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Abstract: Recently, the integration of an inertial navigation system (INS) and the Global Positioning 

System (GPS) with a two-antenna GPS receiver has been suggested to improve the stability and 

accuracy in harsh environments. As is well known, the statistics of state process noise and 

measurement noise are critical factors to avoid numerical problems and obtain stable and accurate 

estimates. In this paper, a modified extended Kalman filter (EKF) is proposed by properly adapting 

the statistics of state process and observation noises through the innovation-based adaptive 

estimation (IAE) method. The impact of innovation perturbation produced by measurement outliers 

is found to account for positive feedback and numerical issues. Measurement noise covariance is 

updated based on a remodification algorithm according to measurement reliability specifications. 

An experimental field test was performed to demonstrate the robustness of the proposed state 

estimation method against dynamic model errors and measurement outliers. 

Keywords: two-antenna GPS/INS; navigation system; adaptive noise covariance; measurement 

outliers; positive feedback; numerical issue 

 

1. Introduction 

High-accuracy positioning is an important issue for vehicular navigation applications. With the 

rapid development of the multiple-constellation Global Navigation Satellite System (multi-GNSS) [1], 

single-frequency real-time kinematics has better performance on centimeter-level positioning due to 

the increasing satellite visibility and better spatial geometry [2–4]. However, real-time kinematic 

(RTK) performance degrades in harsh environments with frequent signal blockages, multipaths, and 

even multiple constellations. Therefore, an increasing number of studies have focused on the 

integrated navigation system of the Global Positioning System (GPS) and Inertial Navigation System 

(INS) due to their complimentary characteristics, enabling such integrated systems to also provide 

accurate and continuous navigation information (e.g., position, velocity, and attitude) in harsh 

measurement environments [5–8]. 

Usually, the extended Kalman filter (EKF) is well-established to accomplish data fusion of an 

integrated system [9], and the GNSS/INS integration algorithm normally uses a Kalman filter to fuse 

data [10]. However, its performance strongly relies on the accuracy of the statistics of state parameters 

and measurements, for example, described by their noise probability density function (PDF). In 

practice, it is almost impossible to obtain such accurate information in advance. Therefore, the state 
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estimates from a conventional EKF suffer from uncertain perturbations when the covariance matrix 

of measurement noise R  and/or the covariance matrix of process noise Q  do not match the actual 

situation [11]. Particle filtering (PF) overcomes issues concerning inaccurate PDF and becomes an 

effective method for processing nonlinear non-Gaussian systems [12,13]. PF is a sequential Monte 

Carlo estimation algorithm with a great advantage in solving non-Gaussian issues since it can 

randomly generate a large number of random samples for describing PDF, adjusting particle weight 

and sample position to approximate the posterior PDF. Therefore, the major advantage of particle 

filtering is that it can model any form of probability distribution [14,15]. However, its drawbacks, 

such as a large amount of calculation, difficulty of PDF selection, and particle degradation in harsh 

measurement environments are also hard to accept, and an absolutely effective adjusting method to 

address them has not been found. In vehicular navigation application, relatively accurate PDFs of 

state estimate predictions and measurements are hardly generated by the filter itself due the 

frequently occurring measurement outliers without boundedness and periodicity. Hence, one of the 

main factors affecting filter performance is the controller and measurement outlier or fault detection, 

isolation, and reconfiguration [16–18]. To this end, a considerable portion of scholars have developed 

optimal adaptive Kalman filters (AKFs) to determine the most appropriate weight between Q  and 

R  based on the maximum likelihood criterion where the Kalman gain factors for accuracy 

improvement are based on the treatment of variable error characteristics [19–21]. In an AKF, the 

adaptive process noise covariance and measurement noise covariance can be tuned by a scalar 

adaptive factor based on the analysis of the predicted residual vector. The multiple-model-based 

adaptive estimation (MMAE) method and innovation-based adaptive estimation (IAE) method are 

the most representative methods in this category [22]. The IAE method has a lower computational 

burden than MMAE due to the use of a single filter [22]. 

Furthermore, both robust and adaptive robust Kalman filters [23–28] have been discussed regarding 

controller and measurement outliers. These approaches can lead to better performance [29–34] in term of 

robustness and adaptivity due to the IAE method and corresponding equivalent weight matrix 

derived from the Huber function [35]. However, they could be further improved, especially under 

the situations that the statistics of both measurement and state noise have to be adapted. 

In the framework of GPS/INS integration, in order to provide accurate attitude information 

especially under movement with low acceleration, a multiantenna receiver is suggested [36,37] since 

orientation can be derived from both the GPS baseline vector, and that provided by the INS [38,39]. 

