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Abstract: Airborne light detection and ranging (LiDAR) full waveforms and multibeam echo
sounding (MBES) backscatter data contain rich information about seafloor features and are important
data sources representing seafloor topography and geomorphology. Currently, to classify seafloor
types using MBES, curve features are extracted from backscatter angle responses or grayscale, and
texture features are extracted from backscatter images based on gray level co-occurrence matrix
(GLCM). To classify seafloor types using LiDAR, waveform features are extracted from bottom
returns. This paper comprehensively considers the features of both LiDAR waveforms and MBES
backscatter images that include the eight feature factors of the LiDAR full waveforms (amplitude, peak
location, full width half maximum (FWHM), skewness, kurtosis, area, distance, and cross-section)
and the eight feature factors of MBES backscatter images (mean, standard deviation (STD), entropy,
homogeneity, contrast, angular second moment (ASM), correlation, and dissimilarity). Based on a
support vector machine (SVM) algorithm with different kernel functions and penalty factors, a new
seafloor classification method that merges multiple features is proposed for a beneficial exploration
of acousto-optic fusion. The experimental results of the seafloor classification around Yuanzhi Island
in the South China Sea indicate that, when LiDAR waveform features are merged (using an Optech
Aquarius system) with MBES backscatter image features (using a Sonic 2024) to classify three types
of sands, reefs, and rocks, the overall accuracy is improved to 96.71%, and the kappa reaches 0.94.
After merging multiple features, the classification accuracies of the SVM, genetic algorithm SVM
(GA-SVM) and particle swarm optimization SVM (PSO-SVM) increase by an average of 9.06%, 3.60%,
and 2.75%, respectively.

Keywords: LiDAR; MBES; multifeature; seafloor classification; SVM

1. Introduction

Seafloor features reveal important marine environment information for the fields of marine
geological surveying, marine engineering construction, and mineral resources on the seabed. To survey

Sensors 2018, 18, 3828; doi:10.3390/s18113828 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9459-6930
https://orcid.org/0000-0002-0638-803X
https://orcid.org/0000-0002-2333-4762
http://www.mdpi.com/1424-8220/18/11/3828?type=check_update&version=1
http://dx.doi.org/10.3390/s18113828
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3828 2 of 20

seafloor features, the traditional direct sampling method and indirect remote sensing methods that use
acoustics, optics, and electromagnetic waves are normally used. Based on the pulse signal obtained by
airborne bathymetric light detection and ranging (LiDAR) and the backscatter intensity obtained by
multibeam echo sounding (MBES), the return waveforms and mosaic sonar images, respectively, can
be generated. The shapes of LiDAR waveforms and the grayscale and texture features of sonar images
vary with seafloor type for different surface profiles and reflectivity.

A full laser waveform contains both the sea surface and bottom peaks [1,2]. Through waveform
processing, airborne bathymetric LiDAR can not only acquire the depth of shallow water areas but also
distinguish different seafloor types from bottom returns. Cottin et al. proposed a method to classify
shallow seabed textures and algae coverage types by extracting waveform parameters of bottom
returns collected by the bathymetric LiDAR of scanning hydrographic operational airborne LiDAR
survey (SHOALS). The overall accuracy of this classification was up to 67% [3]. Narayanan et al. input
waveform parameters of the Optech’s SHOALS-3000 hydrographic mapping system to a decision
tree and rotation forest algorithms for classification, and the average overall accuracy was 91% [4].
Lin et al. used Gaussian and Weibull functions to fit and extract waveform parameters, which were
combined with artificial identification data to classify the types of ground objects. The classification
accuracies were approximately 78% and 83% for the support vector machine (SVM) and random forest
algorithms, respectively [5].

The MBES system can simultaneously acquire bathymetric and backscatter data. These data are
usually used to explain seabed geology and sedimentary processes, identify geotechnical disasters
and leakage of sea bottom gases, and assess environmental impacts [6,7]. The methods that use
MBES data for seafloor classification are primarily based on SVM, learning vector quantization (LVQ),
self-organizing feature map (SOM) classifiers, and cluster analysis methods [8,9]. Tang et al. used a
Simrad EM3000 multibeam sounder (Simrad Yachting, Oslo, Norway) to collect backscatter data and
in situ sediment sampling data from Jiaozhou Bay in Qingdao, China, then used the back propagation
neural network (BPNN) and genetic algorithm optimization of the BPNN (GA-BPNN) for classification,
and the accuracy was up to 80.2% and 85.8%, respectively [10]. Giovanni et al. studied the relationships
between bathymetric data, backscatter data, angle response curve and sediment particle size, and
seaweed distribution. They calculated the relative scattering intensity thresholds of five kinds of
sediment (gravelly sands, sandy gravels, slightly gravelly muddy sands, Posidonia oceanica on
sediments, and Posidonia oceanica on hardgrounds), but did not provide the classification results [11].
Li et al. compared 14 classification combinations of machine learning methods using MBES data. It
was found that classification of the random forest combined with a general kriging algorithm was
the best and could reduce the prediction error by 17% [9]. Lark et al. constructed an image texture
for classification based on a co-kriging algorithm. The results were validated by the sediment types
sampled in the experimental area, and the prediction accuracy was as high as 70% [12].

