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Abstract: The existing public key-based en-route filtering schemes are vulnerable to report disruption
attacks or selective forwarding attacks, and they fail to consider any measure to detect and punish
the malicious nodes. The authors propose a series of public key-based security mechanisms for
wireless sensor networks (WSNs) in this paper, including a mechanism for verifying the partial
signatures, a substitution mechanism, an effective report forwarding protocol, and a trust value-based
mechanism to identify and punish the malicious nodes. Finally, the authors develop a public
key-based authentication and en-route filtering scheme (PKAEF), which can resist false data injection
attacks, report disruption attacks and selective forwarding attacks, and can mitigate the impact of
malicious nodes. Detailed performance analysis and evaluation show that, in most cases, PKAEF
outperforms previous works in terms of safety, filtering efficiency, and data availability.
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1. Introduction

Wireless sensor networks (WSNs) have attracted a lot of attention recently, and have been applied
in various applications, such as military sensing and tracking, traffic flow measuring, environmental
monitoring, and real-time accident reporting etc. [1–3]. One major function of WSNs is to detect
events of interest and deliver the event reports to the base station (BS) through multi-hop wireless
paths. WSNs usually consist of numerous small sensor nodes that are resource starving and, as such,
are highly constrained by battery power, storage, computation, data rate, and available bandwidth [4].

Due to the lack of tamper-resistant hardware, the sensor nodes in WSNs are vulnerable to be
compromised. Once a node is compromised, all the security information stored in it can be used by the
adversary. Then, the adversary can control the compromised node to launch various insider attacks,
such as a false data injection attack [5], report disruption attack [6], selective forwarding attack [6] etc.
These attacks can severely damage network function, and waste limited network resources such as
energy and bandwidth, hence, severely affecting both data authenticity and availability.

To defend against the aforementioned attacks, many en-route filtering schemes have been
proposed. It was a common belief that the traditional public-key cryptography (PKC) was too
complex, slow and power hungry and, thus, ill-suited for use in resource-constrained WSNs [7].
Due to this, most existing en-route filtering schemes [5,8–13] are generally based on symmetric-key
cryptography. However, due to the inherent limitations of symmetric-key cryptography, these schemes
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suffer from the lack of authentication, scalability and resilience to node compromise [14]. Therefore,
some researchers [15,16] began to investigate the feasibility of using PKC on sensor platforms and
showed that traditional PKC, such as RSA or elliptic-curve cryptography, is rather viable in WSNs [7].
Then, many PKC-based en-route filtering schemes [1,6,7,17–20] were proposed to filter out bogus
reports at an early stage. These schemes have a few drawbacks, however; for example, some of
them (the energy-aware routing and filtering scheme (ERF) [18] and the public-key based false data
filtering scheme (PDF) [19]) are vulnerable to report disruption attacks and selective forwarding attacks.
The digital signature assisted end-to-end data authentication scheme (DSEDA) [1] is resilient to report
disruption attacks to a certain degree, but vulnerable to selective forwarding attacks. The authentication
and en-route filtering scheme [6] and the location-based threshold-endorsement scheme (LTE) [7] are
resilient to the two aforementioned attacks to a certain extent, however, they have high communication
overhead and the security vulnerability of LTE was pointed out in [14]. Besides, none of these schemes
consider detecting and punishing the malicious nodes, so the malicious nodes constantly can fool
other nodes and consume the limited network resources.

The authors propose a series of public key-based security mechanisms for WSNs based on
the elliptic curve Pintsov–Vanstone signature scheme (ECPVSS) [21,22] and Shamir’s secret sharing
technique [23]. This study’s main contributions are summarized as follows.

First, the authors propose a mechanism for verifying the partial signatures. Accompanying this
mechanism, the cluster head (CH) node can detect the invalid partial signatures at the very beginning
of the report lifetime and, in this way, it can avoid generating an incorrect cluster signature for the
event report.

Second, the authors design a substitution mechanism to ensure that some trusted cluster nodes
will participate in report generation when the valid partial signatures are inadequate, which can
ensure that enough trusted cluster nodes will participate in report generation. Additionally, with this
mechanism, once a CH node refuses to send out the signed event report or sends out an event report
with an illegitimate signature, a new CH node will substitute it and regenerate a signed event report.

Third, the authors design an effective report forwarding protocol that can defend against selective
forwarding attacks. Unless all upstream nodes (the neighbors closer to the BS) of the sender are
compromised, this scheme ensures that legitimate reports will be forwarded to the BS with less
communication and computation overhead.

Fourth, to mitigate the impact of malicious nodes, the authors propose a trust value-based
mechanism to identify and punish the malicious nodes in the network. When a node has any malicious
behavior, its trust value will be reduced. When the trust value of a node falls below the predefined
threshold, it will be isolated.

Finally, by integrating the aforementioned mechanisms, the authors develop a public key-based
authentication and en-route filtering scheme (PKAEF) to resist false data injection attacks, and report
disruption attacks, and selective forwarding attacks. Detailed performance analysis and evaluation
show that, in most cases, PKAEF outperforms PDF [19] and DSEDA [1] in terms of safety, filtering
efficiency, and data availability.

The rest of this paper is organized as follows. The related works are reviewed in Section 2.
Section 3 introduces the system model and threat models. A public key-based authentication and
en-route filtering scheme is proposed in Section 4 and then, Sections 5 and 6, analyses and evaluates of
its performance in comparison to those schemes closest to that of this study’s. Finally, the conclusion
of this paper is in Section 7.

2. Related Works

To filter out false reports as early as possible, many en-route filtering schemes have been proposed,
which can be classified into two major categories: symmetric-key cryptography based schemes and
public-key cryptography (PKC) based schemes. Due to the limited space, we only discuss the existing
PKC-based schemes more related to this study.
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To mitigate the impact of compromised nodes, Zhang et al. [7] proposed a suite of location-based
compromise-tolerant security mechanisms. A notion of location-based keys (LBKs) was proposed
based on a new cryptography concept called pairing, in which the private key of an individual node
was bound to both its ID and geographic location. Then, an LBK-based neighborhood authentication
protocol was proposed to constrain the impact of compromised nodes to their vicinity. Moreover,
a location-based threshold-endorsement scheme, called LTE, was proposed to filter out bogus
reports during their early transmission stages. The proposed approaches can reduce the impact of
compromised nodes in the network and provide high resiliency. However, the bi-linear pairing is too
expensive for low-energy sensor nodes, and localization will incur additional communication overhead.
Furthermore, Duan et al. [14] pointed out that LTE cannot resist key compromise impersonation (KCI)
attacks and cannot provide forward secrecy.

Wang et al. [19] proposed a public key-based (PDF) false data filtering technique based on elliptic
curve cryptography [22] and Shamir’s threshold cryptography [23]. In PDF, each sensor holds a unique
share of the system secret key, and any t sensors can collaborate to construct the system secret key.
Thus, the adversary needs to compromise at least t sensors to infer the system secret key. Every report
is attached with a digital signature cosigned by the t detecting nodes using the ECPVS signature
scheme [22], and any forwarding node with the system public key can verify the report. PDF can
effectively reject the false data reports, but it is vulnerable to both report disruption attacks and
selective forwarding attacks.

Anudeep et al. [20] proposed a hybrid approach for filtering false reports in WSNs using a
hash-based short signature. In the proposed scheme, a forwarding node will detect the false report
by verifying the signature of the report. Moreover, the adversary cannot forge a signature by
compromising a CH node. The proposed scheme provides high security resilience, and requires
slight more cost than symmetric key approaches but substantially less cost compared to public
key-based approaches.

Yu et al. [6] proposed an authentication and en-route data filtering scheme for WSNs in the IoT
scenario, which used the efficient ID-based signature algorithm to generate signature share and used
the verifiable secret sharing technique to distribute the shares to multiple cooperative sensor nodes.
When an event occurs, multiple neighboring nodes in the event area collectively generate the event
report and sign the report. Finally, the signed report is forwarded to the sink through multi-path
routing. The forwarding nodes verify the signature of a report with the predefined probability. The
proposed scheme can defend against node compromise attacks as well as denial of service (DoS)
attacks. However, multi-path routing will incur high communication overhead for forwarding a report
and high computation overhead for verifying a report. The location-aware end-to-end data security
scheme (LEDS) [11] saves communication overhead for forwarding a report by allowing only one node
in the receiving cell to forward the report, however, each node in the receiving cell has to verify the
report, which results in high computation overhead.

