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Abstract: For many decades, ultrasonic imaging inspection has been adopted as a principal method to
detect multiple defects, e.g., void and corrosion. However, the data interpretation relies on an inspector’s
subjective judgment, thus making the results vulnerable to human error. Nowadays, advanced computer
vision techniques reveal new perspectives on the high-level visual understanding of universal
tasks. This research aims to develop an efficient automatic ultrasonic image analysis system for
nondestructive testing (NDT) using the latest visual information processing technique. To this end,
we first established an ultrasonic inspection image dataset containing 6849 ultrasonic scan images with
full defect/no-defect annotations. Using the dataset, we performed a comprehensive experimental
comparison of various computer vision techniques, including both conventional methods using
hand-crafted visual features and the most recent convolutional neural networks (CNN) which
generate multiple-layer stacking for representation learning. In the computer vision community,
the two groups are referred to as shallow and deep learning, respectively. Experimental results make
it clear that the deep learning-enabled system outperformed conventional (shallow) learning schemes
by a large margin. We believe this benchmarking could be used as a reference for similar research
dealing with automatic defect detection in ultrasonic imaging inspection.

Keywords: nondestructive evaluation; ultrasonic imaging; computer vision; deep learning; local
descriptor; convolutional neural networks

1. Introduction

Civil and industrial infrastructures form the backbones of modern society. However, after a long
period of service, aging structures, such as pipelines and industrial plants, have become worldwide
challenging problems, and undetected structural damages, or a delay in detecting them, can have
significant consequences [1]. Nondestructive test (NDT) methods have been developed to detect,
locate, and assess damages or flaws in structures without interrupting their continued usefulness or
serviceability [2,3]; it is an essential technique to achieving optimal decision-making in the maintenance
and rehabilitation of aging structures.

Ultrasonic inspection is a well-established NDT technique for identifying and evaluating internal
defects of a wide variety of materials, including metals, plastics, composites, and ceramics [4].
Its general principle is that an electrical pulser is employed to generate an ultrasonic signal that
propagates through the inspection object in the form of waves; once a flaw/damage is encountered,
part of the wave energy reflects back to the surface of the structure. By investigating the echo waves,
the defects are discerned. As a versatile NDT technique, ultrasonic inspection has a couple of favorable
merits, such as its high sensitivity to most materials’ damages, and its proficiency in the extraction of
defect location and size specifications [5].
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With the overwhelming inspection tasks for aging structures, the nondestructive evaluation
method is expected to be superior in both efficiency and accuracy. However, current ultrasonic imaging
inspection systems are incapable of meeting these two requirements fully. From the efficiency aspect,
since the method relies on an inspector’s visual examination to interpret inspection data, the process
can become time-consuming as the workload increases. On the other hand, condition assessment is
performed in a subjective manner based on an inspector’s individual experience, making the results
vulnerable to human errors. In recent years, substantial progress has been made in the computer vision
and machine learning research fields, which enable computers to achieve performances that are similar
to or even better than humans in multiple visual tasks, such as object detection/recognition [6] and
tracking [7]. Aiming to eliminate human errors and efforts in ultrasonic imaging inspection, a new
trend is emerging to cast the data interpretation problem in the context of a computer vision technology
paradigm [8].

Automatic ultrasonic image data investigation has become an active research theme in recent
years. Plenty of efforts have been delivered to design efficient automatic ultrasonic data interpretation
systems, and advanced signal processing and machine learning techniques have been adopted to
characterize ultrasonic echo waveforms [9] and images [10]. In general, computer-aided ultrasonic data
analysis systems consist of four parts: image preprocessing, visual feature extraction, defect pattern
identification with statistical machine learning, and final result reporting. In Figure 1, we present
a diagram describing the sequential process from ultrasonic signal capture to automatic result
generation. Grounded in such fundamental framework, this paper attempts to devise an advanced
computer vision system for ultrasonic imaging data interpretation with near-human accuracy. The main
contributions of the proposed approach can be summarized as follows.
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Figure 1. The general processing flow of computerized ultrasonic imaging inspection.