Using bathymetry data collected by bathymetric LiDAR, Sun et al. proposed a hybrid K-means
and SVM algorithm (KSVM) and calculated the gray level co-occurrence matrix (GLCM) to classify
K-means as clusters [13]. The results indicated that, compared with the traditional SVM algorithm,
KSVM increased the overall accuracy by 24% and the kappa coefficient by 0.31. Selvarajan et al.
used the SVM algorithm to classify point cloud data and aerial images collected by Riegl LMS-Q680.
In their method, a total of six extracted features were considered: three LiDAR features (elevation,
echo intensity, and return number) and three image features (intensity value in the red, green, and
blue bands). The results showed that classification accuracy based on LiDAR features was 86% and
based on image features was 65%, while overall accuracy of the fusion reached 88% [14]. Zhang et al.
applied a standard deviation (STD) based method to quantitatively characterize terrain complexity of
the Yuanzhi Island surveys. In their method, disturbance of terrain irregularities was accounted for by
robust estimation, and a depth calibration procedure was introduced to eliminate the disturbance of
the depth-dependent noise component. The results showed that the presented method provided better
characterization of seafloor terrain complexity. Meanwhile, the obtained surface roughness (SR) index
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was found to be significantly correlated with in situ coral abundance observations, which suggested
that the SR index was a suitable indicator of habitat complexity in a coral reef environment [15].

In summary, there are several methods of seafloor classification, based on return waveform
features of laser pulses, based on backscatter image features of MBES, and based on multisource data
and multiple features. However, the current classification methods mostly use airborne LiDAR and
MBES data separately. For the classification algorithms that merge the multifeatures of both LiDAR and
MBES data, overall accuracy is less than 90% when the type of seafloor around islands or reefs contains
more than three species. This paper is intended to ascertain more seafloor information through the
merging of features that are extracted by both LiDAR and MBES data. Three kinds of SVM classifiers
(genetic algorithm (GA) and particle swarm optimization (PSO)) are used and trained, thus achieving
improved classification accuracy for seafloor classification in shallow water areas.

2. Multifeature Extraction Algorithm

2.1. Feature Extraction of LiDAR Return Waveforms

The Gaussian decomposition method is mainly used to process waveforms of small footprint
full-waveform airborne LiDAR systems. First, it is assumed that the emitted laser pulse is an
approximately Gaussian distribution. It is then assumed that the target return signal is also a Gaussian
distribution, so it can be approximately considered as a superposition of several Gaussian components.
Therefore, the Gaussian function is used for waveform fitting. The return waveform can be described
by Equation (1) as follows:

y = f (t) = Nb + ∑n
i=1 Aiexp[−(t− bi)

2/2σ2
i ], (1)

where Nb indicates the background noise of the original waveform, n indicates the number of Gaussian
components, Ai represents the peak of the ith Gaussian component, bi represents the peak position of
the ith Gaussian component, σi indicates the full width at half maximum (FWHM) of the ith Gaussian
component, and y is the amplitude of the waveform at time t [16,17].

For small footprint airborne LiDAR systems, the signal distribution often does not meet the
standard Gaussian distribution. As shown in Figure 1, this paper aims to use a more complex Gaussian
function model to improve the waveform fitting accuracy and extract more information from the
original signal. For symmetric waveforms, we can use standard Gaussian functions for fitting. If the
detected peak is asymmetric, then a lognormal function can be used for fitting. However, for some
complicated symmetric waveforms with deformations, we consider the use of generalized Gaussian
functions for fitting [18]. The expressions of these three fitting functions are as follows:

fG,j(x) = ajexp

(
−
(
x− µj

)2

2σ2
j

)
, (2)

fL,j(x) = ajexp

(
−
(
ln
(
x− sj

)
− µj

)2

2σ2
j

)
, (3)

fGG,j(x) = ajexp

− ∣∣x− µj
∣∣α2

j

2σ2
j

. (4)

The eight features of a LiDAR return waveform are: amplitude, peak location, FWHM, skewness,
kurtosis, area, distance, and cross-section [19]. Expressions and explanations of LiDAR features are
given in Table 1.
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Figure 1. Schematic of Gaussian fitting: the dark blue curve represents the raw waveform, the blue 
curve represents the Gaussian fitting, and the red dotted line represents the generalized Gaussian 
fitting. 
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emission frequency, seafloor type, and grazing angle. Different seafloor types may have different 
textures on the acoustic images. Texture directly reflects the roughness of the seabed surface, which 
can be used for classification. Co-occurrence matrix statistical analysis is the most widely used 
method for texture analysis. A rectangular window is generally taken from the same cluster on the 
sonar image to calculate the co-occurrence matrix, and then the co-occurrence matrix is statistically 
analyzed [20,21]. 

Figure 1. Schematic of Gaussian fitting: the dark blue curve represents the raw waveform, the blue
curve represents the Gaussian fitting, and the red dotted line represents the generalized Gaussian fitting.

