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Abstract: This paper proposes a real-time position accuracy improvement method for a low-cost
global positioning system (GPS), which uses geographic data for forming a digital road database
in the digital map information. We link the vehicle’s location to the position on the digital map
using the map-matching algorithm to improve the position accuracy. In the proposed method,
we can distinguish the vehicle direction on the road and enhance the horizontal accuracy using the
geographic data composed of the vector point set of the digital map. We use the iterative closest
point (ICP) algorithm that calculates the rotation matrix and the translation vector to compensate
for the disparity between the GPS and the digital map information. We also use the least squares
method to correct the error caused by the rotation of the ICP algorithm and link on the digital map
to eliminate the residual disparity. Finally, we implement the proposed method in real time with
a low-cost embedded system and demonstrate the effectiveness of the proposed method through
various experiments.
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1. Introduction

The development of the information technology(IT) industry has recently been applied to
various fields, and has especially been influencing the development of the unmanned industry.
The autonomous driving technology of unmanned vehicles is the core of this industry, and the
development is accelerating existing automobile manufacturers. Various IT companies have also
begun to pay attention to the smart car market. Unmanned ground vehicles for autonomous driving
must judge and drive to the given destination. Four representative technologies are considered
when performing a complete unmanned autonomous drive to a destination: the position estimation
technology that can obtain the current position of the vehicle, the environment perception technology
that can recognize the surrounding environmental information by utilizing various sensors, the obstacle
avoiding technology that can move without collision to an object to the given destination, and the
path planning technology that generates an optimal path to a destination in a given environment.
The position estimation for finding the current position of a vehicle is particularly a basis for the
autonomous driving system [1–4].

The majority of the contemporary position estimation technologies are generally based on the
global navigation satellite system (GNSS), such as the global positioning system (GPS). Many studies
and advances in technology have improved the accuracy of satellite-based location equipment.
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A single-point position accuracy of GNSS is 10 m in open sky environment with many satellites
and no degraded signal [5]. However, the performance of single GNSS cannot guarantee an accurate
and continuous positioning in signal-degraded environments. In order to provide a remedy for the
shortcomings of the single GNSS performance, a possible approach is the use of multi-constellation.
The methods of the determination of the intersystem time offsets, which is characterized by a
relative bias and drift between GPS and Galileo time scales, are proposed [6,7]. In particular,
integrity monitoring has a great importance in safety critical operation, and the research for the
performance assessment of the capabilities of integrity algorithms defined as receiver autonomous
integrity monitoring (RAIM) are proposed [8,9]. In addition, the studies on improving the position
accuracy, such as using the reference station that knows an accurate position, using additional sensors,
and utilizing a digital map, have been actively performed.

An easy approach to compensate for these shortcomings is to use differential GPS (DGPS).
DGPS is a method of inverting the errors contained in each satellite signal at the reference station,
where the exact position is known, and improving the accuracy using a separate communication
network. Carrier phase DGPS (CDGPS) is the augmentation system for carrier-phase measurements.
This measurement obtains much less noise; however, its disadvantage is that the reliability problem
occurs because of an integer ambiguity. A real-time kinematic-GPS method can be used for the spatial
decorrelation in CDGPS, which improves the accuracy by efficiently calculating an integer ambiguity
[10–12].

Other methods utilize additional equipment and sensors to perform the position estimation.
Dead-reckoning using extra sensors, such as Inertial Measurement Unit (IMU), and speed measurements
have been used to enhance the positioning precision and availability. In addition, an integrated
navigation method combining GPS and IMU, a method by detecting lane using image information and
lateral distance information of lane [13], matching the three-dimensional (3D) point cloud information
generated during driving through Light Detection And Ranging(LIDAR) [14], and matching the
road geometry information based on vision and radar sensors [15] have been proposed. However,
these methods require separate communication links or additional infrastructure and sensors; hence,
drawbacks of demanding a large amount of calculation and costs have been considered.

