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Abstract: Vibration sensors are, generally, fixed on the housing of planetary gearboxes for vibration
monitoring. When a local fault occurred on the tooth of a planet gear, along with the system
operating, the faulty tooth will mesh with the ring gear or sun gear at different positions referring to
the fixed sensor. With consideration of the attenuation effect, the amplitudes of the fault-induced
vibrations will be time-varying due to the time-varying transfer paths. These variations in signals
are valuable information to identify the fault existence as well as the severity and types. However,
the fault-meshing positions are time-varying and elusive due to the complicated kinematics or
the compound motion behaviors of the internal rotating components. It is tough to accurately
determine every fault meshing position though acquiring information from multi-sensors. However,
there should exist some specific patterns of the fault meshing positions referring to the single
sensor. To thoroughly investigate these motion patterns make effective fault diagnosis feasible
merely by a single sensor. Unfortunately, so far few pieces of literature explicitly demonstrate these
motion patterns in this regard. This article proposes a method to derive the motion periods of the
fault-meshing positions with a faulty planet gear tooth, in which two conditions are considered:
1. The fault-meshing position initially occurs at the ring gear; 2. The fault-meshing position initially
occurs at the sun gear. For each scenario, we derive the mathematical expression of the motion period
in terms of rotational angles. These motion periods are, in essence, based on the teeth number of gears
of a given planetary gearbox. Finally, the application of these motion periods for fault diagnosis is
explored with experimental studies. The minimal required data length of a single sensor for effective
fault diagnosis is revealed based on the motion periods.

Keywords: planetary gearbox; planet gear fault; motion period; fault meshing position; minimal
required data length

1. Introduction

Assembled with a sun gear, several planet gears and a ring gear, planetary gearboxes have
brought superior features such as large transmission ratio, high torque to weight ratios and coaxial
shafting [1–3] in transmission train [4–8]. Commonly, planet gears not only rotate by themselves but
also revolve around the sun gear. This typical arrangement, to a great extent, provides load-sharing
protection for each planet gear. However, along with the operation of the planetary gearbox, several
planet-sun gear pairs and planet-ring gear pairs are meshing simultaneously. Under this circumstance,
compound motion behaviors of planet gears give rise to complexity and challenges in fault detection
of planetary gearboxes.

The fault detection approach can be mainly divided into the model-based method, signal based
method, and data-driven method [9,10]. Vibration monitoring is a popular and effective way to support
the above methods [11–15]. Generally, vibration data is captured from an external sensor mounted on
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the housing to monitor the health conditions of gears. When a local fault occurred on a planet gear,
regarding a fixed sensor, the fault-meshing position is time-varying which lead to the time-varying
propagating distance from the fault-meshing position to the sensor [16]. With consideration of the
attenuation effect, the amplitudes of the fault-induced vibration will contribute stronger when the
fault-meshing position reaches closer to the sensor and will be weaker vice versa. These time-varying
amplitudes of fault-induced vibrations, which will cause significant changes in signals, are direct
fault-related features to identify the fault existence as well as the severity and types. To sufficiently but
without excessively taking advantage of these fault information, special attention to the rule of the
kinematics of fault-meshing positions needs to be attended so that the entire fault information induced
by every possible fault-meshing position can be held.

The vibration response of gearboxes has a strong connection with the meshing behavior of the
gears. Concerning a fixed sensor, the faulty tooth on a gear in fixed-shaft gearboxes always meshing at
the same position. Therefore, the entire vibrations induced by a faulty gear in fixed-shaft gearbox can
be obtained merely within one complete rotation of the faulty gear [17]. For a faulty gear in planetary
gearboxes, however, employing rotation cycles of the faulty gear to determine the same fault-meshing
position are much more difficult due to the compound motion of internal gears. If a faulty tooth on
a planet gear is in meshing at an initial position, after one rotation of the planet carrier, the planet
gear returns to its initial position. However, different tooth (not the faulty tooth) of the considered
planet gear might be in meshing at the original position [18–21]. In such a scenario, compound motion
behaviors of the rotating components inside planetary gearboxes need to be analyzed in determining a
complete pattern of the faulty gear meshing.