Geedhabhanu et al. [17] proposed an en-route data filtering scheme based on the elliptical curve
digital signature algorithm (ECDSA) and the NFFS scheme, which can filter out false reports and
can mitigate the impact of compromised nodes. However, ECDSA produces a 40-byte signature,
resulting in large message payload. An ECPVS signature scheme [21,22] can offer smaller signature
size than ECDSA. Besides, the proposed scheme is vulnerable to report disruption attacks and selective
forwarding attacks.

Ferng et al. [1] proposed an enhanced and efficient cluster-based authentication protocol using
digital signature rather than message authentication codes (MACs), called DSEDA. DSEDA can avoid
false information at intermediate nodes, and can guarantee end-to-end data authentication with the aid
of a digital signature. Besides, a report collection mechanism was proposed to filter out bogus reports
as soon as possible, and a mechanism to compensate lack of legitimate secret shares was proposed to
enhance data availability. However, if a CH node is compromised, it can generate false reports with
legitimate signatures, which can pass the en-route filtering.
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Shahzad et al. [18] presented an energy-aware routing and filtering node (ERF) selection scheme
for commutative cipher-based en-route filtering (CCEF). First, the keys are disseminated to only some
intermediate nodes using a probabilistic method. Then, a path from the BS to the selected CH is
established with consideration of distance and energy in all sensor nodes. When a CH receives a
query from the BS, it creates the final report which contains all the MACs from the participating
nodes, and transmits the report to the BS. The filtering nodes, which are selected based on attack
information, presence of witness key and current state of a node, verify the MACs using the property
of commutative ciphers. The proposed approach can significantly prolong the network lifetime by
balancing network energy consumption. However, it is vulnerable to report disruption attacks and
selective forwarding attacks.

In summary, the existing PKC-based schemes have two major drawbacks: one is that they are
vulnerable to report disruption attacks or selective forwarding attacks; the other is that they do not
provide any measure to detect and punish the malicious nodes. To overcome these drawbacks, a public
key-based authentication and en-route filtering scheme (PKAEF) is proposed in this paper, which
can resist multiple types of attack such as false data injection attack, report disruption attack, and
selective forwarding attack. Moreover, a trust value-based mechanism for detecting and punishing the
malicious nodes is proposed, which can mitigate the impact of malicious nodes.

3. System and Threat Models

3.1. System Model

Suppose that there are several event areas of interest. To monitor relevant events in these areas,
a cluster of static sensor nodes is deployed in each event area, a static BS is deployed to control the
sensors and collect data from the sensors, and a group of forwarding nodes are deployed between
each event area and the BS. The nodes and the BS can be deployed via aerial scattering or physical
installation. Assume that each node can obtain its location information through the Global Positioning
System (GPS) or a localization scheme [24,25], and all the nodes have the same sensing range Rs and
same communication range Rc. Typically, Rc is greater than 2Rs [1]. Following deployment, the sensor
nodes in each event area are organized into a cluster and each sensor node in the cluster is called a
cluster node. Suppose that there are Nc cluster nodes in an event area, any of which can detect the
events occurring in the event area and can participate in report generation. Besides, each cluster node
can directly communicate with any other cluster node in the same event area. When an event occurs,
t (t < Nc) cluster nodes in the event area are selected to jointly generate a signed event report, one of
which is selected to be the CH. Finally, the CH transmits the signed event report to the BS through
multi-hop routing.

An example of a sensor network is shown in Figure 1. There are four event areas of interest to be
monitored (the big black circles), denoted as A, B, C, and D respectively. A cluster of sensor nodes
(the small circles filled with black color) are deployed in each event area. Suppose an event occurs in
area A. The CH in area A (the small circle filled with red color) generates the event report, collects the
partial signatures from t participating nodes in area A, and computes the final signature (called the
cluster signature) for the report by using the t partial signatures. Then, the CH transmits the event
report with its cluster signature to the BS through some forwarding nodes (the small blue circles).
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Figure 1. An example of a sensor network.

3.2. Threat Models

Assume that sensor networks have a short safe bootstrapping phase right after network
deployment, during which the adversary cannot compromise nodes or launch attacks. Subsequent to
that, the adversary can compromise multiple nodes. However, the authors assume that the BS will not
be compromised because it is usually well-secured. When a node is compromised, all the information
it holds will also be compromised, and the adversary can take full control of it to launch different kinds
of attacks. The following attacks are the focus of this paper:

• False report injection attack [5]. The adversary might control the compromised nodes to inject
forged event reports, which might cause false alarms as well as the exhaustion of the constrained
resources of the network.

• Report disruption attack [6]. The compromised sensor node might contribute invalid endorsement
to the event report. As a result, the report of a real event will be dropped by some forwarding
node or the BS. Additionally, the compromised sensor node might refuse to participate in report
generation, thus the CH cannot collect enough legitimate endorsements for the event report.
Furthermore, if a CH node is compromised, it might refuse to send out the signed event report
or send out an event report with an illegitimate signature, resulting in the real event not being
reported to the BS.

• Selective forwarding attack [6]. The compromised forwarding node might selectively drop
the legitimate reports, which will severely damage data availability and disrupt the event
report service.

The study objective is to design an effective scheme to mitigate the impact of these attacks.
The authors assume that most t − 1 sensor nodes in an event area can be compromised in the
study models, otherwise the adversary can successfully generate fake reports to fool the BS with
non-existing events. Additionally, the authors assume that at least t sensor nodes in an event area are
not compromised, otherwise the CH cannot generate legitimate reports for the real events. Therefore,
at least 2t − 1 sensor nodes in an event area should be deployed—Nc ≥ 2t − 1.

4. The Proposed Scheme

4.1. Scheme Overview

A series of public key-based security mechanisms for WSNs is proposed in this paper, as well
as finally developing a public key-based authentication and en-route filtering scheme, called PKAEF.
This sub-section introduces the design ideas for these mechanisms in PKAEF.
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4.1.1. Design of Mechanism for Filtering False Report

The basic idea of the mechanism for filtering a false report is to generate a cluster signature for
each event report which is cosigned by t cluster nodes in that event area so that any forwarding node
with the cluster public key can verify the signed event report and drop the false one.

To reduce the length of a signed report, the elliptic curve Pintsov–Vanstone signature scheme
(ECPVSS) [21,22] is adopted, which is a message recovery signature scheme based on ECC (elliptic
curve cryptography). Using ECPVSS, the signer will pick a random k and use kP for encrypting part of
the report. A different random k is required for a different signature, otherwise, the adversary might
easily infer the private key by capturing any two signatures generated from the same k. PDF [19]
adopts the joint Shamir random secret sharing scheme [23] to share a different random k among
the group of sensors each time, which will incur high communication overhead and time overhead.
To address this problem, this study let each participating node directly pick a random kj and provide
kjP to jointly construct kP. Compared to PDF, this method is simpler and incurs less communication
consumption and time overhead.

Due to the threat of node compromise, any single node cannot be trusted to hold the private key
used for signing the event reports. Therefore, this study adopts Shamir’s secret sharing technique [23]
to share the private key. To confine the impact of a compromised node to its vicinity, the authors
let each cluster share a unique private key (called a cluster private key) among the sensor nodes in
that cluster (each cluster node holds a unique share of the cluster private key). Any t sensor nodes
in a cluster can reconstruct the cluster private key collaboratively. Therefore, each event report will
be cosigned by t cluster nodes in that event area. As long as less than t sensor nodes in a cluster
are compromised, the adversary cannot obtain the cluster private key and cannot generate a valid
cluster signature.