• The objective of this study is to build an efficient automatic ultrasonic image analysis system for NDT.
To this end, an ultrasonic inspection image database was established, which consists of 6849 instances.
The whole dataset was carefully annotated using binary labels of 0 and 1, denoting the normal
and defective case, respectively. We expect to extract critical visual information by using machine
learning techniques so as to achieve human-level ultrasonic image understanding.

• Various state-of-the-art computer vision techniques, including efficient visual descriptors [11] and
convolutional neural networks (CNN) [12], have been reviewed and evaluated for the application
of ultrasonic echo image pattern classification. Most of them have yet to be applied to the field
of ultrasonic image investigation. By presenting side-by-side comparison results, we expect this
research can contribute to the field of automatic ultrasonic imaging investigation for NDT by
setting a benchmark for future research.

• It has been acknowledged that, nowadays, the advent of Artificial Intelligence is largely driven
by deep neural networks, which enable machines to close the gap to human-level performance
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for cognition. However, the weak interpretability becomes a significant obstacle in applying
deep learning to critical applications [13], i.e., NDT in our focus. That is, no one was sure exactly
which features deep learning used to classify an ultrasonic image as healthy or defective. In this
study, we conducted extensive experiments to validate convolution neural networks (CNN) for
ultrasonic image analysis. Through visualization of the internal representation learned by CNN
and in-depth discussion, we demonstrate that the critical visual patterns indicating defective
ultrasonic images can be expertly distilled by the neural networks.

2. Related Work

The last 5 years have seen the significant advancement of machine learning research and the
arisen trend to deploy autonomous systems to relieve people from laborious and exhausting NDT
tasks [8,14]. In this section, we present a review of the current research on the subject of automatic
ultrasonic data analysis for NDT. The contents are organized with two parts: the first focuses on
feature representations adopted for ultrasonic images, and the latter regards investigations of statistical
machine learning models for computerized ultrasonic image classification.

2.1. Feature Representations for Ultrasonic Signal in NDT

In ultrasonic inspection, the echo signal can be presented in two forms: a waveform and B-scan
image. Accordingly, different feature extraction approaches have been employed to convert the
(high-dimensional) raw data to a compact form, with the critical information relevant to defect
presence well retained. To deal with ultrasonic waves, conventional signal processing methods have
been adopted as a mainstream method, such as discrete Fourier transform (DFT) [15] and discrete
wavelet transform (DWT) [16]. Subsequently, principal component analysis (PCA) [17] or the genetic
algorithm (GA) [18] became commonly applied to eliminate the redundant features further.

As for the case of ultrasonic image characterization, a new series of two-dimensional statistical
descriptors have been introduced. For instance, to exploit the texture information of ultrasonic images,
summary statistics have been adopted, including auto-correlation; first-/second-order statistical
descriptors like skewness, kurtosis, and energy [19]; and the co-occurrence matrix [20]. Some research
articles have reported that validated Gabor features can achieve a favorable classification performance
with a lab-scale evaluation [21]. However, the efficient visual features broadly used by the computer
vision community for complex visual tasks has yet to introduce such methods to the application field
of ultrasonic imaging.

2.2. Ultrasonic Image Classification Using Statistical Machine Learning

Through the above process of feature extraction, we convert ultrasonic images to a batch of
feature vectors; then, statistical machine learning is performed to discern flaw-induced anomalous
patterns. In recent years, a wide variety of machine learning techniques have been evaluated for
the task, including singular value decomposition (SVD) [22], support vector machines (SVM) [23],
and sparse coding (SC) [24]. The literature deems that efficient learning schemes can substantially
contribute to ultrasonic data interpretation. It is also noteworthy that neural network (NN)-based
learning systems have been repeatedly assessed, from simple to complex structures [25,26], while
the neural networks evaluated for the task are limited to four layers so far [6]. The primary factor
accounting for the situation is that the ultrasonic inspection datasets are confined to small scales,
so there is no apparent performance gain from adopting deep neural networks. It is also unfortunate
that there is no standard/public ultrasonic inspection database nor algorithmic benchmark for the
application, and, therefore, researchers have to collect the data and perform experiments on their own
from scratch.

According to the above survey, this study renders several novel features: first, we introduce
a batch of promising visual features from the computer vision community which have never been
applied to ultrasonic inspection image analysis; secondly, we adopt the latest deep CNN with far more
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complex architectures compared to the previous four-layer structures, and it is anticipated to achieve
superior performance in discerning subtle defective patterns from ultrasonic images.