The performance of this approach relies on the relative accuracy of the baseline vector, i.e., a yaw 

error of 2.3° occurs for a baseline of 0.5 m with a position accuracy of 2 cm. However, a GPS-estimated 

baseline vector of low precision of several centimeters may result in unstable or biased state estimates 

if measurement noise is not properly adapted. In some cases, state estimates can even experience 

positive feedback from the measurement noise through the system model, rapidly diverging from 

the true counterparts [40]. State uncertainties are often added (typically twice or three times) to 

reduce the impact of measurement outliers. However, in this approach, the magnitude of attitude 

error is relatively small, filter-updating performance can be degraded, and the benefit of the 

augmented attitude error equation cannot be exerted. 

Furthermore, there are mainly two different integration modes: loosely coupled (LC) and tightly 

coupled (TC) integration. In LC integration, which is the most common type of integration, 

measurement vectors are constructed based on the difference between solutions calculated by the 

GPS and INS, whereas TC integration directly utilizes the GPS pseudorange or carrier-phase 

observations. TC integration is more advantageous because INS measurements could improve GPS 

processing in terms of ambiguity resolution (AR) [40,41]. However, state estimates using TC 

integration may face serious problems in terms of the reliability of raw GPS measurements according 

to References [9,42], because the prior acknowledgement measurement quality of the single-epoch 

phase carrier and pseudorange (satellite elevation, signal-to-noise ratio) is relatively limited, which 

means that a KF implemented with TC integration is more sensitive to the quality of raw GPS 

measurements compared with a KF implemented with LC integration. As a comparison, when 
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adopting LC integration, GPS performance in terms of positioning and measurements can be noticed, 

which is considered the basis for fault detection in filter measurement updating. 

To address the issues concerning the dynamic model errors and, in particular, measurement 

outliers, we propose an adaptive robust approach for two-antenna GPS/INS LC integration in which 

the IAE method is utilized to design a factor for the adaptive covariance. Several equations concerned 

with IAE drawbacks are derived to account for and overcome the numerical and feedback issues of 

two-antenna GPS/INS integration caused by measurement outliers and unknown state uncertainties, 

and an adaptive reconfiguration for measurement noise covariance according to measurement 

reliability is designed. The desirable properties of the proposed approach are summarized as follows: 

 Adaptive modification of noise covariance can treat dynamic model errors and measurement 

disturbance to reduce their impact on state estimation, especially when the statistics of both 

measured and predicted noise have to be adapted. With filter updating, positive feedback and 

numerical issues can be reduced by quantifying statistical measurement noise on a more 

granular level based on the corresponding quantifications of measurement reliability in the case 

of measurement outliers. 

 The proposed method can accurately quantify measurement reliability. It is an evidence-based 

regulation method with the benefit of attenuating the impact of innovation perturbation. In 

addition to the assured stability of filter updating, the performance of the augmented 

measurement equation in state error feedback for precious measurements is improved. 

The paper is organized as follows. An overview of the two-antenna GPS/INS-integrated 

algorithm is provided in Section 2. In Section 3, the adaptive modification of noise covariance is 

discussed. The field experiment and results for different schemes are compared in Section 4 to verify 

the superiority of the proposed approach compared to existing methods. Finally, several conclusions 

of this work are drawn. 

2. Two-Antenna GPS/INS 

2.1. Inertial Dynamic Model 

The inertial dynamic model is derived from the Psi-Angle error model based on INS error 

differential equations and summarized as [43]: 

en
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where   denotes the corresponding error or uncertainty of the vectors,   denotes the first 

derivatives,   denotes the cross-product of two vectors, r , v , and ψ are the position, velocity, 

and attitude error state vectors, respectively, f  is the specific force vector, ieω  is the earth rotation 

vector, and 
enω  is the craft-rate vector [44]. b f  and bω  are the accelerometer error and 

gyroscope error, respectively, and are written as: 

b b
a a

b b
g g

= +diag( )

diag( )



  

f b f s

ω b ω s
 (2)

where diag( )  denotes the diagonal form of the matrix, and 
ab  and 

as  are the accelerometer bias 

and accelerometer scale factor vectors, respectively. gb  and gs  are the gyroscope bias and gyroscope 

scale factor vectors, respectively. The inertial measurement unit (IMU) sensor error terms ε , such as 

bias and scale factors, are modeled as first-order Gauss–Markov (GM) processes: 

1T 
  ε ε w  (3)

where T  is the correlation time, w  is the corresponding process noise vector, and  g  is the 

gravity uncertainty error vector, projected as: 
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2 2 2
s s s= diag(    2 )     g r  (4)

where s  denotes the Schuler frequency [43–47]. Subscript b indicates the body frame (b-frame) 

with vehicle axes, i.e., forward–transversal–down. Subscript n indicates the navigation frame (n-

frame) is a local geodetic frame with the x-axis towards geodetic north, the z-axis towards an 

orthogonal to the reference ellipsoid pointing down, and the y-axis completing a right-handed 

orthogonal frame, i.e., north–east–down (NED). n
bC  is the direction cosine matrix (DCM) from the 

body frame to the n-frame. 