Another method for enhancing the position accuracy is the map-matching algorithm using
a precise digital map. Most map-matching algorithms are tailored toward mapping the current position
onto a vector representation of a road network to the closest node or the shape point, which is known
as the point-to-point method [16]. The point-to-curve matching method also exists, which matches
a location point to a curve closest to the network [17]. A weighting method of the link has been
proposed to further improve the accuracy of the map-matching algorithm [18]. These methods are easy
to perform, but the amount of computation and the position error increase as the link becomes more
complex. Another geometric approach is to compare the trajectory of a vehicle with the road of the
digital map. A method employing both distance and topology with low sampling rate, and considering
the mutual influences of the GPS points in a trajectory, is proposed [19]. This method achieves
better accuracy at a higher computational cost. A method for finding a moderate sampling rate
utilizing user traveling behavior based on the observation that all possible segments on the map is
proposed [20]. These methods have outperformed for single trajectory, but they are insufficient for
real-time application with low sampling processes. However, a probabilistic map-matching method
that can recover from mis-matches quickly [21], and an advanced map-matching algorithm that applies
a fuzzy logic [22] is proposed. However, these algorithms still perform poorly when the sampling rate
is low. A commonly used criterion for evaluating these trajectory map-matching methods is correct
segment identification [23]. In order to determine the matching accuracy, the horizontal distance from
the center of road is calculated. The horizontal errors in previous research are 9 m and 5.5 m [19,22].
However, these approaches cannot present the position error of each point. The methods of the
map-matching algorithm based on additional sensors have also been presented. A localization method
using a monocular camera and a 3D compact semantic map [24] and a map-based localization method
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using the curb extracted by 3D LIDAR [25] are presented. However, these methods have disadvantages
of requiring additional sensors and high computational complexity. Therefore, a method based on
the iterative closest point (ICP) algorithm using only the GPS and digital map information has been
proposed, which does not require additional sensors [26]. This method matches the disparity between
the trajectory of the GPS and the digital map information, and is considered only in a single direction
using the center of the road.

In this paper, we propose a method for enhancing the position accuracy of a low-cost GPS receiver
based on map data without using any additional sensors. The points extracted from the roads prior to
operating the algorithm are utilized as map data. They are stored in the form of vector data, including
the position and direction information. We refer to these points as the vector points in the discussion
that follows. A source point set is updated at each sampling time and contains the vector points of
the vehicle trajectory acquired by the GPS. A reference point set is created from the vector points
in the map point set, whose direction is parallel to those of the source point set at each sampling
time. In this configuration, the ICP algorithm is employed to compute the transformation between the
reference point set and the source point set. The vehicle trajectory is corrected after computing these
errors. The position information is further corrected using the least squares method to compensate for
the error caused by the rotation of the ICP algorithm and linked on the digital map to eliminate the
residual disparity. Finally, we implement the proposed method in real time with a low-cost embedded
system and demonstrate the effectiveness of the proposed method through various experiments.

2. Preliminaries

2.1. Specifications

The map-matching algorithm proposed herein can enhance the position accuracy. The characteristics
of the proposed method are as follows:

• The performance of a low-cost GPS receiver is enhanced based on a GPS and the digital map
information without using any additional sensors.

• The proposed method is simple. The necessary information includes the x-y coordinates, and heading.
By ignoring the map data with no relation to the trajectory of a vehicle, computational efficiency can
be enhanced. Thus, it is not limited by the computing power of a processor.

• The performance of the proposed method is verified through real-time experiments on a low-cost
MCU-based embedded board.

2.2. Description of the Vector Point Sets

Under the assumption that a vehicle maneuvers along roads, the objective of the proposed method
is to enhance the accuracy of low-cost GPS receivers by matching the acquired GPS trajectory with
a pre-constructed road map database. These can be extracted by hand or automatically using image
processing methods [27]. Once extracted, they are stored in the form of vector points, including the
position and direction information. Herein, the k-th vector point vk consists of the position and the
direction, which has the following form:

vk = (pk, θk), (1)

where pk = (x, y); x, and y represent the latitude and longitude coordinates, respectively; and θk is
the heading.

A vector point consists of the position and direction. The position is represented in the universal
transverse mercator coordinate system. The heading is acquired by GPS information. In the case of a
map database, it is obtained manually from the bearing on the map. The θk has one of the following
four values:
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θk =


East, 45◦ ≤ θk < 135◦,
South, 135◦ ≤ θk < 225◦,
West, 225◦ ≤ θk < 315◦,
North, 315◦ ≤ θk or θk < 45◦.

(2)

The proposed method utilizes the following vector point sets:

1. Assuming that a vehicle is traveling along the center of road, the map point set (MPS) is built
prior to execution and composed of the vector points extracted from the center of roads.

2. The source point set (SPS) is updated from a GPS receiver at each sampling time and contains the
vector points of the vehicle trajectory.

3. The reference point set (RPS) is created from the selected vector points in the MPS that a vehicle
is expected to pass.