3. Computer Vision Frameworks under Evaluation

In order to establish an algorithmic benchmark for automatic ultrasonic inspection image analysis,
we present a review of computer vision systems and introduce the fundamental techniques in this
section. As shown in the upper and lower regions of Figure 2, nowadays, computer vision systems
can be generally categorized into two types: the conventional ones which adopt a two-stage pipeline,
including hand-crafted feature extraction and statistical machine learning; and another family which
relies on deep neural network (DNN) learning architecture to acquire critical feature representation
with respect to a given task without human intervention. Driven by the availability of both large-scale
annotated datasets and sufficient computation power, the latter DNN-based schemes are taking
the place of manual feature engineering in most of the current AI-enabled applications [7]. In our
evaluation, we compare both schemes for the focused task of ultrasonic image pattern analysis.
We introduce the details of representative techniques as follows.
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Figure 2. The general designs of computer vision systems.

3.1. Conventional Scheme: Visual Feature Extraction + Statistical Classifier

Over the decades, hand-crafted visual features, together with statistical learning-based pattern
classification, have long been the standard flow of computer vision systems. Plenty of research
attention has been drawn to feature design perfection [27] and classification algorithm induction [28],
and promising results have been reported incrementally. However, a comprehensive evaluation in
ultrasonic imaging is required. In our benchmarking, we selected the most typical and promising
visual features for computerized ultrasonic image investigation.

3.1.1. Feature 1: Local Binary Patterns (LBP)

Local binary patterns (LBP) are effective local descriptors which have been applied for texture
classification [29]. LBPs convert local structures into binary patterns by comparing values to the
central pixel. In this study, we adopted LBPs as the spectro-temporal feature extractor. The general
formulation for an LBP can be written as:

xLBP(Lc; τc) =
J

∑
j=1

ωc2j−1[[I(rj) > τc]] (1)

where I is the gray-level pixel value at the spatial position rj, and [[·]] generates 1 only if the bracketed

condition is met and 0 otherwise. Lc = {r}J
j=1 indicates the local 2D structure surrounding c ∈ R2,

including J spatial positions rj close to c, and τc is the gray-level value of the central pixel. For an
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ordinary LBP, J is set to 8 and hence the local patch is limited to 3× 3. In this study, we evaluated both
a prototype LBP and a modified version, called statistics-based LBP [30]. The latter type employs the
following parameters for computing LBPs:

τc =
1
N ∑

i
I(ri), ωc =

√
1
N ∑

i
(I(ri)− µ) (2)

Statistics-LBP has been proved to be more robust to additive noises in the images.

3.1.2. Feature 2: Histogram of Oriented Gradients (HOG)

Histogram of oriented gradients (HOG) is one most important 2D local descriptor in computer
vision, and it has been proved effective for object detection and identification. The fundamental
mechanism of HOG is the count of occurrences of gradient orientations in the localized patch. In this
evaluation, we introduced a HOG descriptor to characterize ultrasonic wave patterns. The extracted
HOG features, denoted by xHOG, are anticipated to be useful for defective pattern detection in
ultrasonic images.

3.1.3. Feature 3: Higher-Order Local Auto-Correlations (HLAC)

Higher-order local auto-correlation (HLAC) features are conventional local descriptors for 2D
patches [31], and it has been successfully applied to a wide variety of real applications, including
texture classification and medical imaging. The mask patterns of HLAC are shown in Figure 3.
The HLAC features are well developed based on the higher-order autocorrelation function:

xHLAC(a1, a2) =
∫

S(r)S(r + a1)S(r + a2) (3)

In dealing with ultrasonic images, S(r) denotes the input image, r = [tr, f ′r ]> is the reference point
on the two-dimension plane, and (a1 = [ta1, f ′a1]

>, a2 = [ta2, f ′a2]
>) is a set of displacements. HLAC

extraction is limited to a 3× 3 local region and, therefore, it is sensitive to local structures, such as
ridges and valleys. We introduced a sliding window with three consecutive pixels shifted, then, HLAC
features were extracted iteratively. Since ultrasonic echo patterns are assumed to be highly correlated
within a local region, more discriminative features can be exploited by HLAC.