In this research, an INS error with 21 states was developed according to the equations mentioned 

above. Nine navigation parameters expressed in the n-frame, and 12 inertial sensor error parameters 

expressed in the b-frame, are involved. The complete error state sequence is expressed as: 

T
g a g a(       )  x r v ψ b b s s  (5)

2.2. Measurement Model 

Figure 1 illustrates the physical location relationship between the IMU and GNSS rover with two 

antennas (Ant 1 and Ant 2) in the b-frame. 

1l 2l

12l

 

Figure 1. Physical-location relationship between the inertial measurement unit (IMU) and two Global 

Navigation Satellite System (GNSS) receiver antennas in the body frame. 

where il  is the level arm vector between the IMU and i-th antenna, while 12l  is the level arm vector 

between the two antennas, and can be expressed as: 

12 2 1 l l l  (6)

The linearized position error measurement equation is [43]: 

1

n n
IMU GPS1 b 1 b 1= ( )r r       Z r r C l r C l ψ e  (7)

where   denotes the difference between measurements and predictions. The linearized velocity 

error measurement equation is [43]: 

1

n b n
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n n b n n b
in b 1 b 1 b 1 b 1

= ( ( ( ) ( )) )

(( ) ( ) (( ) )) ( ) ( )diag( )

v
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Z v C ω ω C l v

v ω C l C l ω ψ C l b C l ω s e
 (8)

where 
IMU  and 

GPS  indicate that the corresponding vectors are obtained by the INS 

mechanization algorithm and GPS-RTK algorithm, respectively. ( )  denotes the skew symmetric 
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matrix form of a vector. 
1r
e  and 

1v
e  are the corresponding measurement white-noise vectors. inω  

is the rotation rate vector, and is expressed as: 

in ie en= ω ω ω  (9)

According to Equation (7), another position error measurement equation related to Rover 2 can 

be constructed as follows: 

2

n n
IMU GPS2 b 2 b 2= ( )r r        Z r r C l r C l e  (10)

where 
2r
e  is the corresponding measurement white noise vector. 

12l  has already been accurately calibrated in the b-frame and is considered as a constraint that 

can be used for fast AR fixing, even for a low-cost single-frequency receiver. Assume that the two-

antenna baseline vector 
e
12p  in the earth frame (e-frame) can be accurately estimated by moving-

reference-receiver GPS-RTK processing that a method used to determine relative position vector 

between the antennas mounted to a single platform. Then, the attitude error measurement equation 

can be constructed using the difference between Equations (7) and (10): 
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where 
12r
e  is the differential measurement white-noise sequence, and n

eC  is the DCM from the e-

frame to the n-frame. 

Consequently, the ninth-order measurement error model of the proposed two-antenna GPS/INS 

integration is given by: 

= + Z H x e  (12)

where Z  is the measurement vector, H  is the measurement matrix calculated based on 

Equations (7), (8), and (11), e  is the measurement white-noise sequence and, determined by 

GPS/RTKs, results in error variance that reflects measurement uncertainty. 
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(13)

where 3I  is the third-order unit matrix, 0  is third-order zero matrix. 

3. Adaptive Noise Covariance 

As noted in the introduction, KFs have been widely used in data fusion, and their performance 

relies on the accuracy of the dynamic and measurement models, and the statistical accuracy of the 

noise covariance (Q  and R ). Fortunately, Q  and R  can still be adjusted to reflect the actual 

uncertainties of state estimation in the long term. 

The initial state error covariance matrix reflects the initial state-filtering accuracy, with little 

effect on the subsequent filter updating. The weight between Q  and R  determines the Kalman 

gain, which directly determines the impact that Q  and R  have on the state estimation. Therefore, 

the focus of the noise covariance reconstruction is partially shifted toward Q  and R . 
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3.1. Adaptive Process Noise Covariance 

Process noise covariance Q  should be adjusted by the filter algorithm as it cannot be easily 

controlled directly unless adaptive factor   is used to tune the predicted state covariance. P  can 

be expressed as [26]: 

Tˆ( )t  P ΦPΦ Q  (14)

where Φ  denotes the state-transition matrix computed from the INS dynamic system, t  is the 

discretization time, and P̂  is the previous measurement updated state covariance. ̂  and   

denotes the measurement updated parameter and predicted parameter, respectively.   is a scalar 

value, updated based on the weight between the covariance matrix of the predicted residual vector, 

denoted as ˆ
C , and the theoretical covariance matrix of the predicted residual vector, denoted as 

C . ˆ
C  and C  are expressed as [26]: 

T

Tˆ





 



C HP H R

C ξ ξ
 (15)

where ξ  is the innovation sequence and expressed as [25]: 

  ξ Z H x  (16)

with predicted state sequence  x . 

Based on the Kalman filter principle, C  reflects predicted measurement error and 

theoretically equals to ˆ
C  in an ideal case (accurate dynamic model and measurement model, and 

their noise statistics) [26]. Assume measurements are measured without outliers and their noise 

probability density functions are accurate. 