Table 1. Expressions and explanations of light detection and ranging (LiDAR) features. FWHM, full
width at half maximum.

Feature Expression Explanation

Amplitude Amplitude Characterize the return intensity as
the maximum energy

Peak Location Peak Location Time when the return energy reaches
the peak

FWHM FWHM = 2
√

2ln2·W Width of the waveform when the
return energy is half of its amplitude

Skewness Skewness = 1
n

n
∑

i=1

(xi−x)3(√
1
n ∑n

i=1(xi−x)2
)3 Description of the distribution trend

of waveform energy

Kurtosis Kurtosis = 1
n

n
∑

i=1

(xi−x)4

( 1
n ∑n

i=1(xi−x)2)
2 − 3 Characterization of the height of peaks

Area A =
n
∑

i=1
ai

Characterization of the accumulation
of all energy in waveforms

Distance Distance = 3×108×∆t
2·
(

1+78.7× P
(273.15+T)×10−6

) Distance from the laser reference point
to the target

Cross-section σ = Ccal ·R4
i PW

Action area between the seafloor and
return signals

2.2. Feature Extraction of MBES Backscatter Images

The return intensity is a complex physical quantity that is related to various factors, such as
emission frequency, seafloor type, and grazing angle. Different seafloor types may have different
textures on the acoustic images. Texture directly reflects the roughness of the seabed surface, which can
be used for classification. Co-occurrence matrix statistical analysis is the most widely used method for
texture analysis. A rectangular window is generally taken from the same cluster on the sonar image to
calculate the co-occurrence matrix, and then the co-occurrence matrix is statistically analyzed [20,21].
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GLCM evaluates the relationship between pixels at a certain distance along a certain direction (0◦,
45◦, 90◦ and 135◦). The value of the matrix element (i, j) is equal to the probability of appearing, p, or
the frequency of the pair of pixels with gray levels i and j.

The eight features of MBES backscatter images are: mean, standard deviation (STD), entropy,
homogeneity, contrast, angular second moment (ASM), correlation, and dissimilarity. Expressions and
explanations of MBES features are given in Table 2.

Table 2. Expressions and explanations of multibeam echo sounding (MBES) features. STD, standard
deviation. ASM, angular second moment.

Feature Expression Explanation

Mean Mean =
N
∑

i=1

N
∑

j=1
P(i, j|d, θ) ∗ i Reflects the degree of texture rules

STD Std =

√
N
∑

i=1

N
∑

j=1
P(i, j|d, θ) ∗ (i−Mean)2 Measurement of pixel value and

mean deviation

Entropy Entropy = −
N
∑

i=1

N
∑

j=1
P(i, j|d, θ) ∗ InP(i, j|d, θ)

Measurement of gray image
information

Homogeneity Homogeneity =
N
∑

i=1

N
∑

j=1
P(i, j|d, θ) ∗ 1

1+(i−j)2
Measurement of local gray
homogeneity in the image

Contrast Contrast =
N
∑

i=1

N
∑

j=1
P(i, j|d, θ) ∗ (i− j)2 Reflects the total amount of local

gray changes in the image

ASM ASM =
N
∑

i=1

N
∑

j=1
P(i, j|d, θ)2 Measurement of gray distribution

homogeneity in the image

Correlation Correlation =
N
∑

i=1

N
∑

j=1

(i−Mean)∗(j−Mean)∗P(i,j|d,θ)2

Variance
Measurement of gray linear

relation

Dissimilarity Dissimilarity =
N
∑

i=1

N
∑

j=1
P(i, j|d, θ) ∗ |i− j| Similar to contrast but linearly

increasing

3. Seafloor Classification Methods

3.1. Classification Model Construction

For seafloor classification and identification applications, SVM has some advantages over other
methods. If the parameters are properly selected, the classification accuracy is relatively higher.
Therefore, it has great value in the application of seafloor classification. However, the disadvantage
of this method is that the choice of parameters is difficult to determine and is more sensitive to the
classification results and accuracy. To solve these problems, this paper not only performs traditional
SVM classification but also uses two optimization algorithms (GA-SVM and PSO-SVM) to classify the
samples of selected seafloor features. The selection of kernel function parameters and penalty factors
has a great influence on the accuracy of the SVM. Therefore, the penalty factor c and kernel function
parameter g are optimized by the algorithm, which achieves better prediction classification accuracy.