We present some examples of the MPS, SPS, and RPS as shown in Figure 1 to clarify the definitions
of these vector point sets. In these examples, the SPS contains only the vector points, whose heading
direction is east or south. Therefore, it is reasonable for the RPS to be constructed from the MPS
vector points, whose heading direction is east or south. This example demonstrates why the RPS is
introduced in the proposed algorithm.

Figure 1. Trajectories of a vehicle.

In short, the MPS is the pre-built fixed road map database, and the SPS and RPS are updated at
each sampling time from the GPS receiver and the MPS, respectively. For simplicity, we will denote the
MPS, SPS, and RPS asM, Sk, andRk, respectively, where k denotes the k-th sampling time. The MPS
M is further divided according to the direction, that is,M =ME ∪MS ∪MW ∪MN , where each
set only contains the vector points, whose heading direction is north, east, west, or south, respectively.
Moreover, the i-th vector point vi of any vector point set χ is represented as vi = (pi, θi) = (χP(i), χH(i)),
where χP(i) and χH(i) are the position and heading of the i-th vector point of χ, respectively.
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2.3. ICP-Based Map-Matching Method

Figure 2 shows the examples of the RPS, SPS, and MPS. The trajectories can be matched by
rotating and translating one to fit the other. We can observe such trajectories in many scenarios. In this
case, we can compute the rotational and translational errors between the trajectories using the ICP
algorithm, which is widely used in field image processing. The ICP algorithm, which is a matching
algorithm proposed by Besl and McKay [28], can be started with two point sets. Similarly, the GPS
trajectory is composed of the vector points describing the trajectory of a vehicle for a certain period of
time. The reference point set also consists of the vector points. In this configuration, the ICP algorithm
is used for matching pk among these vector point sets. Given these sets, the ICP algorithm initiates
a rotation matrix and a translation vector and finds a transformation matrix that contains a rotation
matrix and a translation vector by minimizing the error function. The error function J is defined
as follows:

E = arg min
R,t

(
Np

∑
i=1
‖ mi − Rpi − t ‖2), (3)

where mi and pi are the corresponding points, and Np is the total number of points. The optimization
problem can be solved by the iterative approach. A transformation matrix is obtained after the iteration
procedure. We obtain the corrected GPS trajectory as shown in Figure 2 by correcting the rotational
and translational errors. As can be seen, a low-cost GPS receiver provides a sufficiently reasonable
performance when the ICP algorithm is employed. Thus, this study proposes a method to improve the
accuracy of a low-cost GPS receiver based on the ICP algorithm.

Figure 2. Examples of the RPS, SPS, and MPS.

3. Enhanced Map-Matching Algorithm for Real-Time Position Accuracy Improvement

The main idea of the proposed method is to match the SPS SP
k with the RPSRP

k , where k ∈ Z>0

denotes a sampling time. Figure 3 shows a flowchart of the proposed method, which could be divided
into four main steps as follows:

step 1. Loading of the digital databases,
step 2. Calculation of the disparity information,
step 3. Calibration of the rotational error using the least squares method,
step 4. Location of the vehicle position on the map.
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Figure 3. Flowchart of the proposed method.

3.1. Step 1: Loading of the Digital Databases

In the initialization stage, the MPSM is loaded from the memory, and the variables required in
the proposed method are declared and initialized. After initialization, the current position and heading
of a vehicle are acquired from the GPS receiver through homegrown software and stored in the SPS Sk
at each sampling time k. The method skips to the GPS acquisition stage of the (k + 1)th sampling time
before N(Sk) > buff, where N(Sk) is the number of vector points stored in the SPS Sk, and buff is the
predefined scalar value. Figure 4 shows the examples of map-matching process. At k = 3, examples of
M and S3 are shown in Figure 4a to clarify the procedure.

The position correction method begins when N(Sk) > buff is satisfied for a certain k. The first
step is to create the RPSRk based on the MPSM and the SPS SH

k (i) for i = 1, 2, ..., buff. Algorithm 1
summarizes this process. We anticipate that a vehicle travels along a road, whose headings are parallel
to that of a vehicle. Therefore, all of the MPSM(i), whose headings are equal to the SPS SH

k (j) for
all possible combinations of i and j, are chosen as the vector points of the RPSRk. Constructing the
RPSRk is important for two reasons. First, the computational efficiency can be enhanced by ignoring
the vector points of the MPSM with no relation to the trajectory of a vehicle. Second, the horizontal
accuracy is enhanced by considering the direction of a road. Figure 4b shows examples ofR4 and S4

for buff = 4. In this example, S4 contains the vector points, whose heading directions are east and
south. Thus, the method ignores the roads heading in directions to the west and north. R4 consists of
M(i) whoseMH(i) = East or South (i.e.,R4 =ME ∪MS).
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(a) (b)

(c)
Figure 4. Examples of the map-matching process: (a) M and Sk at k = 3; (b) Rk and Sk at k = 4;
and (c)Rk and Sk at k = 4.