Let ˆtr( ) / tr( )   C C , tr( )  denotes the trace of a matrix. The adaptive function to determine 

the adaptive factors is expressed as [25,26]: 

0

0

0

  1.0 ,   c

1
,   c

  c




 




 




 (17)

where 0c  is the corresponding empirical constant, which is typically equal to 1.5–2.0 according to 

Reference [25]. 

Under the condition of accurate measurements or accurate noise statistics, the KF time updating 

tends to be unstable when  > 1.0. P  is perturbed due to the dynamic model errors and should 

be tuned larger using   to ensure that P  closely reflects the actual situation. 

3.2. Adaptive Measurement Noise Covariance 

Adaptive modification of the noise covariance is a tradeoff between the convergence rate and 

filter stability. The filter error propagation reflects the accuracy of the state estimations to some 

degree. In an ideal KF application, tuning the noise models to yield consistent estimation errors and 

uncertainties can also produce stable state estimates that track their true counterparts [46].   makes 
P  larger, and thus causes the filter gain value to increase, which increases the contribution of 

themeasurement outliers. Measurement outlier  ξ  can be considered as the unknown or 

unidentified uncertainty contained in the innovation: 

ξ = ξ + δξ  (18)

According to Equation (17), predicted state error propagation P  can be increased   times 

without  ξ , or inaccurately increased by   times with  ξ  and 
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In the measurement updating procedure, Kalman gain K  is calculated by [47,48]: 

T T 1( )  K = P H HP H + R  (20)

The measurement updating of the state estimate ˆ x  is formulated as follows: 

ˆ ( )        x x Kξ x K ξ ξ  (21)

A large proportion of the perturbations in the measurement is fed back to the state estimates 

because the corresponding gain value can be close to 1.0, subject to the large error magnitude of P . 

If extreme measurement outliers occur,  ξ  tends to be extremely large. Then, 

T

T
|
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 


 
ξ ξ

HP H + R
 (22)

Compared to the uncorrected R , ξ  contains large-magnitude errors. Therefore,   tends to 

be extremely large. For a more intuitive analysis of the disadvantage of large measurement errors in 

ξ , we assume that   can be considered to tend to infinity. Based on L’Hôpital’s rule [49], the 

corresponding Kalman gain can be derived as: 
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According to Equation (13), every block of the THP H  matrix consists of the linear 

transformation of skew-symmetric matrices, the determination of which equals to 0. Therefore, filter 

crashes can be produced due to singular-matrix inversion in the portion of the Kalman gain. This case 

rarely exists in general because the determination of R  doesn’t equals to 0 and numerical issues 

cannot be caused when processing matrix inversion in Equation (23). However, when the 

measurement outlier magnitude is much larger than the magnitude of R , the contribution of R  

in gain calculation can be degraded, even ignored, and positive feedback, filter divergence, even the 

numerical problem still exist. Small errors in P  are relatively harmless; however, Equation (13) 

demonstrates that large P -matrix errors distort the Kalman gain matrix. R  is often tuned by 

assigning state uncertainties that are substantially larger to an extent that nearly equivalent to Tξξ , 

and the modified measurement noise covariance that contains unknown uncertainties R  can be 

expressed as: 

T( )( )  R ς ρ ς ρ  (24)

where sequence ς  indicates the inaccurate statistical uncertainty, and is empirically smaller than 

the actual measurement uncertainties. The sequence ρ  represents the unknown measurement 

uncertainties, which are assumed to approximately correspond with the actual outliers. Thus, the 

adaptive factor is: 

T T T

T T T T
0 0

1 2

  c   c tr( ) +2 +






 
 



ξ ξ δξ ξ δξ δξ

HP H ς ς ς ρ ρ ρ
 (25)

If the hypothesis of Equation (22) is established, L’Hôpital’s rule can be used to determine  , 

and it turns out that: 
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where 2|| ||  indicates two norms of a vector. 

Due to the introduction of ρ , the contribution of measurement outliers is almost reduced with 

respect to   and P  afterwards. P  reflects the relatively precise uncertainty of the predicted 

state estimates and cannot be extremely large. Therefore, L’Hôpital’s rule cannot be used in the 

implementation of Equation (23), numerical issues concerning the inversion of T 1( )  HP H + R  are 

resolved, and the impact of positive feedback is attenuated because of the consideration of unknown 

measurement uncertainties in the Kalman gain determination. However, ρ  is hard to be separated 

out; the most popular robust method in IAE is to tune   further by using an adaptive robust 

function that is expressed as [26]: 

0

1 0
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0 1

1
1

         1.0         ,   c

c c
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  c c

c
                  ,   c


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 (27)

where 1c  is the corresponding empirical constant, which is typically equal to 4.5–8.5 [50]. 

Unfortunately, some drawbacks still exist for the following reasons: 

 When tuning a Kalman filter, unknown uncertainties cannot be easily separated from the 

measurement noise. Although filter stability is ensured by assigning substantially larger state 

uncertainties, subjective assumption is introduced. 

