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Abstract: This paper presents a portable magnetic induction tomography (MIT) transceiver integrated
circuit to miniaturize conventional equipment-based MIT systems. The miniaturized MIT function
is enabled through single-chip transceiver implementation. The proposed MIT transceiver utilizes
a phase-locked loop (PLL) for frequency sweeping and a phase-domain sigma–delta modulator
with phase-band auto-tracking for a full-range fine-phase resolution. The designed transceiver is
fabricated and verified to achieve the measured signal to noise and distortion ratio (SNDR) of 101.7 dB.
Its system-level prototype including in-house magnetic sensor coils is manufactured and functionally
verified for four different material types.

Keywords: magnetic induction tomography; phase-domain sigma–delta modulator; phase-locked
loop; transceiver integrated circuit; phase-band auto-tracking

1. Introduction

Magnetic induction tomography (MIT) is an emerging tomographic imaging modality that utilizes
alternate magnetic fields to characterize material properties and exterior shapes of target objects. While the
primary magnetic field from a transmitter coil is propagated through target objects, the secondary magnetic
field at a receiver coil is phase-shifted by eddy currents which are dependent on their conductivities. Target
objects can thereby be characterized by analyzing their phase-shifted amounts [1]. Applications include
non-invasive medical imaging, such as brain activity monitoring and non-destructive testing (NDT) for
material characterization. Most previous studies have focused on experimental methodologies, modeling
methods, and analyses, such as Tikhonov regularization methods [2], the magneto-acousto-electrical
tomography with magnetic induction (MAET-MI) method [3], vector acoustic source imaging [4], acoustic
source analysis [5], and rotational MIT [6] by utilizing measurement equipment, and their actual overall
system is too bulky for portable applications. This past research has been concerned with modeling,
methodologies, and analysis with a primary focus on measurement and back-end data processing, which
are less related to miniaturizing a system.

Phase-domain MIT systems also require high-resolution phase signals because their phase-shifted
amounts at the receiver coil are so small that it is not easy to detect simply. Several methods have been
proposed to support high-resolution detection of the phase-shifted signal: digital demodulation [7],
impedance analysis [8], and I/Q demodulation [9]. However, these methods impose constraints on
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the system size because a field-programmable gate array (FPGA) board or analyzing equipment
are not suitable for portable implementation. In addition, the MIT requires a frequency-sweep
operation because it needs to measure phase-domain responses at various frequencies for object
characterization [10]. For this purpose, most previous applications have utilized signal generator
equipment for frequency sweeps, rather than in the form of an integrated system.

Therefore, in order to expedite the commercialization of portable MIT devices, this work presents
a fully-integrated MIT transceiver circuit which features high-resolution accuracy, full coverage of
phase input, phase-to-digital conversion and frequency sweep capabilities. A phase-locked loop
(PLL) with a multi-phase voltage-controlled oscillator (VCO) [11] is included for a frequency-sweep
magnetic-coil transmission, and a phase-domain sigma-delta modulator (PD-∆ΣM) [12] with
phase-band auto-tracking and scalable conversion rate is proposed for the high-resolution detection
of magnetic phase shifts through target objects. This proposed MIT transceiver is fabricated and
experimentally verified to achieve the measured SNDR of 101.7 dB. For system-level feasibility,
a portable-sized MIT system prototype, including in-house magnetic sensor coils, was manufactured
and functionally proved to provide the NDT characterization on four types of materials: Saline water,
distilled water, atmospheric air, and stainless metal.