Figure 3. Feature mask patterns of HLAC.
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3.1.4. Feature 4: Gradient Local Auto-Correlations (GLAC)

The GLAC descriptors are local features based on spatial and orientational auto-correlations of
local image gradients [32]. From a geometrical viewpoint, the descriptor exploits information about not
only the gradients but also the curvatures of the image surface. Such richer information can contribute
to increasing discriminative power than standard histogram-based methods. The GLAC features can
be extracted by the following steps: Let I be the ultrasonic image and r = [x, y]′ be the positioning
anchor in I. The gradient magnitude z and the orientation angle of the image gradient θ at one pixel
can be computed by

z =

√
∂I2

∂x
+

∂I2

∂y
, θ = arctan(

∂I
∂x

,
∂I
∂y

) (4)

Then, the orientation θ is quantized by using D discrete bins, resulting in a new feature vector of
f ∈ RD. Furthermore, higher-order statistics are extracted as follows.

xGLAC = R(d0, ..., dN ; a1, ..., aN) =
∫

I
ω[z(r, z(r + a1), ..., z(r + aN) fd0 (r) fd1

(r + a1), ... fdN (r + aN)dr (5)

where ai are displacement vectors. Based on the auto-correlation function, the GLAC features can be
easily extended to explore higher-order statistical features.

These features convert the input high-dimensional pixels to a compact vectorized representation.
Then, machine learning algorithms are employed to classify them with minimum errors.

3.2. Ultrasonic Image Investigation with Deep Learning

In recent years, artificial neural networks with deep hierarchical architecture (i.e., deep learning)
have garnered the most interest due to their superior performance in numerous benchmarking studies
of machine perception, such as in speech recognition [33] and image understanding [7].

As the key feature of this research, we customized deep neural networks (DNNs) to discern the
defect-induced ultrasonic echo pattern of NDT.

Artificial neural networks, inspired by the neural systems, involve several critical computations of
a weighted sum, nonlinear gating, and partial derivatives. Given the data with annotations, DNNs are
able to create an efficient mapping between the two modality data. We denote such a function as H(·),
which commonly comes up with hierarchical structures. The mechanism of information propagation
between layers, e.g., from k-1 layer to k, complies with the same principal as follows:

h(k) = g(b(k) + W(k)h(k−1)) (6)

We denote the DNN structure with stacking layers by H. It is noteworthy that g(·), called the
activation function, plays a critical role, and we employed the rectified linear unit (ReLU), defined
by g(τ, a(k)) = max(0, a(k)) + a(k)min(0, τ), in this evaluation. We further present an overview of
neural network learning in Algorithm 1 [6].

Algorithm 1: TRAIN NEURAL NETWORKS (xt,yt,Wt)
Initialization: W, θ

for t = 1, 2, ..., T

do


Perform forward propagation: ŷt = H(xt, WH(θ))

Compute the prediction loss: L(yt, ŷt)

Update weights via back propagation: θt ← θt−1 − ε ∂L
∂θ

return WH(θt)
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where ∂L
∂θ is the derivative induced by the loss of training data, and ε is called the learning rate that

governs the network update step/speed. From the diagram, we can see that the DNN iteratively
minimizes the prediction error by performing stochastic optimization. Concretely, there are two
favorite solvers to tackle the problem: adaptive moment estimation (ADAM) and stochastic gradient
descent with momentum (SGDM) [34]. We applied SGDM to our system with a standard mini batch
weight updating scheme [6]. Since the objectives are ultrasonic images, we picked convolutional neural
networks (CNNs) that are preferred to processing matrix-shaped data. We present two types of CNN
designs in this research.

3.2.1. Proposed System 1: USseqNet

We first propose a DNN system with a simple sequential structure, and we introduce the
design in Figure 4. Because the layout is not carefully tailored, we treat its performance as the
baseline of the deep learning-based approach. In our notations, the input is a 128 × 128-pixel RGB
image, and the output is a vector with two entries connected with the softmax classification layer
(noted as CL). The proposed scheme consists of four convolution layers, which are C1 · · · C4. Batch
normalization and ReLU activation gating, noted as B1 · · · B4 and R1 · · · R4, respectively, are applied
after the convolution operation. P3 is a pooling layer to reduce the size of the feature map. D4
indicates the dropout layer which can effectively prevent overfitting by discarding a ratio of neural
connections [34]. At the fully connected (FC) layer, we flatten all weights and obtain a high-dimensional
vector representation. Finally, the classification layer (CL) converts the data value to defect/no-defect
categorical membership score.
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Figure 4. The proposed USseqNet architecture.