 The performance of measurement error equations in INS calibration is weakened when the 

measurement is in the steady state and cannot continually provide high-accuracy positioning 

and velocity results. Due to dynamic model errors and self-drawbacks of INS mechanization, 

INS cannot provide accurate state prediction. Due to low-accuracy a priori solutions or GPS 

outages,   may be also extremely large even without a measurement outlier because Equation 

(27) cannot figure out the source of larger innovation deviation. Therefore,   can be less than 

1.0, and the impact of P  matrix error is increased. According to Equations (21) and (23), a 

small P  matrix error produces unresponsive state estimates, while P  of a too-large error 

magnitude produces unstable, oscillatory state estimates [51]. 

The contributions of P  and R  determine the impact of dynamic and measurement models 

on the state estimation, respectively. Following Equations (17) and (27), the adaptive modification of 
P  relies on R , which demonstrates that focus should be placed on the measurement outlier 

detection and feedback. Hence, Figure 2 illustrates the proposed algorithm used to determine the ρ  

in Equation (24). In the two-antenna GPS/INS-integrated navigation application, the original R  is 

modified based on filter measurement-updated covariance-solution processing by GPS-RTK, and 

reflects the filter accuracy of the GPS-RTK solution in detail ( 3 1
GPS r , 3 1

GPS v , and 
3 1

GPS p ). 3 1ρ  is designed based on the position dilution of precision (PDOP) value, number 

of valuable satellites (Nsat ), AR ratio and length bias ( dl ) of 
12p  which can be obtained by GPS-RTK 

processing. These parameters can objectively reflect the quality of RTK solutions, which also 

improves for the modification of measurement noise covariance matrix and the determination of 

adaptive factors. To tune the measurement noise covariance matrix such that it closely aligns with 

the actual error magnitudes, the modified R is given by: 
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where T= [   ]r r r r  ρ , T=[   ]v v v v  ρ  and T=[   ]  p p p pρ     . 

The bounded ( )dl    is given by: 

12 2 12 2|| || || ||dl  p l  (29)

Figure 2 shows the algorithm to adaptively modify the measurement noise covariance matrix. 

The factors ( , , ,    ) presented in the figure can quantify GPS-RTK reliability in detail to 

appropriately tune the measurement noise covariance matrix. 

PDOP

| |dl

 

( 3)PDOP  (3 )Ratio  (6 )Nsat 

1.0 , , , 2.0    

Ratio Nsat

r v

 p

| |dl
 

Figure 2. A quantification algorithm of Global Positioning System (GPS)-RTK reliability used in 

Equation (28) based on PDOP, number of valuable satellites, ratio, and length bias. 

According to Figure 2, the adaptive measurement noise covariance matrix reconfiguration 

algorithm is formulated as the following equation. The algorithm is used to determine the driving 

state or measurement reliability based on the quantification results ( r , v  and  p ), which can be 

equal or close to 0 when the GPS-RTK solution is reliable. Otherwise, state uncertainties larger than 1  

can occur in the instance when the measurement is less reliable. The factors mentioned in Figure 2, like 

PDOP and ratio, are directly related to positioning performance [52–56]; hence, the proposed 

measurement noise covariance matrix remodification method is more feasible and flexible compared 

with the adaptive robust method in Equation (27). 

, ( 3) (3 )+ (6 )

| |

r v PDOP Ratio Nsat

dl

    

 

    

p
 (30)

In summary, the overall flowchart of the two-antenna GPS/INS integration algorithm is shown 

in Figure 3. The IMU outputs are processed by the INS mechanization algorithm into navigation 
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parameters, including position, velocity, attitude vectors, and the derived baseline vector n
b 12C l  

between the two antennas. Two GPS-RTK processing schemes were adopted to estimate the position 

and velocity vectors of Rover 1 and the two-antenna baseline vector n
12p . In this research, the 

implementation involves a filter based on the proposed approach. 

3 1 3 1  f ω 

21 1x 
3 1

3 1

ˆ

ˆ

r

v




3 1 3 1  r v  



3 1
12p̂


3 1
12p
 

21 1x 

dl

,  ,  Ratio PDOP Nsat
9 9R



 



 

Figure 3. Overall flowchart of the proposed adaptive method in the proposed integration. 

4. Field Test and Discussion 

The proposed method was tested on POS with a NovAtel-OEM6 GNSS receiver (with two antennas) 

and the IMU with a gyroscope at the fiber level and the length between the antennas is 0.70 m. After INS 

calibration, the representative physical and operating specifications of the inertial sensors are 

summarized in Table 1. 

Table 1. IMU specifications. 

Parameters Accelerometer  Gyroscope 

Range ±10 g ±300 °/s 

Random Walk 0.1 m/s/√ℎ 0.03 deg√ℎ 

Instability 25 m Gal 0.5 °/h 

To evaluate the performance of the proposed method in real environments, three data-

processing schemes were designed in our data analysis: 

 Scheme 1: two-antenna GPS/INS using a forward EKF. 

 Scheme 2: two-antenna GPS/INS using a forward EKF with adaptive modification of the process 

noise covariance based on Equation (27). 