4.1.2. Design of Mechanism for Resisting Report Disruption Attacks

The adversary might launch the report disruption attacks by controlling the compromised nodes to
contribute invalid partial signatures. When a participating node provides an invalid partial signature,
it will result in an invalid cluster signature being generated for the event report. Thus, the event
report will be dropped by some forwarding node and unable to reach the BS. The existing PKC-based
schemes do not provide any measure to verify the partial signatures. To defend against such attacks,
the authors propose a verification mechanism to detect the invalid partial signatures, thereby avoiding
generating an invalid cluster signature for the event report.

The adversary might control a compromised node to refuse to participate in report generation, in
an attempt to disturb the generation of a cluster signature. Once the CH detects that a participating
node refuses to participate in report generation, or provides an invalid partial signature, it needs to
request a trusted non-participating cluster node to join in report generation. Therefore, a substitution
scheme is designed to ensure that enough cluster nodes are maintained to participate in report
generation. Furthermore, if a CH node is compromised, it might refuse to send out the signed event
report or send out an event report with an illegitimate signature, in an attempt to make the event
report unable to reach the BS. The existing PKC-based schemes (DSEDA and PDF) do not provide any
solution to such attacks. To resist such attacks, the authors propose an effective solution. Once the CH
node has any malicious behavior, a new CH will substitute it and regenerate a signed event report.

4.1.3. Design of Mechanism for Resisting Selective Forwarding Attacks

The multi-path routing protocol in [6] incurs high communication and computation overhead,
while the report forwarding method in LEDS [11] incurs high computation overhead. To overcome
these drawbacks, the authors have designed an effective report forwarding protocol that can defend
against selective forwarding attacks with less communication and computation overhead. The main
idea is that the sender first selects one upstream node to forward the report and, if the selected
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upstream node does not forward the report, the sender will inform another upstream node to verify
and forward the report. Unless all the upstream nodes of the sender are compromised, the legitimate
report ultimately will be forwarded to the BS. Compared with the methods in [6,11], the current scheme
can reduce computation and communication overhead by reducing the number of nodes that verify
and forward the report at each hop.

4.1.4. Design of Mechanism for Malicious Nodes Detection and Isolation

To mitigate the impact of malicious nodes, the authors propose a trust value-based approach to
identify and isolate the malicious nodes in the network. Each node establishes an empty isolation list
and a trusted neighbor list to store the trust values of its neighbors, in which the trust values of all
its neighbors are initialized to 1. The trust value of a node decides whether this node will be selected
to participate in report generation or forward the reports. A node is considered to be trusted if its
trust value is higher than the predefined threshold TTv; otherwise, it is suspicious. When a node vi
detects malicious behavior of its neighbor vk, it will decrease the trust value of vk (denoted as TVk) in
its trusted neighbor list. When vi finds that TVk drops below TTv, then vi will delete vk from the trusted
neighbor list and add it into the isolation list to isolate it (vi will not transmit any message to vk or
process any message from it).

The reduction in trust values according to different malicious behaviors can be described as
follows:

• During the report generation phase, if a participating node vj refuses to provide kjP or a partial
signature, or provides an incorrect partial signature, then each cluster node will deduct 0.2 from
TVj, and vj will be substituted.

• During the report generation phase, if the CH node vi refuses to broadcast X(R), or maliciously
accuses any participating node of not providing kjP or a partial signature, or providing an incorrect
partial signature, or vi refuses to send out the signed report, or sends out a report with an incorrect
cluster signature, then each cluster node will deduct 0.2 from TVi, and a new CH node will be
selected to regenerate a signed event report.

• If a forwarding node vt detects a false report sent by vk, then vt will deduct 0.1 from TVk.
• If a forwarding node vt maliciously refuses to forward the report from vk, then vk will deduct 0.1

from TVt.
• If a cluster node vk transmits a forged report with an incorrect cluster signature to the forwarding

node vt, then vt and each cluster node will deduct 0.1 from TVk.

Note: (1) The first two malicious behaviors are more serious than the others, so a higher value
should be deducted from the trust value of the malicious node correspondingly. (2) The reduction of
trust value for a malicious behavior can be set according to the requirement of a specific application.
As an example, if the network has low security requirements, a small value (0.02 for example) can be
deducted from the trust value for a malicious behavior.

Next, the scheme will be introduced in detail.

4.2. Deployment and Initialization

A cluster of sensor nodes and a group of forwarding nodes are prepared for each event area to be
monitored. The BS distributes a unique cluster ID for each cluster and generates a secret polynomial
fSi(x) = a0 + a1x + a2x2 + . . . + at−1xt−1 for each cluster, where a0, . . . , at−1 are random numbers picked
in the finite field Fp (p is an odd prime number) and Si is the cluster private key which can be picked as
Si = a0. Therefore, the corresponding cluster public key should be Qi = SiP, where P is the base point of
order q in the group of points of the elliptic curve E(Fp). Subsequent to that, the BS calculates the secret
share of Si (denoted as xj = fsi(IDj)) for each node vIDj in the cluster, then calculates xjP which will be
used for verifying the partial signature of vIDj. Prior to network deployment, each cluster node vIDj
has to be preloaded with its unique node ID (IDj), cluster ID, cluster public key Qi, its secret share xj,
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xkP of each other node vIDk in the same cluster, the elliptic curve domain parameters, and the system
parameters (t and TTv). The forwarding nodes will be preloaded with its unique node ID, cluster ID,
Qi, the elliptic curve domain parameters, and the system parameters.

Note: (1) Each cluster node stores xkP of each other node vIDk in the same cluster so it can verify
the partial signature of vIDk. (2) Having each cluster node store xkP rather than xk is to prevent the
adversary from deriving xk from xkP. (3) Each cluster node holds a unique share of the cluster private

key Si, and any t cluster nodes can jointly reconstruct Si by using a Lagrange interpolation Si =
t

∑
j=1

ljxj,

where lj = ∏t
k=1,k 6=j

IDk
IDk−IDj

is the Lagrange coefficient. However, it is impossible to reconstruct Si

with fewer than t cluster nodes.
Following network deployment, each node calculates its level (its distance to the BS) as follows:

the BS broadcasts a CL message including its level Lev_BS (Lev_BS = 0), asking each node to calculate
its level. Once a node vi without an assigned level hears this message, it assigns its level Lev_i to be
the level in the CL message plus one. Then, vi broadcasts the CL message with its own level. The
CL message floods down until all nodes have been assigned a level. Subsequent to that, each node
broadcasts its basic information {node ID, cluster ID, level, location} which will be stored by all of
its neighbors. Then, each node transmits its location to the BS. Additionally, each node establishes
an empty isolation list and a trusted neighbor list in which the trust values of all its neighbors are
initialized to 1. Assume that the above procedure is safe during which no node is compromised. To
further improve the security of the keys, the cluster public key and the share of cluster private key on
each node can be updated periodically. One can refer to the literature [26,27] for the key management
and distribution methods.

4.3. Report Generation

During this phase, the authors will discuss how the cluster nodes jointly generate a signed report
for an event.

Suppose that there are Nc (Nc ≥ 2t − 1) cluster nodes in an event area, all of which can detect
any event in that event area. When an event occurs, t of them should participate in report generation.
Then, t out of Nc cluster nodes for generating the report should be chosen. Ferng et al. [1] designed a
selection method, however, this method requires that the event values observed by different cluster
nodes must be exactly the same but, in fact, the event values observed by different cluster nodes
usually have some deviations. Thus, the t participating nodes selected by different cluster nodes
might be different, which will affect the generation of the event report. To overcome this drawback, an
improved method for selecting participating nodes is designed in the current study, as follows.

