore the area with high uncertainty, the trajectories determined
by Scheme 1 spread out more than those of Schemes 2 and 3, which results in the largest sensed area.
Without prior knowledge of the field spatial correlation, the sensed area in the early epochs of Scheme 2
is small, primarily due to the inaccurate estimation of the field hyper-parameters based on limited
field samples. With more field samples collected and consequently more accurate estimation of the
field hyper-parameters, the trajectory pattern obtained by Scheme 2 is similar to the pattern obtained
by Scheme 1, which tends to explore the area with high uncertainty.
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Figure 4. The true field and the estimated fields obtained by the three schemes. (a) True field;
(b) Estimated field by Scheme 1; (c) Estimated field by Scheme 2; (d) Estimated field by Scheme 3.

In Table 1, the three trajectories are compared in the aspects of the AUV total traveled distance,
the AUV total traveled angle and the NMSE of field estimation. Scheme 1 achieves the least total
traveled distance and the least total traveled angle, while Scheme 2 has a similar total traveled distance,
but greater total traveled angle. The performance gap is due to the fact that Scheme 2 does not
assume prior knowledge of the field spatial correlation and performs online estimation of the spatial
correlation parameters. The total traveled distance and the total traveled angle obtained by Scheme 3
are similar to those of Scheme 2. However, Schemes 1 and 2 achieve much more accurate field
estimation (i.e., significantly less NMSEs) than Scheme 3, and a marginal difference of the NMSEs
between Schemes 1 and 2 can be observed. The estimated fields by the three schemes are presented in
Figure 4. One can see that Schemes 1 and 2 can capture important features of the true field and the
estimated field by Scheme 3 is significantly different from the true field.
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Figure 5. Trajectories of four AUVs obtained by three schemes. The squares indicate the positions of
four access points and the initial deployment locations of four AUVs. The circles indicate the acoustic
communication coverage of four access points. (a) Scheme 1; (b) Scheme 2; (c) Scheme 3.

Table 1. Performance comparison of the three schemes.

Scheme 1 Scheme 2 Scheme 3

Total traveled distance (km) 74.4 77.9 78.1

Total traveled angle (rad) 76.6 117.4 131.5

Normalized mean square error (NMSE) 0.17 0.26 1.35

The above results reveal that although without prior knowledge of the field spatial correlation,
the proposed method in this work is able to perform online estimation of the field spatial correlation
parameters based on collected field samples and adaptively adjust the trajectories of AUVs while they
are on the go. It achieves a performance close to the clairvoyant method assuming perfect knowledge
of the field spatial correlation.

Specifically about the proposed method, we further examine the field estimation performance
by varying the time epoch duration (namely, the AUV reporting frequency to the fusion center for
trajectory adaptation). The number of time slots in each epoch is fixed to be three. The simulation
results in Table 2 show that the NMSE of the field estimation decreases as the epoch duration decreases
(namely, as the trajectory updating rate increases). Furthermore, the rate of performance improvement
becomes less for smaller epoch durations. Consider that such performance improvement is at the
cost of more frequent wireless communications and computation at the fusion center for trajectory
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planning. In real missions, the appropriate choice of epoch duration needs to consider the tradeoff
between the field estimation performance and the cost of communications and computation.

Table 2. Field estimation performance of Scheme 2 with different values of the epoch duration.

Epoch Duration (minutes) 30 40 50

NMSE 0.22 0.23 0.26

6. Conclusions

This work studied the online adaptive trajectory planning of multiple AUVs for the water
parameter field estimation in the under-ice environment. An online learning-based trajectory planning
algorithm was proposed to determine the trajectories of AUVs adaptively. The field of interest was
modeled as a Gaussian process with unknown hyper-parameters. The field hyper-parameters and
the field posterior distribution were estimated online based on the collected samples. The adaptive
trajectory planning problem was formulated as an MDP with the goal of maximizing a long-term
reward that is defined based on the field uncertainty reduction and the AUV mobility cost, subject to the
kinematics constraint, the communication constraint and the sensing area constraint. A reinforcement
learning-based method was designed to solve the above MDP with a constrained action space.
The simulation results showed that the proposed reinforcement learning-based adaptive trajectory
planning algorithm achieved a performance close to a benchmark method that assumes perfect
knowledge of the field hyper-parameters.
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