 Scheme 3: two-antenna GPS/INS using a forward EKF with adaptive modification of both the 

process and measurement noise covariance, which is the proposed method. 

Due to a Kalman filter being used in GPS-RTK processing, the same constant acceleration model [57] 

was adopted to properly evaluate the performance of the different schemes. 

In this research, only the single-frequency GPS dataset was processed using a forward filter to 

validate the performance of the proposed method for two-antenna GPS/INS integration, and GINS 

that data-processing software based on a Windows Forms operation, providing GNSS and GNSS/INS 

data post-processing functions, is utilized to provide reference solutions that using dual-frequency 

ambiguity-fixed GPS/BDS/INS integration solutions processed by a backward filter with off-line 

Rauch–Tung–Striebel (RTS) optimal-smoothing algorithm. RTS optimal smoothing algorithm is well-
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established in many applications, such as target tracking and state estimation; filter optimization can be 

accomplished by combining Kalman filter with RTS [58,59]. Figure 4 shows the reference trajectory with 

a distance of 37 km. Approximately 49 min of 1 Hz GPS/BDS data and 200 Hz INS data were collected. 

 

Figure 4. Reference trajectory. (a) Reference trajectory of dual-frequency ambiguity-fixed 

GPS/BDS/INS integration solutions processed by a backward filter with off-line Rauch–Tung–Striebel 

(RTS) optimal smoothing algorithm; and (b) reference longitude and latitude distributions for the 

whole duration. 

4.1. Reliability of the Measurements 

To demonstrate the benefit of the reference solutions that can be qualified to evaluate the 

performance of the proposal implemented in harsh environments, the behavior of the PDOP, AR ratio 

and the number of valuable satellites are presented for the reference and tested solutions. Figure 5 

shows the number of GPS and GPS/BDS constellation valuable satellites tracked by the rover receiver 

and PDOP behavior. The number of valuable satellites is nearly doubled by the introduction of BDS 

compared with using GPS only. The PDOP value for only using GPS was high; however, it was 

significantly reduced with the GPS/BDS integrated constellation after the deployment of BDS GEO 

and IGSO. 

 

Figure 5. Distributions of valuable satellite number and PDOP. (a) Number of satellites and (b) PDOP. 

Figure 6 shows the AR ratio value distribution of the reference and those of GPS-RTK. The 

adoption of dual-frequency GPS/BDS/INS integration using a backward filter algorithm can improve 

the integer ambiguity resolution because better satellite availability from GPS/BDS and dual-

frequency phase carrier adoption in data processing can further improve with a substantial decrease 

of ambiguity-float solutions, RTS smoother has an obvious accuracy advantage on filter, and INS 
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provides strong constraints and short-term high accuracy to improve the accuracy of ambiguity-float 

solutions, position solutions with a centimeter error magnitude would be achieved. However, as a 

comparison, nearly 25% of the entire ratio solutions processed by single-frequency GPS-RTK using 

the forward-filter algorithm are fewer than three, and nearly 80% of the remaining solutions are 

considerably lower than the reference. 

 

Figure 6. Ratio comparison between the referenced and GPS-RTK. 

Figure 7 shows the positioning estimated state estimate error of the two schemes, illustrating 

that the stability of the state estimates is improved by the introduction of INS and BDS, and the state 

estimate error of the horizontal and vertical positions are bounded by 0.02 and 0.06 m, respectively, 

for the entire test durations. The solutions processed by single-frequency GPS-RTK using a forward 

filter are bounded by 0.05 and 0.2 m, respectively, when the system is in the steady state. However, 

the state estimate error of the horizontal and vertical position is increased by several decimeters 

under AR failure. 

Figure 8 compares the two-antenna baseline length errors between those processed by single-

frequency GPS-RTK and the reference. The two-antenna baseline solutions processed by single-

frequency GPS-RTK are often inaccurately estimated. The attitude state estimates in filter updating 

are not greatly influenced by occasional measurement outliers due to the filter robustness because of 

the detailed INS dynamic model and predicted uncertainty over a short period of time. However, its 

performance cannot resist the influence of long-term measurement outliers, since state prediction 

primarily relies on the mechanization algorithm of the INS, and a reliable dynamic model set cannot 

be easily established. 

In our data processing, the initial parameters of the filter algorithm for the integration are 

determined based on experience. The initial position and velocity accuracy are determined based on 

the accuracy of the initial GPS information. The initial state estimate error of the gyroscope and 

accelerometer were set according to Table 1. Initial parameters, such as the process noise parameter, 

the initial state error covariance matrix, and the initial state vector, were identical for each scheme, 

obtaining better performance in comparison. 

ra
tio
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Figure 7. Position state estimate error of the referenced and GPS-RTK. 

 

Figure 8. Two-antenna baseline length bias distribution. 

4.2. Experimental Results and Discussion 

The performance of the representative navigation parameters, such as position and attitude in 

terms of stability and accuracy, was compared between the reference solutions and tested solutions. 