3.1.1. SVM Algorithms

The principle of SVM is to use the optimization tool to find the optimal separating hyperplane
(OSH) in a high-dimensional vector space. Therefore, two categories can be divided through this plane.
The support vector machine in the transformation space can be written as follows:

f (X) = sgn

(
N

∑
i=1

yia∗i K
(
Xi ·Xj

)
+ b∗

)
. (5)
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In Equation (5), K is a kernel function; the most common kernel functions are the polynomial
function, the radial basis function (RBF), and the sigmoid function (Equation (6)):

polynomial : K
(
Xi ·Xj

)
=
(

g ·Xi
TXj + g

)d, g > 0
RBF : K

(
Xi ·Xj

)
= exp

(
−g · ‖Xi −Xj‖2), g > 0

sigmoid : K
(
Xi ·Xj

)
= tanh

(
g ·Xi

TXj + g
) , (6)

where g is the kernel function parameter and RBF is the radial basis function. In Equation (5), the
coefficient is the solution to the following optimization problem:

maxH(a) =
N

∑
i=1

ai −
1
2

N

∑
i=1

N

∑
j=1

yiyjaiajK
(
Xi ·Xj

)
. (7)

b* can be obtained by satisfying the following support vector samples:

yi ·
(

N

∑
i=1

yia∗i K
(
Xi ·Xj

)
+ b∗

)
− 1 = 0. (8)

The objective function for optimization is as follows:

min 1
2 ωTω + c

l
∑

i=1
ξi,

s.t. yi
(
ωTφ(xi) + b

)
≥ 1− ξi, (ξi ≥ 0, i = 1, . . . , l),

(9)

where ξi is the hinge loss, and c is the penalty factor.

3.1.2. Improved SVM Algorithm Based on GA

The GA is a search algorithm used to solve optimization in computational mathematics and is a
type of evolutionary algorithm [22,23]. First, the population is initialized, and the initial population of
individuals is randomly generated; the individual gene strands in the population are decoded into the
corresponding kernel function numbers, kernel function parameters, and error penalty factors; these
three parameters are substituted into the SVM to train and test the training samples and the testing
samples. Second, the selection operator is executed according to the principle of optimal preservation
and worst substitution. Based on the fitness ratio selection strategy, the selection probability pi for each
individual i is as follows:

pi =
fi

∑N
j=1 fi

. (10)

In Equation (10), fi = k/Fi, Fi is the fitness value for each individual i, and since it is better that
the fitness value is smaller, its reciprocal will be calculated before the individual is selected. k is the
coefficient, and N is the number of individuals. Then, the crossover operation is executed. Since the
individual uses real-coded, the cross-operation method uses the real cross method. The kth and lth
chromosomes in the j-bit operation are as follows:{

akj = akj · (1− b) + al jb
al j = al j · (1− b) + akjb

, (11)

where b is a random number between 0 and 1.
Finally, the mutation operator is executed and the jth gene aij of the ith individual is selected to

mutate. The mutation method is as follows:

aij =

{
aij +

(
aij − amax

)
· f (λ), r > 0.5

aij +
(
amin − aij

)
· f (λ), r ≤ 0.5

, (12)
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where amax is the upper bound of gene aij, amin is the lower bound of gene aij, f (λ)= r2·(1 − λ/Gmax)2,
r2 is a random number, λ is the number of the current iteration, Gmax is the maximum number of
evolutions, and r is a random number in the range of [0, 1].

When GA is used for SVM parameter optimization, real number-based encoding is used.
The penalty factor c and the kernel function parameter g for the original SVM give a wide search range.
Within this preset range, each possible c and g will be converted to specific chromosomes that can be
accepted by the GA to complete the conversion from the feasibility solution space to the chromosome
search processing space.

3.1.3. Improved SVM Algorithm Based on PSO

PSO is another swarm intelligence-based optimization algorithm, along with the ant colony
algorithm (ACA), in the field of computational intelligence. PSO is a type of evolutionary computing
technology that is based on swarm intelligence. Compared with GA, PSO has no selection, crossover,
or mutation operations. Instead, it conducts research by using particles in the solution space to follow
the best examples [24]. A Each particle’s fitness function f (x) is defined by Equation (13). When f (x) is
smaller, the adaptability is stronger:

fitness =
1

RMSE(σ2,γ)
. (13)

The parameters of the particle swarm include the particle velocity and position. n particles are
randomly generated in the Rn space, and Xi = [x1, x2, . . . , xn] and the velocity matrix V(t) = [v1, v2,
. . . , vn] are populated. The best fitness value f (xi) of each particle is compared with the optimal fitness
value f (gbesti,i) of all particles. If f (xi) < f (gbesti,i), then the original global best fitness value is replaced
with the best fitness value of the particle, and the current state of the particle is saved. Then, according
to the improved PSO model:{

vid(t + 1) = wvid(t) + c1rand{} · [pid − xid(t)] + c2rand{} ·
[

pgd − xid(t)
]

xid(t + 1) = xid(t) + vid(t + 1).
(14)

The particle velocity and position are updated, and the new population X(t+1) is generated. Finally,
the binary bit of the particle is updated and the terminating condition is checked. The terminating
condition of the algorithm is either the maximum number of iterations or when the evaluation value is
less than the given accuracy, whichever is least.

When PSO is used for the optimization of SVM parameters, particles can be represented as
Xi = [ci, gi], and particle velocity can be expressed as vi = [vci, vgi]. The goal of using PSO to optimize
SVM parameters is to maximize the classification accuracy of the SVM algorithm, so that the maximum
classification accuracy of the SVM algorithm in the training data set is used as the fitness function in
the PSO. Equation (14) is calculated iteratively to find the optimal SVM parameters c and g.