3.2.2. Proposed System 2: USresNet

A wide variety of CNN frameworks have been developed for visual tasks throughout the decades
by alternating the number of layers, filter shapes, layer types, and connection paths between layers [6].
Among them, well-developed CNNs, such as AlexNet, VGG-16, and ResNet architectures, emerged
as standard approaches to visual tasks [35]. Extensive empirical and theoretical research results
demonstrate that deeper neural nets are anticipated to be superior in distilling critical patterns from
data for a given task. However, as the neural network hierarchy goes deep, the error back-propagates
through the network and the gradient shrinks, thus affecting the ability to update the weights in the
earlier layers for deep networks [34]. To tackle such a “vanishing gradient problem”, Residual net
(ResNet) was proposed, which introduces a “short cut” module which contains an identity connection
such that the weights can directly propagate to very early layers. The short cut module learns the
residual mapping by a formula of H(x) = F(x) + x [35]. Taking inspiration from ResNet, we propose
a deeper CNN design compared to previously applied systems for ultrasonic image pattern analysis.
There are two features of our proposal. In the first place, more layers were adopted, which enables the
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extraction of rich discriminant information to discern defect/no-defect in ultrasonic images; secondly,
by employing the “short cut” module, the weight updating can be performed smoothly for the whole
network. We present the proposed “USresNet” architecture in Figure 5 and the experimental validation
results in Section 4.
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C1 C2 C3 A1 C4 C5 A2 C6 C7 A3 FC CL

B1 B2 B3 Re1 B4 B5 Re2 B6 B7 Re3

R1 R2 R3 R4 R5 R6 R7

Dr3

Figure 5. The proposed USresNet architecture.

We explain the detailed process at each layer as follows. The input and output are a 128× 128-pixel
RGB image and a two-element vector of defect/no-defect membership scores, respectively. There are
seven convolution layers employed, noted as C1 · · · C7. At each layer, the convolution operations
are performed to seek for specific defect-induced ultrasonic wave patterns. The convolution kernel
size is set to 3 × 3 pixels. Batch normalization and ReLU activation gating, noted as B1 · · · B7 and
R1 · · · R7, are applied after convolutions. Notably, three "short cut" modules are adopted, that is,
by assigning adding layers noted as A1 · · · A3, back-propagating weights can jump ahead to earlier
layers without decay. Re1 · · · Re3 denotes the ReLU gating performed at the combination layer of
each residual module. Right before the fully connected layer (FC), a drop layer Dr3 is employed to
prevent overfitting. Finally, the classification layer (CL) computes the probability of defect presence by
using the softmax function.

4. Experimental Validations

4.1. Ultrasonic Propagation Image Data Collection

In this section, we introduce the ultrasonic inspection image dataset we created to evaluate
computer vision algorithms. To collect the imaging data, we employed the ultrasonic imaging
inspection system described in Ref. [5], which consists of three parts: a pulsed laser scan unit
which generates thermoelastic ultrasonic waves, a transducer attached to the surface of a specimen
that collects the ultrasonic waves propagated through the structure, and an amplifier and a digital
oscilloscope (A/D converter) that transmits the captured echo signal to a computer, where the data is
stored on the hard disk drive. A snapshot of the traveling waves at a given time is obtained by plotting
the amplitude of each waveform at that time on a contour map using the reciprocity principle in wave
propagation [36]. The snapshots are continually displayed in a time series and appear as a video of
traveling waves generated from the fixed receiver. The key parameters applied in the laser ultrasonic
imaging system are presented in Table 1.
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Table 1. Summary of the experimental setting of inspection device.