When an event occurs, each cluster node in the event area sets a random timer. Upon the timer
expiration, it will broadcast its observed values of the event in the form of {E, Le, te}, where E is
the event type, Le is the event location, and te is the event time. When another cluster node finds
that the broadcast values are consistent with what it observes within the predefined error range, it
will record them and cancel its own timer. Subsequent to that, each cluster node sets a timer TRG,
indicating that the report generation phase starts. The CH should send out the signed report before
the timer expires. When a cluster node hears the correct signed report sent by the CH, it will cancel
the timer TRG, indicating that the report generation phase ends. Additionally, each cluster node sets
a variable Fail_flag, which is initialized to false, indicating that the report generation does not fail.
Then, each cluster node detecting the same event uses a hash function to map {E, Le, te} to a reference
value hv within the same range of cluster node IDs. Then, the t trusted cluster nodes, whose IDs are
closer to hv than the others, are picked to participate in report generation, among which the node
whose ID is closest to hv becomes the CH. Each cluster node can determine the t IDs because each
cluster node knows the range of cluster node IDs in the same event area.

Following selection of the t participating nodes, each cluster node prepares an original report
for the event in the form of M = {CID, IDch, E, Le, te}, where CID is the cluster ID, and IDch is ID of
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the CH. Then, the event report M is divided into two parts: C and V. C holds {IDch, E, Le}, while V
holds {CID, IDch, Le, te}, for example. Since some redundant information is included in C, |C| + |V|
≥ |M|. Suppose the t participating nodes are vID1, vID2, . . . , vIDt, among which vIDi is the CH. Next,
the t participating nodes perform the following steps to cosign the original event report:

Step 1. The t participating nodes jointly construct kP for encrypting C. Each participating node
vIDj (1 ≤ j ≤ t) picks a random kj in [1, q − 1] (q is the order of the elliptic curve) and sends kjP to the
CH node vIDi rather than explicit kj, so that vIDi cannot derive kj from kjP.

Step 2. When a participating node does not send kjP to vIDi, go to Step 5. Otherwise, vIDi

computes R = kP =
t

∑
j=1

k jP and broadcasts X(R) to the participating nodes, where X(R) is the value of

the X-coordinate of R. Note that if vIDi refuses to broadcast X(R), it will not obtain partial signatures
from the other participating nodes. Then, it might broadcast a substitution message, or refuse to send
out the report, or send out a report with an incorrect signature. However, all these malicious behaviors
will be detected by the other cluster nodes.

Step 3. Each participating node vIDj uses X(R) to generate e = ENC(X(R), C) and d = H(e||V),
where H is a hash function (SHA–1 for example), || denotes concatenation, and the ENC denotes
a symmetric-key encryption algorithm (AES, DEA, and RC5 for example). Subsequent to that, vIDj
computes its share of the cluster signature (partial signature) σj = xjljd + kj and sends it to vIDi.
Note that during the report generation phase, each cluster node will listen to and temporarily store the
information sent by the other cluster nodes, which will be used to identify malicious behaviors.

Step 4. When vIDi detects a partial signature σj, which is not from any of the t participating nodes,
it will drop that σj immediately. Otherwise, vIDi should verify σj and drop the incorrect one in time.
The authors have designed a verification scheme as follows:

1© Compute σjP (i.e., σjP = (xjljd + kj)P = xjljdP + kjP);

2© Compute xjljdP + kjP by using xjP stored locally and kjP received from vIDj in Step 1;

3© Compare the results in 1© and 2©. When the result in 1© is equal to that in 2©, σj is considered to
be correct, otherwise σj is considered to be incorrect.

When vIDi gets t correct partial signatures, go to Step 6. Otherwise, go to Step 5.
Step 5. Suppose that there are z (1 ≤ z < t) participating nodes to be substituted because they

provided incorrect σj, or they did not provide kjP or σj. Then, what will substitute the z nodes to
participate in report generation? The authors have designed a substitution scheme as follows.

First, vIDi broadcasts a substitution message SUBMSG, embedded with IDi, the reason code
rcd (rcd is 0 if the z participating nodes will be substituted due to failure to provide kjP, or 1 if the
z participating nodes will be substituted because they did not provide their partial signatures or
provided incorrect partial signatures), z, and the IDs of the z participating nodes to be substituted.
When a cluster node receives the SUBMSG message, it executes Algorithm 1 to process the message.
Then, vIDi deducts 0.2 from the trust value of each participating node vIDm to be substituted. When
TVIDm falls below TTv and the number of ALARM messages for vIDm (denoted as NAIDm) is lower
than Nc/2, vIDi will broadcast an ALARM message (embedded with IDi and IDm) for vIDm to inform
other cluster nodes that vIDm is suspicious. vIDi, and each cluster node that hears the ALARM message,
executes Algorithm 2 to process the ALARM message. When the number of trusted non-participating
cluster nodes is less than z, which means there are not enough trusted participating nodes to cosign the
report, then vIDi will set Fail_flag = true, cancel the timer TRG, and stop generating the signed report.
Otherwise, the z trusted non-participating nodes whose IDs are closer to hv than the others will be
selected to participate in report generation. When a new participating node does not send kjP to vIDi,
vIDi performs the substitution scheme again. Otherwise, after receiving all the kjP from all the z new

participating nodes, vIDi recomputes R = kP =
t

∑
j=1

k jP and broadcasts X(R) to the current participating

nodes. Then, each current participating node recomputes its partial signature σj and sends it to vIDi.
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Following reception of a new partial signature from a current participating node, vIDi verifies it. When
a current participating node does not provide its new partial signature or provides an incorrect partial
signature, vIDi performs the substitution scheme again. Otherwise, go to Step 6.

Step 6. vIDi sums the t correct partial signatures to produce the cluster signature: σ =
t

∑
j=1

σj mod

q(σ = (
t

∑
j=1

xjljd +
t

∑
j=1

k j) mod q = (Sid + k) mod q). Finally, vIDi sends the signed report {V, e, σ} to the

BS through multi-hop routing.
When a cluster node vk finds that the signed report sent by the CH is false (according to the steps

S1–S4 in Section 4.4), or after the timer TRG ends, vk finds Fail_flag = false but does not hear the signed
report sent by the CH, then vk performs Algorithm 3 to substitute the CH and to select a new CH to
regenerate a signed report.

Algorithm 1. Processing of SUBMSG Message

/*Upon a cluster node vx receiving a SUBMSG message from the CH node vIDi*/
flg = false; // flg records whether the accusation in the SUBMSG message is true.
if (rcd = 0)

if (the z nodes to be substituted did not send their kjP to vIDi) flg = true;
else if (rcd = 1)

if (the z nodes to be substituted did not provide their σj or provided incorrect σj) flg = true;
if (flg = false)

Perform Algorithm 3 to substitute vIDi;
else {

for (each node vIDm to be substituted) {
TVIDm = TVIDm − 0.2;
if (TVIDm < TTv && NAIDm < Nc/2) {

Broadcast an ALARM message for vIDm;
vx, and each cluster node that hears the ALARM message, executes Algorithm 2;
}

}//end for
if (the number of trusted non-participating cluster nodes < z) {

Fail_flag = true; // Report generation fails.
Cancel the timer TRG;

}
else {

Select the z trusted non-participating cluster nodes, whose IDs are closer to hv than the others, to
participate in report generation;

if (vx is a new participating node) {
Pick kx in [1, q − 1] and send kxP to vIDi;
Compute σx after receiving X(R);
Send σx to vIDi;

}
else if (vx is a participating node that has not been substituted) {

Recompute σx after receiving X(R);
Send σx to vIDi;

}
}

}



Sensors 2018, 18, 3829 11 of 23

Algorithm 2. Processing of ALARM Message

/*Upon a cluster node vx receiving an ALARM message for vy broadcast by node vz*/
if (it is the first ALARM message sent by vz for vy)

NAy = NAy + 1;
if (NAy ≥ Nc/2) {

Delete vy from the trusted neighbor list;
Add vy into the isolation list;

}

4.4. Report Forwarding and En-Route Filtering

During this phase, two issues need to be addressed: (1) How to forward the signed report from
the CH node to the BS? (2) How does a forwarding node verify the received report?