Figure 9 shows the corresponding state estimate error for different schemes. Under the steady state 

for the GPS system according to Figure 9a, the 2-antenna GPS-INS using the EKF can accurately 

estimate the horizontal position (less than 0.02 m), the vertical position (less than 0.06 m), the 

horizontal velocity (less than 0.004 m/s), the vertical velocity (less than 0.06 m/s), the roll and pitch 

angles (less than 0.005°), and the yaw angles, which are periodically unobservable (less than 0.081°). 

However, when the GPS is in the unsteady state, the max state estimate error for the horizontal 

position and vertical positions are 0.15 and 0.29 m, respectively, the max state estimate error for the 
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horizontal velocity and vertical velocity are 0.03 and 0.08 m/s, respectively, and no significant changes 

in the state estimate error of the attitude estimation are observed. 

 

 

Figure 9. State estimate error for different schemes. (a) Scheme 1; (b) Scheme 2; and (c) Scheme 3. 

According to Figure 9b, which shows the state estimate error of Scheme 2, each state estimate 

error is increased in the long term compared with Scheme 1. Filter crashes occur from 2180 s to the 

end of the test. When using Scheme 2, the predicted process covariance is increased to reduce the impact 

of the dynamic model error on the state estimates, which increases the uncertainties of the state 

estimates according to the procedure of measurement updating in the filter. However, measurement 

with outliers can improve the innovation sequence and maximize the estimation deviation. 

As shown in Figure 9c, Scheme 3 using the conventional EKF with adaptive modification of the 

process and measurement noise covariance has a better performance than the other schemes in terms 

of the attenuation of the state estimation uncertainty, which means the proposed adaptive method 

leads a better performance in filter accuracy and stability from the perspective of Kalman filtering. 

As the main advantage of the proposed scheme, the state estimate error of the proposed method is 

significantly decreased, even in the unsteady state for GPS measurements. Compared with Scheme 

1, position state estimate error is decreased by approximately 55%, velocity state estimate error is 

decreased by approximately 50%, roll and pitch state estimate errors are decreased by nearly 60%, 

and yaw angle state estimate error is decreased by 70%. According to the comparison of the three 

schemes, as the main state estimate, the estimation of yaw angle has no periodic divergence for the 

entire duration of data processing. 

The state estimate error reflects the state uncertainties and is different from the actual deviation. 

To evaluate the performance in accuracy, comparisons of the error magnitude with respect to the 

reference solutions among the three schemes and some statistical characteristics are given. 
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Figure 10 compares the trajectory, velocity, and attitude solutions processed by Scheme 2 with the 

reference, which demonstrates that positive feedback exists in filter updating before filter crashes occur. 

 

 

Figure 10. Comparisons of attitude and trajectory of Scheme 2 and the reference. (a) Attitude 

comparison; (b) velocity comparison; and (c) trajectory comparison. 

Figure 11 shows the error distribution of the horizontal and vertical positions, respectively. 

Figure 12 shows the error distribution of horizontal and vertical velocity, respectively. Figure 13 

shows the error distributions of the roll, pitch and yaw angles, respectively. The following figures 

show that there’s no significant difference in the statistical results of velocity error; however, the 

position accuracy cannot remain in the stable state using the conventional EKF. The position solutions 

processed by Scheme 3 are of higher accuracy and stability than those of the schemes above. 

 

Figure 11. Comparisons of position error. (a) Horizontal; and (b) vertical. 
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Figure 12. Comparisons of velocity error. (a) Horizontal; and (b) vertical. 

 

Figure 13. Comparisons of attitude error. 

Figure 14 gives the adaptive factor results for the three schemes. It should be noted that we don’t 

discuss Scheme 1 since it uses conventional EKF without a corresponding adaptive reconfiguration 

on noise covariance. According to the figure, the impact of measurement outliers with respect to 

adaptive factor determination exists and the corresponding impact is more obvious when 

implementing EKF with IAE method. Conversely, Scheme 3 takes measurement unknown 

uncertainties into account by the measurement noise covariance reconfiguration in this research, 

significantly improving adaptive mechanization under measurement outlier conditions. 
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Figure 14. Comparison of adaptive factor distribution. 

For better evaluation, the corresponding statistical characteristics in the whole period, such as 

the mean error (ME), the root mean square error (RMSE), and the max error (MAX), are gathered in 

Tables 2 and 3. The probability of horizontal error less than 0.05, 0.10, and 0.15 m, and that of vertical 

position error less than 0.10, 0.20, and 0.30 m are gathered in Tables 4 and 5. The results illustrate that 

the EKF fails to achieve a precise state estimation compared with the proposed method. The 

comparison of the RMSE illustrates that the proposed approach improves the stability considerably. 

The quantitative results demonstrate that the proposed adaptive modification for two-antenna 

GPS/INS integration is relatively reliable and robust. 

Table 2. Statistical analysis of position and attitude estimation error in Scheme 1. 