Item Setting

1 Probe frequency 1 MHz
2 Beam angle 90
3 Pulse repetition frequency 500 Hz
4 Incident angle α(◦) 0, 22.5, 45, 67.5, 90

The shape, size, and depth of flaws are critical parameters affecting visual inspection. To evaluate
the automatic ultrasonic image investigation approaches, we prepared a batch of stainless steel plates
with various types of flaws. Table 2 shows the specimen details and Figure 6 presents our ultrasonic
inspection schemes. In the evaluation, two types of defects were investigated: drill holes with
a diameter from 1 to 5 mm and slits with lengths ranging from 3 to 10 mm. A laser scan is performed
on the central region of 3 mm thick specimens with a 100 × 100 mm size (green zone) on both the front
and back sides of the steel plates. It is noteworthy that the incident angle of the transducer installation
can be a critical parameter that significantly affects the ultrasonic imaging patterns, especially when
examining slit flaws. To exploit the robustness of computer vision algorithms to those variations,
we collected ultrasonic inspection images with different incident angles varying from 0 to 90◦ with
a 22.5◦ interval.

Table 2. Summary of the specimen specifications.

Specimen #. Flaw Type Depth Transducer Side Defect Size

1–3 Hole Penetrated Front φ 1 mm | φ 3 mm | φ 5 mm
4–6 Hole 1.5 mm Front φ 1 mm | φ 3 mm | φ 5 mm
7–9 Hole 1.5 mm Back φ 1 mm | φ 3 mm | φ 5 mm

10–11 Slit Penetrated Front 5 mm | 10 mm
12–14 Slit 1.5 mm Front 3 mm | 5 mm | 10 mm
15–17 Slit 1.5 mm Back 3 mm | 5 mm | 10 mm

Transducer

Hole defectSlit defect

Transducer

𝛼 Incident angle

𝛽

Transducer

Depth 1.5mm

Penetrated

Depth 1.5mm

Penetrated

Beam angle (𝛽)

Figure 6. Sample patches from the dataset, including the ones with defects (left) and no defects (right).

As a result, we captured 6849 ultrasound images with a 3235/3069 split between no-defect and
with-defects cases. In Figure 7, we present the sample patches from both cases. People can discern the
defective images at a glance by focusing on the flaw-induced echoes. However, for algorithms, it is
very difficult to define such echo signals with explicit programming. Through this work, we evaluated
state-of-the-art computer vision algorithms for this challenging task.
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Figure 7. Sample patches from the dataset, including the ones with defects (left) and no defects (right).

It is noteworthy that data augmentation was an important trick applied in the evaluation;
it contributes to preventing the model from overfitting the dataset. Deep CNN models are featured
with superior ability to “memorize” the training data [34], that is, it can always achieve near
perfect accuracy at the training stage. However, when new data arrive with a broader variance,
the performance can degrade severely. Various data augmentation methods were considered to
enhance the generalization power of the learning model, such as cropping, translation, and rotation.
In this evaluation, we performed extensive data augmentation. Table 3 and Figure 8 show some
augmented samples. The dataset laid the fundamentals for further numerical analysis.

Table 3. Data augmentation scheme.

Type Parameter Sample Range

1 Reflection X-axis, Y-axis
2 Rotation angle [−20, 20] degrees
3 Scaling [0.5, 1]
4 Translation X: [−50,10], Y: [−10,50]

Figure 8. Sample patches from augmentation.

4.2. Experimental Settings

This section demonstrates the parameters used in the evaluation. At the feature extraction stage
shown in Section 3, the computation of HOG is limited to the local region with 8 × 8 pixels, while
HLAC, LBP, and GLAC are extracted from 3× 3 grids. By such settings, two-dimensional local variants
can be characterized. In addition to dealing with individual visual features, we added an option to
concatenate the four types of feature values as one long feature vector, which we call “fusion” in the
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evaluation. To classify the feature vectors, we employed support vector machine (SVM) with the
Gaussian kernel. The spread parameter is determined at the validation stage. Dropout ratios at both
the D4 stage in USseqNet and Dr3 stage in USresNet were set to 0.5. The mini-batch size was set
to 256 for USseqNet and 64 for USresNet. We limited the updating epochs to 10. We set the initial
learning rate to 1.0 × 10−3, and it was scheduled to drop 10% for every 20 iterations. As suggested
in many previous studies, we set the Momentum parameter to 0.9 in the stochastic gradient descent
optimizer. At the evaluation stage, we adopted a leave-one-specimen-out protocol. By using the
settings shown in Table 1, we collected ultrasonic scan images from 18 specimens, including 17
defective samples with various flaw specifications presented, as in Table 2, and one plate without
defects. To conduct an unbiased evaluation, we tested the images collected from one specimen at each
iteration, and the images captured from the other specimen were used to train the model. As iteration
goes, images collected by every specimen can be tested. Finally, we obtained the predicted labels for
the whole dataset.