3.2. Data Processing and Classification Framework

3.2.1. Classification Framework

Figure 2 shows the framework of the proposed classification methods. After preprocessing,
the waveform features and backscatter features are extracted from the LiDAR and MBES data. Then,
these multifeatures (including the eight LiDAR features and eight MBES features) are assigned
to three classifiers (SVM, GA-SVM and PSO-SVM) as training and testing samples. Thus, the
classification accuracy of the nine combinations (LiDAR + SVM, LiDAR + GA-SVM, LiDAR + PSO-SVM,
MBES + SVM, MBES + GA-SVM, MBES + PSO-SVM, LiDAR and MBES + SVM, LiDAR and MBES +
GA-SVM, LiDAR and MBES + PSO-SVM) are evaluated as the overall accuracy (OA) and the kappa
coefficient. Finally, the seafloor classification map is generated as experimental results.
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3.2.2. Classification Accuracy

There are some accuracy and error metrics listed below (a–d) to reflect the quality of the seafloor
classification in the surveying area [25–27].

a. Producer’s accuracy and omission error

Producer’s accuracy (PA) is the map accuracy from the point of view of the map maker (the
producer). This is how often real features on the ground are correctly shown on the classified map
or the probability that a certain land cover of an area on the ground is classified as such. Producer’s
accuracy is a complement of omission error (OE): PA = 100% − OE. It is also the number of reference
sites classified accurately divided by the total number of reference sites for that class:

PAi =
Nii

∑n
j=1 Nij

× 100%, (15)

OEi = 1− PAi. (16)

b. User’s accuracy and commission error

User’s accuracy (UA) is accuracy from the point of view of a map user, not the map maker. This is
how often a class on the map will actually be present on the ground. User’s accuracy is a complement
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of commission error (CE): UA = 100% − CE. It is calculated by taking the total number of correct
classifications for a particular class and dividing it by the row total:

UAj =
Njj

∑n
i=1 Nij

× 100%, (17)

CEj = 1−UAj. (18)

c. Overall accuracy

Overall accuracy (OA) essentially tells us, out of all reference sites, what proportion were
mapped correctly. Overall accuracy is usually expressed as a percent, with 100% accuracy being
a perfect classification where all reference sites were classified correctly. Overall accuracy is the easiest
to calculate and understand, but ultimately only provides the map user and producer with basic
accuracy information:

OA =
∑n

i=k Nij

∑n
i,j=1 Nij

× 100%. (19)

d. Kappa coefficient

The Kappa coefficient is generated from a statistical test to evaluate the accuracy of a classification.
Kappa essentially evaluates how well the classification performed compared to just randomly assigning
values, i.e., whether the classification did better than random. The kappa coefficient can range from –1
to 1. A value of 0 indicates that the classification is no better than a random classification. A negative
number indicates that the classification is significantly worse than random. A value close to 1 indicates
that the classification is significantly better than random:

Kappa =
PO − PC
1− PC

× 100%, (20)

where Nij represents the element of column i and row j in the error matrix, PO represents observed
agreement, and PC represents chance agreement.

4. Experiments and Analysis

4.1. Surveying Area

The experimental area of this paper is located in Yuanzhi Island, Xisha Archipelago, South China
Sea. The scope of the survey area is shown in Figure 3. The island is elliptical and is 700 m long
from north to south, 500 m wide from east to west, and consists of an area of approximately 0.3 km2.
This area has a typical tropical marine climate, where corals and plankton breed vigorously, forming
a large number of coral reefs at the high platforms near the coast. At the same time, there are dense
aquatic plants such as seaweed and kelp in the vicinity of the reef. Therefore, there are also many types
of seafloor, including rocks, coral reefs, and sands, which makes this area suitable for detecting the
effectiveness of different seafloor classification methods.

The airborne LiDAR in this paper uses the Optech Aquarius system (Optech Incorporated,
Vaughan, ON, Canada). The system features a circular scanning mode, whose maximum bathymetric
ability is 1.5 times the disk transparency (Secchi disc depth, SDD). The depth measuring accuracy
is 0.25 m root mean square error (RMSE), which uses only a blue-green laser with a wavelength of
532 nm to achieve integrated over- and underwater surveying. The water in the survey area is clear
and transparent, with an SDD of 9 m, an east–west width of 1.5 km, a north–south distance of 2 km,
and a water depth of approximately 20 m. During data acquisition, the flying height is 300 m, the laser
scanning nadir angle is 20◦, the sounding frequency is 550 kHz, and the measuring point density is
5–10 points/m2. The MBES in this paper uses the SONIC 2024 system (R2Sonic, Austin, TX, USA).
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The underwater surveying is carried out in an airborne LiDAR survey area with a maximum range of
500 m, a span resolution of 1.25 cm, a coverage width of 10◦–160◦, 256 beams, and a measuring point
density of 10–20 points/m2. There are no available MBES data in the nearshore area of Yuanzhi Island
because the water is too shallow, and the boat cannot safely approach the survey area.
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(a) Location of the Xisha Archipelago; (b) overview map of the survey area; (c) 3D rendered water
depth map of Yuanzhi Island.