2. Portable Magnetic Induction Tomography System

A conceptual diagram of the proposed portable MIT system, which consists of magnetic coil
sensors, a transmitter with the PLL for frequency generation, and a receiver with the PD-∆ΣM for
phase-shift quantization is illustrated in Figure 1. φDRIVE excites the transmitter magnetic coil, then
a magnetic fields through target objects propagate to the receiver where eddy currents are induced
to give the phase-domain response φIN. In this portable MIT system, which has a module size of
6.3 cm × 4.5 cm, various materials are characterized by their inherent phase-shift responses.
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The detailed implementation of the proposed phase-domain MIT transceiver which supports a
360-degree full range of phase shifts with a high tomographic resolution of 63 µrad is shown in Figure 2.
The transmitter coil is driven by an output buffer of the PLL, its mutual magnetic coupling with the
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receiver coil is perturbed by target objects that are located in the middle of two transmitter/receiver
coils. At the receiver coil, the perturbed magnetic field that possesses the characteristic information
on the target objects is converted into a phase-shifted signal, where the eddy current effect at the
receiver coil plays a major role. The PLL is designed to have a typical type-II structure and integrates
a four-stage ring oscillator for the VCO with eight multi-phase outputs, where the loop filter is
designed as 3rd-order to allow sufficient reduction of noise and spurs. The VCO is implemented to
cover the frequency-sweep range (10–20 MHz) of the transmitter signal (FDRIVE). DF<6:0> controls
the frequency of the PLL frequency in the transmitter, which is also used to control the integrator
gains in the receiver for adaptive operation at different frequencies, this process is programmed by
utilizing a microprocessor (MCU). The PD-∆ΣM is implemented with a 2nd-order ∆Σ loop to achieve
a relatively high resolution for a given sampling time. In addition, a weighted comparator is utilized
to stabilize the integrator output with adaption coefficients (k1, k2) that are tuned through simulation
and stability analysis.
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For a 360-degree full coverage of the phase-shift detection, a phase-band auto-tracking scheme
is proposed to provide the full-band quantizing capability of the PD-∆ΣM. It detects the phase-band
location of the received signal, and then it adaptively controls the phase digital-to-analog converter
(DAC). There are some design considerations for the overall MIT system to achieve high-resolution
detection of magnetically induced phase shifts. First, the transmit signal should have low-noise and
low-distortion performance. For low-distortion performance, the analog PLL is adopted instead
of the digital PLL which causes more spurious spurs and distortions. For better noise immunity
and even-harmonics rejection, the receiver is designed to include a single-to-differential (STD)
amplifier at its front-end and to be fully differential in the remaining signal path. Additionally,
a low-noise programmable gain amplifier to provide scalable gain (1–10) for pre-amplifying capability
is implemented to enhance the SNR in the receiver front-end path. For noise-shaping or noise-filtering
characteristics, the digital conversion is performed by the PD-∆ΣM, which enables a high resolution in
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phase-to-digital conversion. The PD-∆ΣM itself is also designed to reduce thermal noises in internal
integrators and to relax 1/f noise effects in active amplifiers.

3. Fully-Integrated Magnetic Induction Tomography Transceiver

3.1. Signal Generation with Phase-Locked Loop (PLL)

A circuit-level implementation of the proposed MIT transceiver, which is mainly composed
of the PD-∆ΣM and the PLL, is shown in Figure 3. The PLL which provides the frequency-sweep
capability for the driving frequency (FDRIVE) is implemented as type-II since the type-I can show a
potentially unstable steady state, which is undesired for the system. It consists of a phase-frequency
detector (PFD), a charge pump, a loop filter, a VCO, and a frequency divider. The PFD detects
phase/frequency differences between a reference clock and a divider output, and the charge pump
and the loop filter convert the difference information into a control voltage for the VCO. Then, the
VCO output is fed back through the divider to the PFD, and the negative feedback operation adopts
the VCO frequency to be DF times of the reference clock frequency. As such, the PLL can provide the
desired frequency-sweep function by changing the divider value DF. The VCO block is designed with
a four-stage ring oscillator, where each stage is implemented to be fully-differential for better supply
noise immunity. Since the four-stage differential VCO provides eight-phase outputs, the PD-∆ΣM
is designed to selectively extract two adjacent phase signals from these eight-phase VCO outputs,
which is performed in the phase DAC. For 50% duty-cycled signal generation, eight-phase signals
are re-generated by utilizing the rising edges of the eight-phase VCO output signals. This proposed
VCO-based reference-phase generation for the PD-∆ΣM removes the necessity of additional blocks
and power consumption, and the overall system can be optimized by sharing the VCO block for the
transmitter and the receiver. The loop filter is designed to have a 3rd-order structure that consists of
two same-valued resistors of 4.174 KΩ, three capacitors of 728 pF, 13 nF and 182 pF. These loop-filter
components, especially the capacitors, have large values that cannot be integrated inside the chip, and
thus external components are utilized. In order to drive the transmitter magnetic coil, high-voltage
output buffers are integrated together.
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3.2. High-Resolution Phase-Information Detection with Phase-Band Auto-Tracking

The PD-∆ΣM is mainly composed of two integrators, a multiplier, a phase DAC, and a weighted
comparator, as shown in the upper part of Figure 3. The receiver input φIN enters the multiplier, and it
is multiplied with reference-phase signals (VREF), which are commonly derived from the VCO outputs.
If these signals are approximated as first-order term in their series expansion for comfortable analysis,

VIN ≈ A1 sin(wDRIVEt +φIN) (1)

VREF ≈
4
π

A sin(wDRIVEt +φREF), (2)

where A is the supply voltage and A1 is the input amplitude, wDRIVE is the driving frequency of the
transmitter, and φREF is φ1 or φ2. Then, the multiplier output becomes Equation (3)