4.3. Empirical Evaluation Results

In this part, we present results obtained from experimental validation. First, we introduce the
evaluating metrics, which are an essential factor for assessing the prediction models. By comparing
the prediction results with ground truth labels, we can derive four major statistics:

• True Positive (TP): number of defect images correctly detected.
• True Negative (TN): number of normal images classified as no-defect.
• False Positive (FP): number of normal images incorrectly detected to have defects.
• False Negative (FN): number of defect images incorrectly classified as no-defect.

On the basis of these, we introduce four metrics, i.e., precision (Pr), Recall (Re), Accuracy (ψ),
and F-score (γ):

Pr =
TP

TP + FP
, Re =

TP
TP + FN

, ψ =
TP + TN

P + N
, γ = 2 · Pr · Re

Pr + Re
(7)

According to the result summary in Table 4, we highlight several key findings. First of all,
the comparison of accuracies and F-scores indicate that the proposed deep learning-based USresNet
achieved the best performance for ultrasonic image investigation. The contributions of the deep
architecture and efficient “short cut” link module were clarified by comparing the USresNet to
USseqNet which obtained F-scores of 94.47% and 93.33%, respectively. Secondly, we compare the
two families of computer vision systems, which are the conventional methods that rely on feature
engineering with statistical classification, and the ones based on feature learning by using neural
networks. When comparing the well-designed GLAC features with baseline sequential CNN model
of USseqNet, we can see the results are very close. That means that even using a quite simple
structure, deep learning systems can compete with top-tier hand-crafted visual features, in other
words, deep learning schemes already become an off-the-shelf tool for ultrasonic image analysis.
Moreover, we found that fusion of multiple visual features can attain performance gain. Such a scheme
can also work to combine conventional visual features with learned representations from neural
networks. In addition to the above image-based evaluation, we further provide specimen-based results
in Figure 9. The underlying assumption is that the quality of ultrasonic inspection images can vary
according to the property of flaws. We hope the computerized ultrasonic image analysis system can be
robust to those variations.
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Table 4. Results of automatic ultrasonic image pattern classification using various methods. The bold
figures denote optimal results under evaluation criteria.

HoG LBP HLAC GLAC Fusion2D USseqNet USresNet

Precision (%) 89.27 89.95 91.43 96.10 95.98 95.28 93.98
Recall (%) 92.70 92.73 92.44 90.75 91.82 91.46 95.67

Accuracy (%) 90.80 91.20 91.90 93.54 94.00 93.48 94.73
F-score (%) 90.95 91.32 91.93 93.35 93.86 93.33 94.47

Figure 9. Specimen-wise classification accuracy comparison.

Figure 9 reveals more details regarding the evaluation, as the detection accuracies for each
specimen are shown. It is evident that the defect-induced patterns from several specimens are more
difficult to distinguish, such as those from No. 1–6. In general, slit defects are easier to detect from
computerized visual inspection compared to the hole flaws. Notably, conventional visual features are
incapable of characterizing critical discriminant information for flaw detection, and severe accuracy
drops can be seen when dealing with hole damage. On the contrary, deep learning-based solutions are
quite robust. Especially for the USresNet design, there is quite a small performance variance for all
the specimens. As a result, the proposed USresNet outperformed all other methods in both accuracy
and stability.

Though the performance of USresNet is superior to that of the others, it is not perfect in the sense of
statistics, compared to manual labels. To find the reasons, we examined the misjudged images and show
a subset of them in Figure 10. The images are annotated as with-defect-presence, while the USresNet
regarded them as no-defect. The characteristic feature among these images is that the (central) defective
regions are small, and there are no defect-generated echoes shown. The misdetection issue can be
attributed to the size of the defects. Since the labels are assigned to each ultrasonic image, USresNet
draws more attention to the global patterns than to the localized structures. One possible solution to
this issue is to segment the image into small crops and refine the labels for subregions. We leave this for
future work.