4.2. Experimental Data

The experimental data in this paper include four primary components: LiDAR point clouds,
LiDAR waveforms, MBES backscatter images and high-resolution images. According to an overview
of the survey area and real high-resolution images, the seafloor can be divided into three types: sands,
reefs, and rocks. Figure 4 shows the full view of the survey area and the specific location of the
experimental data. Figure 5 shows the LiDAR bottom return waveforms of different seafloor types
at the same time. Sample selection requires both real high-resolution images of the survey area and
actual sampling data. Specifically, actual sampling data of the seafloor was acquired by an underwater
video recorder (GoPro) in May 2016, thus in situ observations of the seafloor were collected and
bathymetric data were used to designate sampling locations across the survey area. Constrained
by the practical survey conditions, videos were collected at 28 different locations around the island.
During the video sampling, the video recorder (tied to a plumb and a float ball) was dropped to the
seafloor from the static ship. For stations within the MBES survey area, the horizontal positions of the
ship were measured with a dual-frequency differential global positioning system (GPS) (centimeter
accuracy). For stations in the shallower areas, the horizontal positions of the dingy were measured
with a beacon-aided GPS, which provides horizontal positions with an accuracy of 1–2 m.

In this paper, we selected 1560 sand samples, of which 1092 were used for training. We also
selected 518 reef samples, of which 362 were used for training. Finally, we selected 504 rock samples,
of which 352 were used for training. The extracted sample feature information was input into
SVM, GA-SVM, and PSO-SVM classifiers. A five-fold cross validation strategy was adopted and
the classification results, including mean errors and accuracy metrics, are given in Section 4.3 [28–30].
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4.3. Experimental Results

4.3.1. Classification Results Based on LiDAR Waveform Features

The classification results based on LiDAR waveform features are shown in Table 3, which include
the overall accuracy (OA), producer accuracy (PA), user accuracy (UA), and standard deviation (STD).
Figure 6 shows the four LiDAR waveform features of skewness, kurtosis, amplitude, and cross-section.
The model evaluation results are from five-fold cross validation.
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Table 3. Evaluation of classification results based on LiDAR waveform features.

Model No. Algorithm Classes
Predictions

PA (%) OA (%)
(STD)

Kappa
(STD)Reefs Sands Rocks

Model 1 SVM

reefs 492 4 22 94.98
88.73
(1.70)

0.79
(0.02)

sands 4 1511 45 96.86
rocks 168 48 288 57.14

UA (%) 74.10 96.67 81.13 -

Model 2 GA-SVM

reefs 493 1 24 95.17
92.10
(1.25)

0.86
(0.01)

sands 2 1518 40 97.31
rocks 130 7 367 72.82

UA (%) 78.88 99.48 85.15 -

Model 3 PSO-SVM

reefs 495 1 22 95.56
94.54
(0.94)

0.90
(0.01)

sands 1 1526 33 97.82
rocks 79 5 420 83.33

UA (%) 86.09 99.61 88.42 -

4.3.2. Classification Results Based on MBES Backscatter Features

The classification results based on MBES backscatter features are shown in Table 4, which include
the overall accuracy (OA), producer accuracy (PA), user accuracy (UA), and standard deviation (STD).
The model evaluation results are from five-fold cross validation.

Table 4. Evaluation of classification results based on MBES backscatter features.

Model No. Algorithm Classes
Predictions

PA (%) OA (%)
(STD)

Kappa
(STD)Reefs Sands Rocks

Model 1 SVM

reefs 383 111 24 73.94
78.82
(1.33)

0.61
(0.01)

sands 161 1325 74 84.94
rocks 7 170 327 64.88

UA (%) 69.51 82.50 76.94 -

Model 2 GA-SVM

reefs 492 13 13 94.98
90.32
(1.12)

0.83
(0.01)

sands 150 1392 18 89.23
rocks 5 51 448 88.89

UA (%) 76.04 95.60 93.53 -

Model 3 PSO-SVM

reefs 510 4 4 98.46
93.38
(0.81)

0.88
(0.01)

sands 106 1433 21 91.86
rocks 2 34 468 92.86

UA (%) 82.52 97.42 94.93 -



Sensors 2018, 18, 3828 14 of 20

4.3.3. Classification Results Based on Multifeatures

The classification results based on multifeatures are presented in Table 5, which include the overall
accuracy (OA), producer accuracy (PA), user accuracy (UA), and standard deviation (STD). Figure 7
shows the classification results of different seafloor coverage areas. The model evaluation results are
from five-fold cross validation.
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Table 5. Evaluation of classification results based on multifeatures.