Algorithm 1 Algorithm for constructing the RPS

function Construction (SH
k )

Initialize: Rk ← empty set
for i← 1 to buff do

if SH
k (i) is North then
Rk =Rk ∪MN

Rk =Rk −MS

else if SH
k (i) is South then

Rk =Rk ∪MS

Rk =Rk −MN

end if
if SH

k (i) is East then
Rk =Rk ∪ME

Rk =Rk −MW

else if SH
k (i) is West then

Rk =Rk ∪MW

Rk =Rk −ME

end if
end for
ReturnRk

end function
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3.2. Step 2: Calculation of the Disparity Information

After constructingRk, the ICP algorithm is employed to compute the rotational and translational
errors betweenRP

k and SP
k . The ICP algorithm outputs the rotation matrix and the translation vector

in the following forms:

R =

(
cosθE −sinθE
sinθE cosθE

)
, T =

(
xE
yE

)
, (4)

where θE is the rotational error between two vector point sets, and xE and yE are the translational
errors of each axis.

The estimation value of reference can be derived by calculating the transformation to the SP
k .

Using Label (4), Sk is corrected as follows:

SP
k (i) = RSP

k (i) + T, f or i = 1, 2, ..., buff, (5)

where SP
k (i) is the corrected trajectory of a vehicle.

Figure 4c shows R4 and S4, from which we can conclude that the horizontal position error
is minimized.

3.3. Step 3: Calibration of Rotational Error using the Least Squares Method

In the proposed method, the ICP is performed by maintaining a constant number of buffer and
shifting the information from which the new GPS information is obtained. The ICP algorithm returns
the one transformation between RP

k and SP
k . This transformation does not sufficiently reflect the

change value between the trajectory and the GPS information, which are newly obtained. The ICP
algorithm is more sensitive to rotation than translation [29]; hence, we use the least squares method
to calibrate the rotational error. From SP

k , which is the corrected trajectory of a vehicle, the output
equation is as follows [30]:

zk = Hkxk + wk, (6)

where zk is the latest point of SP
k , Hk is the output matrix, xk is the state vector, and wk is the

measurement noise. We can then compute the state estimation x̂k that minimizes the cost function J,
where J is given as follows:

J = (zk − Hk x̂k)
T(zk − Hk x̂k) = zT

k zk − x̂T
k HT

k zk − zT
k Hk x̂k + x̂T

k HT
k Hk x̂k. (7)

We compute the partial derivative as equal to zero to minimize J with respect to x̂k:

∂J
∂x̂k

= −zT
k Hk − zT

k Hk + 2x̂T
k HT

k Hk = 0. (8)

Solving (8) for x̂k, the state estimation is as follows:

x̂k = (HT
k Hk)

−1HT
k zk. (9)

In this procedure, the state estimation x̂k implies the current position of a vehicle.

3.4. Step 4: Location of the Vehicle Position on the Map

The state estimation x̂ is linked toRk to eliminate the residual disparity. The projection method
uses the vector projection theorem, which is from the current state estimation and the two points near
the estimation point. The lateral error is reduced, and the vehicle position is located on the road of the
digital map, implying that the accuracy of the low-cost GPS receiver has been enhanced.

Finally, the FIFO buffer, Sk, is shifted, and the method waits until a new GPS point is received.
The memory requirement does not increase as N(Sk) is confined to buff, even if the proposed method
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operates for a long time. The execution time is mainly affected by N(Rk) and N(Sk). N(Sk) plays
an important role in the proposed method; hence, larger values of N(Sk) not only enhance the
performance of the method, but also increase the computational load. Thus, this parameter should be
chosen according to the desired performance of the proposed method. In addition, the computational
burden increases with the map size, which can be solved by confining the region ofRk based on the
current position of a vehicle.