VDEM = 4
π A sin

(
wDRIVEt +φre f

)
·A1 sin(wDRIVEt +φIN)

= 2
π A·A1{cos(φIN −φREF) + cos(2wDRIVEt +φIN +φREF)}

(3)

As seen in Equation (3), the multiplier output consists of direct current (DC) and alternating
current (AC) components. The following integrators filter out the AC component, and then the DC
component can be approximated as

2
π

A·A1 cos(φIN −φREF) ≈
2
π

A·A1

[π

2
− (φIN −φREF)

](
@φIN −φR ≈

π

2

)
, (4)

where φR is the average value of φREF. If φREF − φIN becomes around π
2 by adjusting φREF,

2
π A·A1 cos(φIN −φREF) can be linearized as 2

π A·A1
[

π
2 − (φIN −φREF)

]
as shown in Equation (4).

The main role of the PD-∆ΣM loop [13] is to make this DC component be zero by adjusting occurrences
of φ1 and φ2, and eventually the received input phase φIN is detected as φR − π

2 . While conventional
PD-∆ΣMs [12,13] can resolve limited region of the input phase, that is, between φ1 − π

2 and φ2 − π
2 ,

the designed PD-∆ΣM intends to support 360-degree full coverage by utilizing a proposed phase-band
auto-tracking scheme. The proposed auto-tracking scheme is facilitated by using the phase DAC
where φ1 and φ2 are adaptively selected among eight-phase VCO outputs φVCO<7:0> to fit, so that the
input phase becomes located between φ1 − π

2 and φ2 − π
2 . The adaptive switching of φ1 and φ2 is

automatically performed by monitoring the output bit stream of the PD-∆ΣM (DO). Figure 4 illustrates
the operation principle of the proposed phase-band auto-tracking scheme. Firstly, φ1 and φ2 are
initialized by default. If their inter-region does not include φIN + π

2 , φ1 and φ2 are sequentially moved
to the next phase band until φIN + π

2 becomes located between φ1 and φ2. In case of the out-band
condition, the DO bit stream shows high only or low only. If the input phase region is well located,
the DO bit stream shows bit-change patterns. In this way, the proposed phase-band auto-tracking is
performed, and also works like a coarse phase-domain ADC to give the maximum significant bit (MSB)
three-bit conversion output of DB<2:0>. In addition, for achieving a high phase resolution, inter-phase
is set to be π

4 which can guarantee resolution. Narrowing the inter-phase region would increase phase
resolution, until the input referred noise of the PD-∆ΣM becomes higher than the quantization noise.

There are some design issues in this MIT transceiver system. Firstly, it should support a
frequency-sweep capability to give phase-shift information at different frequencies. As the transmitter
frequency changes, the PD-∆ΣM loop might become unstable due to the integrator gain variation,
which is caused by the frequency change. Thus, in this work, an integrator gain-scaling function
was implemented to guarantee the loop stability by making CINT programmable from 8.5 pF to
18.5 pF. Secondly, internal integrators in the PD-∆ΣM should be designed to not corrupt the SNDR
for high-resolution performance. For this purpose, the resistor in the first-stage integrator RINT1,
which is a dominant noise source, is lowered as 5 KΩ while the second-stage resistor RINT2 is 75 KΩ.
In addition, an operational amplifier (OP-AMP) in the integrator is designed to have at least twice the
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bandwidth of the input signal frequency. This OP-AMP circuit is shown in Figure 5, where the gain is
80 dB for high-resolution and the gain-bandwidth product is 40 MHz with 18.5 pF load capacitors.
For lower distortion and stable common-mode output level, the designed OP-AMP includes two kinds
of common-mode feedback (CMFB) circuits [14] that are implemented with MN1,2,3 and MP1,2. Thirdly,
the PD-∆ΣM is designed to have a 2nd order structure, and it needs to stabilize internal integrators to
not be saturated. For this purpose, the proposed PD-∆ΣM adopts a weighted differential comparator
which utilizes weighted combination of two internal integrators’ outputs to generate the PD-∆ΣM
output (DO) [15]. The weighting function is implemented by adding a combining circuit in front of the
comparator, where input transistor size ratio decides the weights of two inputs. In this way, coefficients
of k1 and k2 in Figure 2 are designed to be 0.3 and 0.7, respectively.
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4. Measurement Results