Model No. Algorithm Classes
Predictions

PA (%) OA (%)
(STD)

Kappa
(STD)Reefs Sands Rocks

Model 1 SVM

reefs 469 3 46 90.54
92.84
(1.21)

0.87
(0.01)

sands 10 1540 10 98.72
rocks 91 25 388 76.98

UA (%) 82.28 98.21 87.39 -

Model 2 GA-SVM

reefs 483 2 33 93.24
94.81
(1.02)

90.65
(0.01)

sands 7 1550 3 99.36
rocks 70 19 415 82.34

UA (%) 86.25 98.66 92.02 -

Model 3 PSO-SVM

reefs 490 1 27 94.60
96.71
(0.56)

0.94
(0.01)

sands 2 1549 9 99.30
rocks 42 4 458 90.87

UA (%) 91.76 99.68 92.71 -

4.3.4. Classification Results Analysis

The experimental results indicate that the classification accuracy significantly improved after
merging the LiDAR and MBES multifeatures. After optimizing the parameters of the SVM classifier by
using the GA and PSO algorithms, the classification accuracy also improved. Among the methods
examined, the PSO-SVM classifier based on multifeatures had the highest overall accuracy of 96.71%,



Sensors 2018, 18, 3828 15 of 20

and its kappa coefficient was 0.94. The classification result using the SVM classifier based on MBES
backscatter features had the lowest overall accuracy of 78.82% and a kappa coefficient of 0.61. The
statistics of classification accuracy are illustrated in Figure 8, which shows the classification accuracy
for the three algorithms (SVM, GA-SVM, and PSO-SVM) and the three models (LiDAR, MBES, and
multifeatures). Compared to the accuracy of SVM, the accuracy of GA-SVM and PSO-SVM increased
by an average of 5.62% and 8.08%. Figure 8 also indicates that after merging multifeatures of the
LiDAR and MBES data, the classification accuracy of SVM improved by 4.10% and 14.02%, respectively,
compared to that using the LiDAR or MBES features separately.
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Figure 8. Statistics of the three combinations of classification accuracy. This is a comparison of the three
algorithms (SVM, GA-SVM, PSO-SVM) before and after merging multifeatures.

When classifying seafloor types based on LiDAR waveform features, the PSO-SVM classifier
had the highest classification accuracy (up to 94.54%), and its kappa coefficient was 0.90. The SVM
classifier had the lowest classification accuracy of 88.73% and a kappa coefficient of 0.80. Among the
three types of seafloor, the classification accuracy of sands was relatively high. For the three classifiers,
SVM, GA-SVM, and PSO-SVM, PA reached 96.86%, 97.31%, 97.82%, respectively. The classification
accuracy of rocks was low. For SVM, GA-SVM, and PSO-SVM, PA was only 57.14%, 72.82%, and
83.33%, respectively. Through the above analysis, it was found that the performance of PSO-SVM was
better than that of both SVM and GA-SVM.

When classifying seafloor types based on MBES backscatter features, the PSO-SVM classifier had
the highest classification accuracy (up to 93.38%), and its kappa coefficient was 0.88. The SVM classifier
had the lowest classification accuracy of 78.82% and a kappa coefficient of 0.61. Among the three types
of seafloor, the classification accuracy of reefs was relatively high. For GA-SVM and PSO-SVM, PA
reached 94.98% and 98.46%, respectively. However, the classification accuracy of rocks is relatively
low. For the two classifiers, SVM and GA-SVM, PA reached 64.88% and 88.89%, respectively. Through
the above analysis, it is found that the classification accuracy of PSO-SVM increased with the increase
of particle swarm size. It can be seen from Figure 9 that the combination of the PSO-SVM classifier
based on multifeatures had the highest classification accuracy and is thus the best method, and was
applied to the whole survey area as shown in Figure 10. The data set was randomly shuffled and split
into five groups. For each group, we used the group as a test data set, used the remaining groups as a
training data set, and trained the model on the training set and evaluated it on the test set. The skill
of the model was summarized using model evaluation scores from k runs. Through five-fold cross
validation, the classification results (A–E) of the five groups were checked with the actual sampling
data, and the standard deviations were also calculated (as shown in Table 6 and Figure 9).
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Table 6. Model evaluation results based on five-fold cross validation. STD, standard deviation.

Model OA (%) SVM GA-SVM PSO-SVM

LiDAR

A 90.82 93.79 94.28
B 88.81 90.48 93.79
C 87.85 91.89 93.64
D 86.43 92.76 95.12
E 89.76 91.58 95.87

Average 88.73 92.10 94.54
STD 1.70 1.25 0.94

MBES

A 78.41 89.64 92.46
B 77.23 88.92 93.45
C 79.42 90.45 93.94
D 80.74 91.88 92.68
E 78.28 90.71 94.35

Average 78.82 90.32 93.38
STD 1.33 1.12 0.81

Multifeatures

A 93.41 95.45 96.74
B 91.52 93.41 95.87
C 92.04 94.15 96.65
D 92.62 95.14 96.86
E 94.59 95.91 97.43

Average 92.84 94.81 96.71
STD 1.21 1.02 0.56
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Figure 9. Standard deviations of different models based on five-fold cross validation.

As shown in Table 6 and Figure 9, it can be concluded that, after five-fold cross validation, the
classification accuracy of the PSO-SVM is the highest among the three, and the standard deviation of
the PSO-SVM is the lowest among the three.