 
Mean Error 

(ME) 

Root Mean Square Error 

(RMSE) 

Max Error 

(MAX) 

Roll (°) 0.009 0.006 0.042 

Pitch (°) 0.016 0.010 0.046 

Yaw (°) 0.197 0.098 0.707 

Horizontal Position (m) 0.120 0.180 0.397 

Vertical Position (m) 0.411 0.221 0.856 

Horizontal Velocity (m/s) 0.010 0.018 0.131 

Vertical Velocity(m/s) 0.039 0.083 1.068 

Table 3. Statistical analysis of position and attitude estimation error in Scheme 3. 

 ME RMSE MAX 

Roll (°) 0.005 0.003 0.023 

Pitch (°) 0.008 0.005 0.037 

Yaw (°) 0.106 0.068 0.408 

Horizontal Position (m) 0.060 0.080 0.171 

Vertical Position (m) 0.151 0.090 0.456 

Horizontal Velocity (m/s) 0.007 0.013 0.105 

Vertical Velocity (m/s) 0.034 0.067 0.600 

0 500 1000 1500 2000 2500 3000
0

50

100

150
Adaptive factor distribution

Scheme.2

0 500 1000 1500 2000 2500 3000

epoch (sec)

0

2

4

6
Scheme.3



Sensors 2018, 18, 3809 18 of 22 

 

Table 4. Statistical analysis of the horizontal position error probability. 

Position Error ≤0.05 m ≤0.10 m ≤0.15 m 

Scheme 1 (%) 2.00 10.75 51.87 

Scheme 3 (%) 28.04 92.87 99.04 

Table 5. Statistical analysis of the vertical position error probability. 

Position Error ≤0.10 m ≤0.20 m ≤0.30 m 

Scheme 1 (%) 12.01 25.30 31.77 

Scheme 3 (%) 39.88 63.16 99.18 

For better analysis on the cost performance index (CPI) by using the two-antenna integration to 

improve stability and accuracy, Figure 15 gives the error comparison of the one-antenna integration 

and the two-antenna integration using EKF. 

 

 

Figure 15 Error comparison of the one-antenna integration and the two-antenna integration using 

EKF. (a) Horizontal position; (b) vertical position; and (c) attitude. 

According to the theory of optimal state estimation, the accuracy of state estimates, especially 

attitude state estimates, can be improved because measurement redundancy is improved by using 

an augmented equation. We can see from Figure 15 that during a relatively steady measurement state, 
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such as a length bias within 10 cm between the two antennas or a fixed AR, the proposed two-antenna 

integration generally performs better in terms of position and yaw accuracy; however, a negative 

effect is obvious under measurement outliers. Furthermore, there is no significant impact on roll and 

pitch because of the small error magnitude. In summary, the two-antenna GPS (or GNSS)-aided INS 

approach takes advantage of providing complete vehicle state, which improves filter performance [60], 

and we chose low-accuracy single-frequency GPS positioning solutions as measurement to better 

demonstrate the inoperability of IAE method under situations that innovation contains both 

measurement and predicted unknown uncertainties; then, the statistics of both measurement and 

state noise have to be adapted, which indirectly proves that the CPI of the two-antenna approach is 

improved by the proposed adaptive method even when we use single-frequency receiver. 

5. Conclusions 

To obtain high-accuracy and stable positioning and orientation solutions with two-antenna 

GPS/INS integration in harsh environments, this paper introduces a method for controlling the 

contribution of the filter dynamic model, and measurements by adaptive modification of noise 

covariance. To resist positive feedback and numerical issues resulting from the large unknown 

uncertainty of the measurement, the modification of the measurement noise covariance is adjusted 

using a measurement noise covariance matrix reconfiguration algorithm based on quantifications of 

the driving conditions. The performance of the proposed method has been verified in terms of 

accuracy and stability with a field vehicular test, and the following conclusions can be drawn: 

 The conventional EKF adopted in two-antenna GPS/INS integration cannot give a comparative 

performance in terms of the accuracy and stability of the state estimation because the 

corresponding noise covariance cannot be tuned by the filter algorithm itself in the case of 

dynamic model error and measurement outliers in harsh environments. 

 Adaptive modification of the noise covariance process depends on the assumption that 

measurements are accurate and stable or measurement noise follows well-known statistical 

characteristics. Under unknown measurement uncertainties, the innovation sequence can be 

distorted by measurement outliers, and the contribution of measurement outliers is increased, 

which results in a more serious issue concerning the positive feedback on the state estimation 

and even the instability of the Kalman gain computation. 

 The proposed method not only considers the dynamic model errors but also appropriately tunes 

the contribution of the measurements on the state estimates based on the quantitative reliability 

of the GPS-RTK solutions in detail. Filter crashes and positive feedback are completely resisted. 

By using the proposed approach, the two-antenna GPS/INS-integrated navigation system 

maintains a stable and smaller error magnitude over the long term, which reveals that tuning 

measurement noise covariance based on measurement outlier detection and unknown 

uncertainty compensation plays a very important role in stable state estimation. 
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