A chip prototype of the proposed portable MIT transceiver was fabricated in a 0.18-µm
complementary metal-oxide-semiconductor (CMOS) process, and its microphotograph is shown
in Figure 6, occupying a silicon area of 1.76 mm × 1.2 mm. This integrated MIT transceiver includes
the PLL, its output buffers, and the PD-∆ΣM. The PLL was designed to support the transmitter
frequency range from 10 MHz to 20 MHz and also to provide eight-phase signals through the
four-stage differential VCO. In addition, its output buffers were integrated together to drive in-house
manufactured MIT coils. Then, MIT phase-shifted signals were converted to digital codes in the
PD-∆ΣM. Based on this transceiver chip, a portable system prototype with in-house MIT coils was
manufactured for its functional feasibility. With a 1.8 V supply, its total current consumption of the
MIT transceiver chip was 8.38 mA, where the PLL consumed 4.96 mA and the PD-∆ΣM consumed
3.42 mA. For measurement flexibility, the decimation filter for the PD-∆ΣM was implemented off-chip,
and its final digital output was generated from the auto-tracking output and the decimated PD-∆ΣM
output. If an object between the transmitter and the receiver coil is defined, the phase shift signal
concerned with the object is fixed to DC. Therefore, the signal does not need any high bandwidth of
the phase-digital converter. In addition, a signal would appear at the frequency around DC. Figure 7a
shows measured FFT waveforms of the PD-∆ΣM at different PLL frequencies of 10-MHz and 19-MHz.
They include DC phase signals below 5 Hz and 10 Hz, respectively, and PLL reference spurs at
250 kHz, 500 kHz and 750 kHz appears, which would be filtered out through the decimation process,
a kind of digital low pass filter. It can be seen that 1/f noise effects are bigger at the 19-MHz driving
condition, but the noise floors are almost the same at both the driving frequencies. This means that the
PD-∆ΣM structure has a sufficient noise-shaping capability to guarantee a low-noise low-distortion
operation. Figure 7b shows measured characteristic plots of phase resolution versus conversion
time. The PD-∆ΣM with optimal resolution performances achieved a reasonable speed around 15-ms
conversion time for 10-MHz driving frequency condition and 8-ms conversion time for 19-MHz driving
frequency condition.
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Figure 8a shows a portable phase-domain MIT system prototype with in-house magnetic coils,
which consists of a magnetic coil sensor and a transceiver chip-on-board, including the ARM
Coretex-F4 MCU for its control and data interface. Figure 8b shows its measured characteristic
plot on phase-shift amounts, depending on target material types. With different materials located
between transmitter and receiver coils, their measured phase-shift data were obtained from the
digital outputs of the MIT receiver, where distilled water and saline water give relatively low phase
shifts. While conventional MIT systems have utilized commercial measurement equipment, such
as network analyzers or impedance analyzers, this designed transceiver and its system prototype
is supposed to replace conventional bulky equipment, and it would contribute to portable-form
commercialization of emerging MIT technologies. Table 1 summarizes the overall performance of
the proposed MIT transceiver chip, which is also compared with previous work on MIT systems
or PD-∆ΣMs. The proposed portable MIT system achieved measured 101.7 dB SNDR, 63 µ-rad
phase resolution with 15-ms conversion time for 10-MHz driving frequency condition, and 95.73 dB,
125 µ-rad phase resolution with 8-ms conversion time for 19-MHz driving frequency condition, which
is comparable to state-of-the-art technologies.
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(b) measured characteristic plot of phase shift with different material types.

Table 1. Performance summary and comparison table.

This Work [7] [8] [12]

On-Chip Readout Y N N Y

System MIT MIT MIT CO2 Sensor

Method PD-∆ΣM + PLL Demodulation + A/D Conv. Impedance
analyzer + Sig gen. PD-∆ΣM

Technology 0.18 µm N/A N/A 0.18 µm

Phase range [rad] 2π 2π 2π π/15

Power
Consumption [W] 15.084 m N/A *** N/A *** 6.8 m

SNDR [dB] 101.7 95.73 59.3 * 79.65 ** N/A

Conv. time [s] 15 m 8 m 10 m 3 m 1.8

* Signal to noise ratio (SNR) is extracted. ** From equipment-measurement, SNDR is extracted. *** Reference
equipment used. (Signal generator and impedance analyzer or FPGA).



Sensors 2018, 18, 3816 10 of 11

5. Conclusions

A phase-domain MIT transceiver with phase-band auto-tracking and frequency-sweep capabilities
was proposed and its system-level feasibility was experimentally verified with a miniaturized
system prototype. It was designed to support the full coverage of phase-shifted input through
the phase-band auto-tracking algorithm and to support the frequency sweep for various MIT
characterizations. The designed transceiver prototype was fabricated and its MIT functionality was
achieved through utilizing in-house magnetic sensor coils. This proposed miniaturized work could
contribute to the commercialization of portable MIT devices and replace conventional expensive, bulky,
equipment-based measurements. MIT imaging applications could also be supported by a simple
multi-channel implementation of this transceiver.
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