To resist selective forwarding attacks, the authors design a forwarding routing protocol.
The sender, which could be a CH or a forwarding node, selects a trusted upstream node (vj for
example) with the highest trust value, and transmits the signed event report to it. Each upstream
node that hears the report will temporarily store the report. Then, the sender overhears the channel
for a while. When the sender finds that vj does not forward the report, it will deduct 0.1 from TVj
and inform another trusted upstream node whose trust value is higher than the others to verify and
forward the report. When TVj falls below TTv, the sender will delete vj from the trusted neighbor list
and add it into the isolation list. Unless all the trusted upstream nodes of the sender are compromised,
the legitimate report will ultimately be forwarded to the BS.

Algorithm 3. Substitution of Cluster Head

/*Substitution of the cluster head vIDi on a cluster node vx*/
TVIDi = TVIDi − 0.2;
if (TVIDi < TTv && NAIDi < Nc/2) {

Broadcast an ALARM message for vIDi;
vx, and each cluster node that hears the ALARM message, executes Algorithm 2;

}
Reset the timer TRG;
Select the trusted non-participating cluster node, whose ID is closer to hv than the others (vt for example), to
substitute vIDi;
Select the current participating node whose ID is closest to hv (vm for example) as the new CH;
if (vx is exactly vm) {

if (vt does not provide ktP)
Perform the proposed substitution scheme in Step 5;

else {// vx has stored the kjP of the other participating nodes when they sent kjP to vIDi.
Compute R and broadcast X(R);
Receive and verify each new σj;
if (some current participating nodes do not provide their new σj or provide incorrect σj)

Perform the proposed substitution scheme in Step 5;
}

}
else if (vx is exactly vt) {

Pick kx in [1, q − 1] and send kxP to vm;
Compute σx after receiving X(R) from vm;
Send σx to vm;

}
else if (vx is a participating node that has not been substituted) {

Recompute σx after receiving X(R) from vm;
Send σx to vm;

}
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When a forwarding node vt receives a signed report {V, e, σ} from vk, where V = {CID, IDch, Le, te},
it will verify the report and drop the false one as follows:

S1. Check if vt has stored the pubic key QCID of cluster CID; otherwise, drop the report and go to S5.
S2. Check the freshness of the report with the help of te in the report; otherwise, drop the report and

go to S5.
S3. When vt is a neighbor of the CH node vIDch, vt verifies the legitimacy of vIDch’s location LIDch

stored locally by checking that d(Le, LIDch) ≤ Rs. Otherwise, vt drops the report and goes to S5.
S4. Compute d = H(e||V), R = σP − dQCID, and C = ENC−1(X(R), e), where ENC−1 denotes a

decryption operation. Then, check that the {IDch, Le} abstracted from C are the same as those in
the report; otherwise, drop the report and go to S5.

S5. When the report is dropped, vt deducts 0.1 from TVk. When TVk falls below TTv, vt deletes vk
from the trusted neighbor list and adds it into the isolation list.

S6. When the report passes all the above checks, vt sends the report to the next hop by using the
proposed forwarding routing protocol.

When a cluster node va sends out a signed report, the selected forwarding node will verify the
report and, at the same time, each cluster node vb that hears the report will also verify the report
according to the steps S1–S4. When vb finds that the report is false, it will deduct 0.1 from TVa.
When TVa falls below TTv and NAa is lower than Nc/2, then vb will broadcast an ALARM message
for va. vb, and each cluster node that hears the ALARM message, executes Algorithm 2 to process
the ALARM message. When NAa is greater than or equal to Nc/2, vb will delete va from the trusted
neighbor list and add it into the isolation list.

4.5. Report Verification on the Base Station

Upon receiving a signed report {V, e, σ}, where V = {CID, IDch, Le, te}, the BS verifies the signed
report and recovers the original event report M from the legitimate signed report as follows:

• First, it checks the freshness of the report with the help of te.
• Next, it checks that d (Le, LIDch) ≤ Rs, where LIDch is the location of vIDch stored in the BS.
• It then verifies the cluster signature in the report using the pubic key QCID of cluster CID. It first

computes d = H(e||V), R = σP − dQCID, and C = ENC−1(X(R), e), then checks that the {IDch, Le}
abstracted from C are the same as those in the report.

When any check is incorrect, the report will be dropped immediately. Otherwise, the BS recovers
the original event report M = {CID, IDch, E, Le, te} from C and V.

5. Performance Analysis

The security performance, communication overhead, and storage overhead for DSEDA [1],
PDF [19], and PKAEF are analyzed and compared in this section.

5.1. Security Analysis

The authors will compare the security performance of DSEDA, PDF, and PKAEF according to the
following aspects: (1) security of private key; (2) resilience to false report injection attacks; (3) resilience
to report disruption attacks launched by a non-CH node (a cluster node which is not a CH node);
(4) resilience to report disruption attacks launched by a CH node; (5) resilience to selective forwarding
attacks; (6) malicious nodes detection and isolation.

Theorem 1. PKAEF has a more secure private key than DSEDA and PDF, and PDF has a more secure private
key than DSEDA.
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Proof. Regarding DSEDA, each CH node holds a private key used for signing the event reports.
The adversary just needs to compromise a CH to obtain its private key and it is easy for the adversary
to find and capture a CH because the CHs and sensor nodes are heterogeneous in DSEDA. Concerning
PDF, all nodes in the network share a unique system private key based on the Shamir’s secret sharing
technique. Thus, the adversary needs to compromise t nodes to derive the system private key.
Therefore, PDF has a more secure private key than DSEDA, however, the adversary just needs to
compromise any t nodes anywhere in the network to derive the system private key in PDF. Looking at
PKAEF, each cluster private key is shared by the sensor nodes in the cluster. Thus, to derive a cluster
private key, the adversary has to compromise t sensor nodes in that cluster rather than in the whole
network. Therefore, PKAEF has a more secure private key than PDF. Finally, PKAEF has a more secure
private key than DSEDA and PDF, and PDF has a more secure private key than DSEDA. �

Theorem 2. PKAEF is more resilient to false report injection attacks than PDF and DSEDA, and PDF is more
resilient to such attacks than DSEDA.

Proof. Regarding PDF, the adversary has to compromise at least t sensor nodes in the network to
deduce the system private key; therefore, PDF can resist false report injection attacks when less than t
sensor nodes in the network are compromised. Looking at PKAEF, the adversary has to compromise
at least t sensor nodes in the same cluster to derive the cluster private key; therefore, PKAEF can
resist false report injection attacks when less than t sensor nodes in the same cluster are compromised.
It is generally more difficult for the adversary to capture t sensor nodes in the same cluster than to
capture t sensor nodes in the whole network; therefore, PKAEF is more resilient to false report injection
attacks than PDF. Concerning DSEDA, if a CH node is compromised it can successfully forge false
reports with legitimate signatures using its private key. Since the CHs are fixed after deployment
and the CHs and sensor nodes are heterogeneous, the adversary easily can find and capture the CHs;
therefore, DSEDA is generally more vulnerable to false report injection attacks than PDF and PKAEF.
To conclude, PKAEF is more resilient to false report injection attacks than PDF and DSEDA, and PDF
is more resilient to such attacks than DSEDA. �

Theorem 3. PKAEF is more resilient to report disruption attacks launched by a non-CH node than DSEDA,
and PDF cannot resist such attacks.

Proof. Regarding DSEDA, if a compromised non-CH node participating in report generation provides
a secret share with an incorrect MAC, or refuses to provide a secret share, then an alternative secret
share from a non-participating node will be sent to the CH. The CH cannot verify the correctness
of a secret share, however. Thus, a compromised non-CH node participating in report generation
might forge a wrong secret share and generate a correct MAC for it to pass the MAC verification
of the CH. When the report with wrong secret shares reaches the BS, the BS will recover the wrong
event information. To summarize, DSEDA only can combat report disruption attacks launched by a
non-CH node to a certain extent. PKAEF provides a verification mechanism to detect the invalid partial
signatures and a substitution scheme to maintain enough participating nodes for report generation.
When a compromised non-CH node participating in report generation refuses to provide kjP or a
partial signature, or provides an incorrect partial signature, then a non-participating cluster node will
substitute it to participate in report generation. Therefore, PKAEF is more resilient to report disruption
attacks launched by a non-CH node than DSEDA. PDF does not provide any measure to combat report
disruption attacks launched by a non-CH node, so it cannot resist such attacks. �
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Theorem 4. PKAEF can resist report disruption attacks launched by a CH node, while DSEDA and PDF
cannot resist such attacks.