Figure 10 shows the classification results when applying the best method (the PSO-SVM based on
multifeatures) proposed in this paper to the whole survey area. Figure 10 is the classification result
using multifeatures of the LiDAR and MBES data and the PSO-SVM classifier that corresponds to
the best performance in Figure 8. In Figure 10, the results are essentially consistent with the actual
terrain and seafloor distribution in the survey area. However, considering the computer performance,
model fitting and other factors, our method may be affected by the number of samples. In general,
classification efficiency is negatively correlated with the number of samples. The larger the sample
size, the lower the classification efficiency.
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5. Discussion

This study focused on providing an effective classification method for mapping the benthic
substrate based on multifeatures extracted from LiDAR and MBES. According to the experimental
results in Section 4, the following statements can be made.

(1) Data fusion

Registration is the process of transforming different data sets into one coordinate system. Data may
come from different sensors, times, depths, or viewpoints. Although LiDAR and MBES measurements
were collected individually, they were all transformed from a sensor coordinate system to the WGS-84
geodetic coordinate system and projected to the UTM plane coordinate system. During this process,
measurement errors caused by mounting misalignment and attitude change were also considered.
Thus, LiDAR and MBES data sets were accurately registered through coordinate transformation, map
projection, and point matching.

(2) Sample size

Spatial resolution refers to the size or dimension of the smallest unit that can be distinguished in
detail, which is used to characterize the product to distinguish the details of ground targets. In this
paper, we tend to use point density to represent spatial resolution. For all products, the measuring
point density of LiDAR is 5–10 points/m2, and that of MBES is 10–20 points/m2. Afterwards, a gridded
digital elevation model (DEM) with a resolution of 1 m was generated by linearly interpolating the point
cloud. According to the actual type of substrate in the survey area, three sample species were selected
as sands, reefs, and rocks. The number of samples was set according to the area percentage of different
substrates in the study area to make the spatial distribution of training samples more reasonable.
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(3) Feature selection

Feature selection is helpful to avoid correlated features and improve classification accuracy. It has
been proven in our previous research that, with fewer features mentioned in this paper, the classification
accuracy would decline obviously, thus 16 features were chosen for experimental verification, eight
LiDAR features and eight MBES features.

(4) Model performance

In our experiment, a five-fold cross-validation strategy was adopted and mean errors and accuracy
metrics are presented to understand more about model performance. Among the nine classification
combinations, the PSO-SVM classifier based on multifeatures had the highest overall accuracy of
96.71%, and its kappa coefficient was 0.94. Over-fitting and underfitting can occur in machine learning,
in particular. The potential for overfitting depends not only on the number of parameters and data,
but also on the conformability of the model structure with the data shape and the magnitude of model
error compared to the expected level of noise or error in the data. In order to avoid over-fitting, the
following solutions are given: (1) select appropriate stopping criteria to make the training of the
machine to a suitable extent; (2) keep verification data sets and verify training results; and (3) get
additional data for cross-validation.

(5) Practical importance

LiDAR bathymetry is limited by laser penetration and water turbidity. Its maximum bathymetric
range is generally less than 50 m, so it is suitable for clearer shallow water areas. The attenuation
of sound in water is much lower than that of laser, so MBES bathymetry is suitable for deeper areas.
MBES transducers are usually mounted on ships, and it is difficult to approach shallow coastal areas
due to the safety factors of sailing. LiDAR scanners are usually mounted on airplanes or unmanned
aerial vehicles, and are almost unaffected by ground conditions. These two sources of data sets can be
comprehensively utilized to achieve full coverage measurement of islands and reefs. To sum up, it was
necessary to combine two data sources for our study, and we tend to believe that the method has a
certain universality in similar areas.

6. Conclusions

This paper comprehensively considers the features of both airborne LiDAR waveforms and
ship-borne MBES backscatter images and proposes a seafloor classification method using extracted
multifeatures. Three kinds of classifiers, SVM, GA-SVM, and PSO-SVM, were used to classify the
seafloor types around Yuanzhi Island in the South China Sea. In this survey area, three types of
seafloor (sands, reefs, and rocks) were detected. The influence of different classifiers and different
features on classification was obtained through quantitative analysis. In general, the classification
results of the three classifiers achieved good performance. The overall accuracy and kappa coefficient
of the PSO-SVM were higher (up to 96.71% and 0.94, respectively) than those of GA-SVM and SVM.
The experimental results indicate that the fusion of LiDAR and MEBS data can reveal more features of
seafloor, which is beneficial in improving the accuracy and reliability of seafloor classification. After
merging the multifeatures, the classification accuracy of SVM, GA-SVM, and PSO-SVM increased by
an average of 9.06%, 3.60%, and 2.75%, respectively.

In addition, although the multifeatures can be obtained through feature extraction, excessive
features influence the efficiency of target detection and classification. If the correlation between features
and seafloor types is small, then overfitting of the target detection and classification may occur, thereby
decreasing the classification accuracy. In the future, feature selection criteria that are based on principal
component analysis (PCA) or factor analysis (FA) will be used to select the most important feature
parameters from multifeatures.
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