4. Experimental Setup and Results

4.1. Hardware Implementation

The proposed method is computationally efficient; hence, it can be implemented using a low-cost
embedded system. We developed the embedded system as shown in Figure 5, in order to demonstrate
the efficiency of the proposed method. This system consisted of a low-cost processor, a secure
digital (SD) card slot, and a Bluetooth module. The main processor was an STM32F405VGT6
(ST Microelectronics, Inc., Geneva, Switzerland) [31], which operates at a frequency of 168 MHz,
and has a static RAM of 192 Kbytes. The SD card was used to store the experimental results and
M. The Bluetooth module was employed to receive GPS points from a smartphone. A Galaxy
A5 (Samsung Electronics, Inc., Suwon, Korea) smartphone, which provides a trajectory with a
horizontal accuracy of up to 10 m, was connected to our system through the Bluetooth connectivity.
The sampling time of the proposed method is set to 1 Hz, that is, one GPS point per second is sent to
the embedded board.

Figure 5. System block diagram and photograph of the developed embedded system.

4.2. Experimental Setup

We employed a high-end GPS/INS device (NovAtel, Inc., Calgary, Canada) composed of
UIMU-H58 [32], SPAN-SE-D-GENERIC [33], and GPS-703-GGG [34] to obtain the actual trajectory of a
vehicle. In this configuration, the device provides the position of a vehicle with an accuracy of 0.4 m;
thus, it is reasonable to assume that the position acquired by the device is the ground truth.

The main purpose of our experiments was to verify that a trajectory acquired by a low-cost GPS
receiver is effectively corrected by the proposed method. We also showed that implementing the
proposed method in real time was possible using the low-cost embedded system. The GPS/INS device,
a smartphone, and an embedded board were positioned on the vehicle as shown in Figure 6.

We performed experiments for the six courses shown in Figure 7. Table 1 lists the length of the
paths and the number of the GPS points for each experiment.
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(a) (b)
Figure 6. Setting of the experimental devices: (a) an antenna on the vehicle and (b) IMU in the vehicles.

Figure 7. Overall map comprising six courses.

Table 1. Length and number of GPS points of the experimental courses.

Course 1 Course 2 Course 3 Course 4 Course 5 Course 6

Length (km) 1.46 1.82 1.85 5.55 2.15 1.67
Number of GPS points 220 249 212 647 281 191

4.3. Experimental Results

As mentioned in Section 4.2, we assumed that the position acquired by the high-end GPS/INS
device was the ground truth, and calculated the position errors of the low-cost GPS and the proposed
method, respectively. Figures 8–13 show the six courses on real routes containing curved roads and
intersections, including the low-cost GPS measurements, the final corrected trajectories through the
proposed method, and the ground truth. Each figure contained the overall trajectories and four
magnified subsections.
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Figure 8. Experimental results for Course 1.

Figure 9. Experimental results for Course 2.

Figure 10. Experimental results for Course 3.
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Figure 11. Experimental results for Course 4.

Figure 12. Experimental results for Course 5.

Figure 13. Experimental results for Course 6.

These figures show that, for all cases, including straight lanes, curved lanes, and intersections,
the corrected trajectories were located much closer to the ground truth compared to those originally
given by the low-cost GPS receiver. Figures 8c and 11b,c also depict that the trajectories acquired
by the low-cost GPS receiver were located on the opposite side of the roads; however, the proposed
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method determined which side of the roads a vehicle was traveling on. If the vehicle traveled along
the center of road, the trajectory from the high-end GPS/INS device would be on the RPS. Therefore,
the horizontal error between the points acquired by the proposed method and the high-end GPS/INS
device was close to zero. However, the corrected trajectory sometimes cannot follow the curved lanes
as the accumulated GPS points are used to correct the trajectory (e.g., Figure 13c).

The error distributions of the proposed method and the raw GPS points for the six courses were
summarized in Figure 14 to quantitatively evaluate the performance of the proposed method. In this
figure, the horizontal axis represents the error that is calculated in meters. The blue graph denotes
the error distribution that explains how many times each error occurred, while the red line shows
the mean of each error distribution. The proposed method generated much smaller distance error
than the raw GPS. The mean and the standard deviation of these error distributions were listed in
Table 2 for further clarification. The columns labeled ‘Avg. (GPS)’ and ‘Avg. (Prop.)’ represent the root
mean square error between the position acquired by the GPS/INS device and that of the low-cost GPS
receiver and the proposed method, respectively. The ‘Std.’ columns list the standard deviations of each
error distribution. The errors in the ‘Avg. (Prop.)’ column are mainly from the vertical errors because
the proposed method only improved the horizontal accuracy. However, the merit of the proposed
method remains in that it reduces the horizontal error. The ‘Improv.’ represents the improvement rate
which is obtained by dividing the difference between ‘Avg. (GPS)’ and ‘Avg. (Prop.)’ by ‘Avg. (GPS)’,
from which we can conclude that the proposed method improves the accuracy of the low-cost GPS
receiver by up to 62.2927%.