Proof. Looking at PKAEF, if a CH node refuses to send out the signed event report or sends out an
event report with an illegitimate signature, then a new CH will substitute it, and a new signed event
report will be generated. Therefore, PKAEF can resist report disruption attacks launched by a CH
node. DSEDA and PDF, however, do not provide any measure to combat such attacks, so they cannot
resist such attacks. �

Theorem 5. PKAEF can resist selective forwarding attacks, while DSEDA and PDF cannot resist such attacks.

Proof. PKAEF provides an efficient report-forwarding protocol. When the selected forwarding node
does not forward the report, the sender will try other trusted upstream nodes until the report is
forwarded; therefore, PKAEF can resist selective forwarding attacks. DSEDA and PDF, however, do
not provide any mechanism to combat selective forwarding attacks, so they cannot resist such attacks.
�

Theorem 6. PKAEF can detect and isolate the malicious nodes while DSEDA and PDF cannot.

Proof. PKAEF provides a trust value-based approach to detect and isolate the malicious nodes. Looking
at PKAEF, each node establishes a trusted neighbor list to store the trust values of its neighbors. When
a node has any malicious behavior, its trust value will be reduced, and it will be isolated if its trust
value falls below the predefined threshold. DSEDA and PDF, however, do not provide any mechanism
to detect and isolate the malicious nodes. �

Finally, the security performance of DSEDA, PDF, and PKAEF is summarized in Table 1, in which
“Poor” means the scheme cannot resist such attacks, while “High”, “Moderate” and “Low” indicate
the relative ability of these schemes to resist such attacks.

Table 1. Comparison of security performance.

Security Performance PKAEF PDF DSEDA

Security of private key High Moderate Low
Resilience to false report injection attacks High Moderate Low

Resilience to report disruption attacks launched by a
non-cluster head (CH) node High Poor Low

Resilience to report disruption attacks launched by a CH node High Poor Poor
Resilience to selective forwarding attacks High Poor Poor
Malicious nodes detection and isolation Yes No No

PKAEF (public key-based authentication and en-route filtering scheme); PDF (public-key based false data filtering scheme);
DSEDA (digital signature assisted end-to-end data authentication scheme).

5.2. Overhead Analysis

5.2.1. Communication Overhead

1. Communication overhead for report generation

The communication overhead for report generation is measured as the message overhead during
the report generation phase. A 160-bit elliptic curve is chosen for DSEDA, PDF, and PKAEF. Then,
the lengths of the base point, public key, private key, and the order are 40 bytes, 40 bytes, 20 bytes,
and 20 bytes respectively.

During the report generation phase in DSEDA, each of the T participating sensor nodes needs to
send its {Eu, u, MACKu,CH(Eu, u)} to the CH. Suppose that the lengths of node ID, Eu, and MAC are
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1 byte, 8 bytes, and 8 bytes, respectively, and (T, t) = (6, 5). Then, the total message overhead for report
generation in DSEDA is 102 bytes.

Regarding PDF, the message overhead for report generation includes four parts: (a) to share a
random k, each of the t participating nodes needs to send a share of secret fsi(sj) to each of the other t − 1
participating nodes. The message overhead is t × (t − 1) × 20 bytes. (b) The t − 1 participating nodes
except the CH, need to send kiliP to the CH. The message overhead is (t− 1)× 40 bytes. (c) The CH needs
to broadcast R. The message overhead is 40 bytes. (d) The t − 1 participating nodes, except the CH, need
to send their partial signatures to the CH. The message overhead is (t − 1) × 20 bytes. When t = 5, as set
in DSEDA, then the total message overhead for report generation in PDF is 680 bytes. When PDF uses
pre-computation to reduce the communication overhead for k sharing, then the message overhead in part
(a) can be saved, and the total message overhead for report generation will be 280 bytes.

Regarding PKAEF, the message overhead for report generation includes four parts: (a) a cluster node
broadcasts its observed event values {E, Le, te} for selecting participating nodes. (b) The t− 1 participating
nodes except the CH, need to send kjP to the CH. The message overhead is (t − 1) × 40 bytes. (c) The CH
needs to broadcast X(R). The message overhead is 20 bytes. (d) The t − 1 participating nodes, except the
CH, need to send their partial signatures to the CH. The message overhead is (t− 1)× 20 bytes. When the
lengths of E, Le, and te are 4 bits, 20 bits, and 4 bytes respectively, and t = 5 as set in DSEDA, then the total
message overhead for report generation in PKAEF is 267 bytes.

It can be seen that the message overhead for report generation in PDF is the highest, most of
which is incurred by the sharing of k. PKAEF reduces the message overhead for report generation
by making each participating node pick a random kj rather than k sharing and, by making the CH
broadcast X(R) rather than R. The message overhead for report generation in DSEDA is the lowest,
since the event report in DSEDA is signed by the CH rather than the t participating nodes, however,
that the private key is kept by a single node will result in poor security of the private key.

Note, when the adversary launches the report disruption attacks, DSEDA will incur an
additional message overhead for compensating the lack of secret shares, and PKAEF will incur an
additional message overhead for performing the substitution scheme or selecting a new CH. However,
the additional communication overhead in DSEDA or PKAEF is acceptable, since it is associated with
great advantages in data availability and security strength.

2. Communication overhead for forwarding a report

The communication overhead for forwarding a report is affected by the length of the signed report
message. The longer the length of the signed report message, the higher the communication overhead
for forwarding a report at each hop.

Suppose the format of the original event report in PDF is the same as that in PKAEF, M = {CID,
IDch, E, Le, te}, and each original event report M is divided into C = {IDch, E, Le} and V = {CID, IDch,
Le, te}. Suppose that the lengths of CID, IDch, E, Le, and te are 4 bits, 8 bits, 4 bits, 20 bits, and 32 bits
respectively, then the size of M is 9 bytes. The 32-bit RC5 algorithm is adopted as the symmetric-key
encryption algorithm in DSEDA, PDF, and PKAEF. Then, the length of a signed report message in PDF
and PKAEF is 39 bytes (including an extra 3-byte header). CID is not necessary in DSEDA, thus the
format of the event report in DSEDA could be S = {IDch, E, Le, te}, and the size of S is about 8 bytes.
DSEDA utilizes the bloom filter to reduce the size of IDs of the T participating nodes to 3 bytes and
adopts the partial message recovery algorithm to reduce the signature overhead to 26 bytes. Suppose
that the length of secret share Su is 8 bytes and (T, t) = (6, 5). Then, the length of a signed report
message in DSEDA is 80 bytes (including an extra 3-byte header). Letting (T, t) = (5, 4), then the length
of a signed report message in DSEDA is 72 bytes (including an extra 3-byte header).

It can be seen that the length of a signed report message in DSEDA is longer than that in PDF or
PKAEF, which will result in higher communication overhead for forwarding a report at each hop.
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5.2.2. Storage Overhead

Compare the storage overhead of DSEDA, PDF, and PKAEF. Here, the storage overhead of the
elliptic curve domain parameters and the system parameters is overlooked, which are almost the
same for all three algorithms. Thus, the key storage overhead is the main consideration. Assume that
DSEDA, PDF, and PKAEF are all applied in the sensor networks shown in Figure 1. Suppose that there
are Nc sensor nodes in a cluster, and a 160-bit elliptic curve is chosen for DSEDA, PDF, and PKAEF.

Regarding DSEDA, each sensor node stores two unique symmetric keys shared with the sink and
one symmetric key shared with the CH. Each CH stores two symmetric keys shared with the sink, Nc
− 1 symmetric keys shared with the sensor nodes in the cluster, and a public/secret key pair. Suppose
that the length of a symmetric key is 8 bytes, then the average key storage overhead of a cluster node in
DSEDA is ST_DSEDA = (3 × (Nc − 1) × 8 + (Nc − 1 + 2) × 8 + 40 + 20)/Nc bytes = 32 + 44/Nc bytes.