Sensors 2018, 18, 3820 13 of 17

Figure 10. Sample images of misclassification.

4.4. Data and Model Visualization

Figure 11 shows the visualization results, where the binary class labels are annotated with different
colors. It is evident that deep learning effectively maps the raw images to new space, where the class-wise
discriminant power is enhanced. The visualization agrees with the evaluation results.

Figure 11. Comparison of the feature space established by raw image and convolutional neural
network (CNN).

Data and model visualization are acknowledged as an integral part of machine learning systems:
they make complex data properties more accessible and render a better understanding of the
established model. In this research, we incorporated a data visualization function with two objectives.
The first is to understand the massive raw data distributions by using a standard dimension reduction
method of principal component analysis (PCA) with t-distributed stochastic neighbor embedding
(t-SNE) [6]. Then, we illustrate the data residing in the new feature space created by deep learning.
By comparing the two distributions, the contribution of task-driven deep learning for feature extraction
can be validated. In the experiment, we extracted the full connected (FC) layer outputs of USresNet as
neural projection data and visualized them with t-SNE.

In addition to seeing the global data distribution, we need to access more details about the learned
neural network model; that is, from the raw pixels of the image, the kind of information that has been
characterized by the deep learning pipeline. To this end, we visualize both the front-end (C1 layer in
USresNet) and intermediate representations (C4 layer in USresNet) in Figures 12 and 13, respectively.
Those illustrations deem that the hierarchical neural networks can characterize the input data through
decomposition and reconstruction. Compared with hand-crafted visual features, the deep neural
networks with multiple stacking-layers are anticipated to be more robust and efficient in dealing with
variational input data.
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Figure 12. Visualization of C1 layer weights learned by USresNet.

Figure 13. Visualization of C4 layer weights of USresNet.

Finally, we investigate the activation of intermediate layers in the USresNet. Deep learning
systems usually consist of billions of weights, and they are well structured to detect specific patterns
from image pixels. Activation visualization is a useful approach to interpret the convolution neural
networks by exploiting what the neuron “is looking for” [37]. If the pattern appearing in the image is
sensitive to the neural network, high activation scores will be generated. We present a demonstration
in Figure 14, including both input image and the corresponding activation at the B4 layer of USresNet.
It is evident that the flaw-induced round-shape echoes generated high activation scores while,
on the contrary, the ultrasonic wave propagation mode was suppressed. The visualization confirms
that the USresNet establishes very effective visual pattern analysis pipeline for defect detection in
ultrasonic images.
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Figure 14. Visualization of USresNet B4 layer activation generated by an ultrasonic image with defect.

5. Discussion and Conclusions

The development of automatic data interpretation with high efficiency and accuracy for
nondestructive evaluation has emerged as an active research theme in recent years. In this
paper, we attempt to develop an efficient computerized system for ultrasonic image investigation
with comparable accuracy to human. To this end, we first established an ultrasonic inspection
image dataset, including more than 6000 annotated instances. Then, we performed a comparative
evaluation of computer vision techniques for automatic ultrasonic image pattern investigation for
NDT. The candidate methods range from conventional styles with hand-crafted features and statistical
classifiers to the latest deep learning systems. To the best knowledge of the authors, this is the first
study in ultrasonic inspection imaging testing with an extensive evaluation of representative computer
vision methods. The experimental comparison validated that the proposed USresNet with deep neural
networks outperformed all conventional approaches by a large margin in both detection accuracy and
model stability. Also, to obtain a better understanding regarding the learned USresNet, we analyzed
its behavior in feature mapping. The results confirm that the USresNet can mimic humans to capture
round-shaped defect-induced echoes for anomaly detection in ultrasonic images. In a further research,
we hope to deal with subtle defect pattern detection from ultrasonic images. Currently, the system
can only tell whether a defect exists, and it is not able to report further information, such as location
and size. Those will be our further topics. Furthermore, it can be anticipated that as we expand our
ultrasonic image dataset, the analysis precision can be further improved.
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