We ignored the map data with no relation to the trajectory of a vehicle by utilizing the RPS, so the
map size used for map-matching was reduced. The data from the low-cost GPS and high-end GPS/INS
device was updated once per second, and all data was transferred to the laptop. The proposed method
was executed on the laptop in real time and updated the position without any time delay. The average
running time for one single point according to the RPS were listed in Table 3. The row labeled ‘w/o
RPS’ and ‘w/ RPS’ represent the average process time of the proposed method for each point, taking
into account the RPS or not, respectively. It took approximately 0.066 s on a single point without
utilizing the RPS, while 0.043 s with the RPS for Course 2. As the map size decreased, a faster average
running time of the proposed method was achieved.

We mentioned that the performance of the proposed method is mainly dependent on the size
of buff. Varying buff from 5 to 20 in Step 5, we measured the average and the standard deviation of
the root mean square errors for Course 2. The results in Table 4 indicated that the proposed method
provided a better performance as the size of buff increased, and the graphical representation of this
result is shown in Figure 15. However, the increased size of buff increased the computational burden
of operating the proposed method; thus, buff should be chosen according to the required accuracy and
processor performance.

Table 2. Comparison results.

Course Avg. (GPS) (m) Std. (GPS) (m) Avg. (Prop.) (m) Std. (Prop.) (m) Improv. (%)

Course 1 3.6013 1.7243 2.0023 1.1261 44.4006
Course 2 4.1199 1.3088 1.5535 0.9537 62.2927
Course 3 3.7037 1.1829 1.9854 1.0841 46.3941
Course 4 3.7408 2.1175 2.0153 2.2406 46.1264
Course 5 2.2805 0.8799 1.5031 0.6587 34.0890
Course 6 3.6874 1.5508 1.4432 1.2074 60.8613

Table 3. The average running time for a one single point according to the RPS.

Course 1 Course 2 Course 3 Course 4 Course 5 Course 6

w/o RPS (s) 0.059 0.066 0.056 0.178 0.071 0.049
w/ RPS (s) 0.036 0.043 0.034 0.119 0.046 0.031
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Figure 14. Error histograms. The blue bars represent the error distributions, while the red line marks
the average value of each error distribution.
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Table 4. Mean and standard deviations of Course 2 according to the size of buff.

buff 5 10 15 20

Mean (m) 2.0123 1.9957 1.7611 1.5535
Std. (m) 1.1759 1.0657 1.0155 0.9537

Figure 15. Mean and standard deviations according to the size of buff.

5. Discussion

The proposed algorithm assumes that a vehicle is traveling along the roads, which enables us to
minimize the horizontal error, but does not correct the vertical error, as can be seen from the results.
Minimizing the horizontal error is important because one can clearly determine which side of the road
a vehicle is actually traveling on. Thus, the proposed method provides an advantage in the fields of
car navigation and autonomous vehicle guidance.

A number of methods providing sub-meter accuracy have recently been studied. However,
these methods require additional sensors or complicated algorithms, which increase the
implementation cost. Since the proposed method uses only a low-cost GPS receiver and map data,
the computational efficiency can be enhanced in real time. In addition, more accurate trajectories are
anticipated to be obtained by applying additional sensor fusion algorithms to the trajectory corrected
by the proposed method.

6. Conclusions

In this paper, we proposed a method for improving the position accuracy of a low-cost GPS
receiver for car navigation systems using pre-built map data. In our method, the position and the
direction of the points extracted from the roads were utilized as the map data. The ICP method was
employed to match the points between the roads and the vehicle trajectory. Moreover, only those
roads parallel to the vehicle trajectory were used rather than the entire roads. We also used the least
squares method to correct the error caused by the rotation of the ICP algorithm and linked on the
digital map to eliminate the residual disparity. Finally, we performed the proposed method in real time
with a low-cost embedded system. Consequently, we verified that the proposed method improved the
position accuracy of the low-cost GPS in real time.
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