Regarding PDF, each cluster node stores the system public key (40 bytes) and its secret share
of the system private key (20 bytes). Furthermore, when PDF uses pre-computation to reduce the
communication overhead for k sharing, then each cluster node is preloaded with the shares of different
k during the deployment. Suppose that each cluster node stores the shares of different k for generating
m reports, then the corresponding storage overhead is m × Nc × 20 bytes. Thus, the total storage
overhead of a cluster node in PDF is ST_PDF = 60 + m × Nc × 20 bytes. When PDF does not use the
pre-computation method, then ST_PDF = 60 bytes.

Regarding PKAEF, each cluster node stores the cluster public key (40 bytes), its secret share of
cluster private key (20 bytes), and xkP of the other Nc − 1 cluster nodes ((Nc − 1) × 40 bytes). In total,
the key storage overhead of a cluster node in PKAEF is ST_PKAEF = 40 + 20 + (Nc − 1) × 40 bytes = 20
+ Nc × 40 bytes.

Generally, DSEDA has a higher storage efficiency than PDF and PKAEF, but this is at the expense
of the security of the private key. When PDF uses the pre-computation method, then PKAEF is more
storage-efficient than PDF. Otherwise, PDF is more storage-efficient than PKAEF, but at the expense of
higher communication overhead for report generation. Looking at PKAEF, storing xkP of the other
nodes in the cluster will increase the storage overhead, but this is desirable since it supports PKAEF to
verify partial signatures.

Finally, the comparison results of overhead are provided in Table 2, in which more “*” indicates
higher overhead, and the key storage overhead of PDF is “**” when PDF does not use the
pre-computation method, or “****” when PDF uses the pre-computation method.

Table 2. Comparison of overhead.

Overhead PKAEF PDF DSEDA

Communication overhead for report generation ** *** *
Communication overhead for forwarding a report * * **

Key storage overhead *** **/**** *

PKAEF (public key-based authentication and en-route filtering scheme); PDF (public-key based false data filtering scheme);
DSEDA (digital signature assisted end-to-end data authentication scheme).

6. Performance Evaluation

The authors evaluate the performance of PDF [19], DSEDA [1], and PKAEF through simulation
experiments based on the WSN simulator in the literature [12], which was developed in C++ language
on a PC with dual-core 1.6 GHz CPU and 8 GB memory. The authors simulated a network with two
event areas, and randomly deployed 10 sensor nodes in each event area (Nc = 10). According to the
distance from the center of the event area to the BS, two different scenarios were simulated. In Scenario
1, the distance from the center of the event area to the BS was 300 m, and 20 forwarding nodes were
deployed between the BS and each event area. In Scenario 2, the distance from the center of the event
area to the BS was 600 m, and 40 forwarding nodes were deployed between the BS and each event
area. The other simulation parameters are provided in Table 3.
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Table 3. Simulation parameters.

Parameter In Scenario 1 In Scenario 2

Communication range Rc 80 m 80 m
Sensing range Rs 40 m 40 m

T in DSEDA 5 6
t 4 5

Power consumption of transmitting 1 byte 16.25 uJ 16.25 uJ
Power consumption of receiving 1 byte 12.5 uJ 12.5 uJ

In the simulation, the SECG recommended 160-bit elliptic curve (secp160r1) was selected and the
32-bit RC5 algorithm was used as the symmetric-key encryption algorithm. The evaluation focuses on
the following aspects: energy expenditure for report generation; performance of false report filtering;
resilience to report disruption attacks; resilience to selective forwarding attacks. All the experiment
results were averaged over 1000 runs.

6.1. Energy Expenditure for Report Generation

The authors compare the performance of PDF, DSEDA, and PKAEF in terms of energy expenditure
for report generation. Since how to select the t participating nodes is not mentioned in PDF, the authors
adopted the same selection method used in PKAEF for PDF in the simulation and overlooked the
energy expenditure incurred by selecting participating nodes for PDF. Moreover, PDF provides two
methods of k sharing: one is to precompute and prestore the shares of k (PDF is denoted as PDF_NSk
in this case), and the other is to distribute the shares of k for each event report (PDF is denoted as
PDF_Sk in this case).

Figure 2a,b shows the results of energy expenditure for generating a signed report in Scenario
1 and Scenario 2, respectively. It can be seen that the energy expenditure of PDF_Sk is the highest
because it requires more energy to distribute the shares of k. DSEDA has the lowest energy expenditure
for report generation. This is because the participating nodes in DSEDA do not sign the report jointly
and the energy expenditure for sending the endorsement information from the participating nodes to
the CH is low. PKAEF is more energy efficient than PDF_NSk, which benefits from broadcasting X(R)
rather than R. These results are consistent with the previous analysis.
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6.2. Performance of False Report Filtering

The authors compare the performance of PDF, DSEDA, and PKAEF on the aspect of false report
filtering. During each experiment, cn cluster nodes in the two event areas were compromised randomly
and each of them injected a forged report into the network. Regarding DSEDA, if the CH was
compromised, it was assumed that the other compromised cluster nodes also could obtain the private
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key of the CH, and then they could forge reports with correct signatures. Concerning PDF, a forwarding
node verifies the signature of a report with the probability of pf. The authors simulated pf = 100%
and pf = 50% for PDF, and PDF is denoted as PDF_100 and PDF_50, respectively. The lengths of a
signed report message in PDF and PKAEF were 39 bytes in both Scenario 1 and Scenario 2, while the
lengths of a signed report message in DSEDA were 72 bytes in Scenario 1 and 80 bytes in Scenario
2. The authors evaluate the performance of false report filtering based on two metrics: the en-route
filtering probability (the percentage of dropped false reports by the forwarding nodes), and the filtering
energy expenditure (the average energy expenditure for filtering out a false report since it is injected
into the network until it is dropped).

Figure 3a,b shows the results of the en-route filtering probability when cn varied from 1 to 20 in
Scenario 1 and Scenario 2, respectively. The authors observe that when cn < t, the en-route filtering
probabilities of PDF_100 and PKAEF are 100%, which are higher than those of PDF_50 and DSEDA.
This is because when cn < t, the adversary cannot infer the private key in PDF_100, PDF_50, and PKAEF.
The forged reports in PDF_100 and PKAEF will be filtered out at their 1-hop forwarding nodes, while
the forged reports in PDF_50 can escape the verification of each forwarding node with a probability of
50%, some of which will reach the BS. Regarding DSEDA, a compromised node might be a CH, then
the adversary can obtain its private key and the forged reports in that cluster will pass the verification
of forwarding nodes and reach the BS. Therefore, the en-route filtering probability of DSEDA is lowest
when cn < t. When cn ≥ t, the en-route filtering probabilities of PDF_100 and PDF_50 are 0%, because
the adversary can infer the system private key in PDF_100 and PDF_50, and thus can forge reports
with correct signatures, all of which will reach the BS. The en-route filtering probabilities of DSEDA
and PKAEF gradually decrease to 0% with the increase of cn. When cn < 6 in Scenario 1 (cn < 9 in
Scenario 2), PKAEF has a higher en-route filtering probability than DSEDA, otherwise DSEDA has
higher en-route filtering probability. However, it should be noted that a random node capture was
adopted in the experiments, which is very beneficial for DSEDA. Since the CHs in DSEDA are fixed,
the adversary would prefer to capture the CHs rather than the non-CH nodes to obtain the private
keys, in fact.
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(a) in Scenario 1; (b) in Scenario 2.

Figure 4a,b shows the results of the filtering energy expenditure when cn varied from 1 to 20 in
Scenario 1 and Scenario 2, respectively. It is observed that when cn < t, PDF_100 and PKAEF have the
same filtering energy expenditures and both outperform PDF_50 and DSEDA because the en-route
filtering probabilities of PDF_100 and PKAEF are highest and the forged reports in PDF_100 and
PKAEF are filtered out within one hop. When cn ≥ t, PDF_50 and PDF_100 have the same filtering
energy expenditures, which are much higher than those when cn < t. This is because the adversary can
infer the system private key in PDF_50 and PDF_100, and the forged reports with correct signatures
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will reach the BS. Regarding PKAEF, the adversary has to randomly compromise more cluster nodes
to infer a cluster private key; therefore, when cn ≥ t, PKAEF has lower filtering energy expenditure
than PDF_50 and PDF_100 before the adversary infers the cluster private key. Furthermore, it can
be seen that the filtering energy expenditure of DSEDA is highest in most cases, even though the
en-route filtering probability of DSEDA is higher than those of PDF_50, PDF_100 and PKAEF. This is
because the length of a signed report message in DSEDA is much longer than that in PDF_50, PDF_100,
and PKAEF.Sensors 2018, 18, x FOR PEER REVIEW    19 of 23 
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6.3. Resilience to Report Disruption Attacks

The authors compare the performance of PDF, DSEDA, and PKAEF in terms of resilience to report
disruption attacks. During each experiment, cn cluster nodes in the two event areas were compromised
randomly. When a compromised cluster node was selected as a participating node, it would launch a
report disruption attack; otherwise it would not launch a report disruption attack. Concerning PDF and
PKAEF, a compromised non-CH node participating in report generation could refuse to provide kjP
or a partial signature or provide an incorrect partial signature. Considering DSEDA, a compromised
non-CH node participating in report generation could contribute a secret share with an incorrect MAC
or refuse to participate in report generation (DSEDA is denoted as DSEDA_MAC in this case), or it
could forge a false secret share Su and generate a correct MAC for it (DSEDA is denoted as DSEDA_Su
in this case). When a CH node was compromised in PDF, DSEDA, and PKAEF, it could refuse to
send out the signed report or send out a report with an incorrect signature. The authors evaluate the
resilience to report disruption attacks according to the proportion of correct signed reports sent out by
the CH.

Figure 5a,b shows the results of the proportion of correct signed reports when cn varied from 1
to 20 in Scenario 1 and Scenario 2, respectively. It can be observed that, when arranged according to
the proportion of correct signed reports, the sequence is PKAEF, DSEDA_MAC, PDF, and DSEDA_Su
from the highest to the lowest in order. PKAEF has the highest proportion of correct signed reports,
which benefits from the verification of partial signatures, the detection of malicious behavior, and the
substitution mechanism. DSEDA_Su has the lowest proportion of correct signed reports because it
does not provide any method to detect false Su. Furthermore, in both scenarios, all the proportions of
correct signed reports gradually decrease to 0% with the increase of cn. This is because, in DSEDA,
if the number of compromised cluster nodes in an event area is greater than Nc−T, then there are
not enough normal cluster nodes to generate correct signed reports; while in PDF and PKAEF, if the
number of compromised cluster nodes in an event area is greater than Nc−t, then there are not enough
normal cluster nodes to generate correct signed reports.
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6.4. Resilience to Selective Forwarding Attacks

The authors compare the performance of PDF, DSEDA, and PKAEF in terms of resilience to
selective forwarding attacks. Additionally, to compare the proposed report forwarding protocol and
multi-path routing protocol, the authors also simulated PKAEF adopting a 2-path routing protocol,
denoted as PKAEF_2MP. During each experiment, fn forwarding nodes around an event area were
compromised randomly. When a forwarding node was compromised, it would drop each report that
passed by it, with the probability of ps. The authors evaluate the resilience to selective forwarding
attacks based on data availability, which is measured as the proportion of available reports (the
proportion of normal reports that can reach the BS). The proportion of available reports is affected by
fn and ps. The larger the fn is, the lower the proportion of available reports is. The larger the ps is, the
lower the proportion of available reports is.

Figure 6a,b shows the proportions of available reports affected by the number of compromised
forwarding nodes in Scenario 1 and Scenario 2, respectively. During the experiments, fn varied from 1
to 20 in Scenario 1, and from 1 to 40 in Scenario 2. The probability ps was set to 0.3 and 0.6 in Scenario
1 and Scenario 2, respectively. Shown in Figure 6, the proportions of available reports of PDF, DSEDA,
PKAEF_2MP, and PKAEF decrease as fn increases. The proportions of available reports of PDF and
DSEDA are almost the same, both lower than those of PKAEF_2MP and PKAEF, as they do not provide
any strategy to resist selective forwarding attacks. The proportion of available reports of PKAEF_2MP
is higher than those of PDF and DSEDA, but lower than that of PKAEF.
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Figure 7a,b shows the results of the proportion of available reports when ps varied from 0.05 to
1.0 in Scenario 1 and Scenario 2, respectively. During the experiments, the number of compromised
forwarding nodes was set to 30% and 60% of the total number of forwarding nodes in Scenario 1 and
Scenario 2, respectively—fn = 6 in Scenario 1 and fn = 24 in Scenario 2. It can be observed that the
proportions of available reports of PDF, DSEDA, PKAEF_2MP, and PKAEF decrease as ps increases.
The proportions of available reports of PDF and DSEDA are almost the same, both lower than those
of PKAEF_2MP and PKAEF, and PKAEF has the highest proportion of available reports. Therefore,
PKAEF is more resilient to selective forwarding attacks than PDF and DSEDA, and this study’s report
forwarding protocol is superior to the 2-path routing protocol.
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Considering the report forwarding protocol of PKAEF, once the sender finds that the selected
forwarding node does not forward the report, it will select another trusted upstream node with the
highest trust value to forward the report, rather than randomly selecting an upstream node to forward
the report. To compare the performance of the two methods: randomly selecting forwarding nodes
and selecting forwarding nodes based on trust values, the authors performed simulation experiments
for PKAEF by using these two methods respectively. PKAEF is denoted as PKAEF_TV when the
forwarding nodes are selected based on trust values and denote PKAEF as PKAEF_NTV when the
forwarding nodes are randomly selected. Three groups of experiments were carried out based on the
value of ps, where the values of ps were set to 0.2, 0.6, and 1.0 respectively. Each group of experiments
was run 1000 times and, in each run, 50 reports in an event area were sent to the BS by different
cluster heads. The authors evaluate the performance of PKAEF_TV and PKAEF_NTV according to the
average energy expenditure of forwarding a report at each hop.

Figure 8a,b shows the energy expenditures of forwarding a report at each hop affected by fn
and ps in Scenario 1 and Scenario 2, respectively. It can be observed that, for both PKAEF_NTV and
PKAEF_TV, the energy expenditure of forwarding a report at each hop increases with the increase of fn
and ps. This is because when fn and ps are larger, the sender needs to choose other upstream nodes to
forward the report more times, resulting in higher energy expenditure. Happening in both scenarios,
PKAEF_NTV requires a higher energy expenditure of forwarding a report at each hop than PKAEF_TV,
regardless of whether ps is 0.2, 0.6, or 1.0. This is because, in PKAEF_TV, the sender prefers forwarding
nodes with high trust values which are less likely to be compromised nodes, and thus the report can be
successfully forwarded earlier. However, in PKAEF_NTV, the randomly selected forwarding nodes are
more likely to be compromise nodes, and the sender needs to try more forwarding nodes for successful
forwarding, resulting in higher energy consumption. It can be seen that, compared with the method
of randomly selecting the forwarding nodes, the method of selecting the forwarding nodes based on
trust values is a better choice for PKAEF.
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7. Conclusions

A public key-based authentication and en-route filtering scheme (PKAEF) is proposed in this paper.
PKAEF integrates a mechanism for verifying the partial signatures and a substitution mechanism
to substitute the malicious cluster nodes or CHs; thus, PKAEF can resist report disruption attacks.
Additionally, PKAEF contains an effective report-forwarding protocol and an en-route filtering scheme,
which makes it able to combat selective forwarding attacks and false data injection attacks. Moreover,
PKAEF provides a trust value-based mechanism for detecting and punishing the malicious nodes,
which can mitigate the impact of malicious nodes. Both theoretical analysis and simulation results
demonstrate that, in most cases, PKAEF outperforms DSEDA and PDF in terms of security, filtering
efficiency, and data availability.
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