P. Samuel et al. [22] and G.D’Elia et al. [23] proposed a minimum required number of rotations for
an analyzed tooth on an interesting gear (sun gear or planet gear) that returns to its initial meshing
position. However, the required numbers of rotations were computed with the reference of the
planet carrier. In other words, it is not applicable to the real measured data from a fixed sensor
directly. Additionally, these numbers of rotations lack rigorous mathematical derivations. Afterward,
Wang et al. [24] took the fixed sensor as the reference and derived the minimal required number of
rotations of a faulty sun gear returning to its initial fault-meshing position. It is a complete period
that contains all possible fault-meshing positions refer to the fixed sensor. However, their derivation
was solely based upon the teeth number of a given planetary gearbox. Generalized kinematic rule
or expressions for the fault-meshing positions of sun gear was not summarized. Song [25] also
took the fixed sensor as the reference, who try to derive the motion periods for the faulty tooth of
the sun gear or the planet gear returning to its initial fault-meshing positions of a given planetary
gearbox. However, the derived periods must base on the prior knowledge of total fault-meshing
times when the faulty tooth return to its initial fault-meshing position. This will induce complexity in
determining those periods. Moreover, Wang et al. [26,27] investigated the motion behavior of the sun
gear faulty tooth. With respect to the fixed sensor, they provided an expression of a motion period to
reveal the fault-meshing behaviors. Jong et al. [28,29] proposed the representations of the numbers of
carrier rotations to describe a specific ring-planet gear tooth which reset to its initial meshing position.
Whereas, analytical procedures of how to get the numbers of rotations in the above articles are missed.

From the above analysis, it is imperative to propose a method which can explicitly interpret the
motion behaviors of the fault meshing positions for planetary gearboxes. Thoroughly understanding
of these fault meshing behaviors make effective fault diagnosis even with a single sensor come true.
In this article, concerning one fixed sensor, the motion behaviors of a local fault on a planet gear are
thoroughly analyzed. Due to the unique meshing behaviors of the planet gear, two different conditions
of fault-meshing are considered:

1. The faulty tooth initially meshing with the ring gear;
2. The faulty tooth initially meshing with the sun gear.

We propose the generalized expressions of the motion periods including the above two conditions
in terms of rotational angles, respectively. Finally, applications of the motion periods for fault diagnosis
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will be explored through experimental studies. Besides, the derived expressions of the periods will be
validated in a geometrical view.

Remaining parts are arranged as follows: Section 2 introduces the transmission effects and derives
the motion periods of the planet gear fault-meshing positions. Section 3 applies the experimental
studies. Section 4 concludes the whole paper. A vivid geometrical analysis is attached in Appendix A.

2. Motion Periods of the Planet Gear Fault-Meshing Position

A typical planetary gearbox will be analyzed in this paper. As is shown in Figure 1, the ring
gear is fixed, the sun gear is connected with the shaft as the power input, and the planet carrier is the
output. Besides, planet gears are equally assembled, and the vibration sensor is fixed on the housing
of the system.

Sensor 

Meshing point 

Sun gear 

Figure 1. The schematic of planetary gear system.

Before investigating the motion period of the fault-meshing positions, effects of the transmission
paths will be discussed first so that the motivation of our work can be understood.

2.1. Influences of the Fault-Meshing Behavior

When a local fault occurred on a planet gear tooth, a fault induced meshing impact or impulse will
be generated and then exhibit in an oscillation form. With consideration of the attenuation effects [30],
the fault induced vibration can be represented as follow:

xplanet(t) = Ame−ξwnτcos(wdt + ϕ) (1)

where xplanet(t) means the fault induced vibration with the damping effect, Am means the amplitude
of fault impulse, ξ means the damping ratio, wn means the nature frequency of the system,
wd =

√
1− ξ2wn means the damped nature frequency, ϕ means the initial phase and τ means the time

series with period of tplanet namely,
τ = τ + tplanet (2)

where tplanet means the interval time between two times of fault meshing. It should be noted that,
as the system operating, a series of fault impulses will produce which can be represented as in Figure 2.
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Figure 2. Schematic of the fault induced vibrations, xplanet(t).

Based on [16,24,31], the fault induced vibration will transmit through three different transfer
paths to the sensor. Among the three transfer paths, transfer path 2 and 3 do not change along
with time [16,31]. The attenuation level of the fault-induced vibration can be deemed identically.
The remaining transfer path 1, which depends on the fault meshing-position, need to be concentrated.
Once the fault-meshing point moves closest to the sensor, the amplitude of the fault-induced vibration
will be stronger due to the least attenuation level of the shortest propagating distances and will
be weaker vice versa. We show some possible fault-meshing positions (solid dot) and propagating
distances through transfer path 1 (dashed line) to the fixed sensor in Figure 3.

Transfer Path 1

Transfer Path 1

Transfer Path 1

Transfer Path 1

(a) Closest fault-meshing position

(c) Farthest fault-meshing position

(b) Other fault-meshing position

(d) Other fault-meshing position

Figure 3. Possible fault-meshing position and the corresponding propagating distance of transfer path1.

Figure 3a,c exhibits the closest and farthest fault meshing position to the sensor. The captured
amplitudes of fault induced vibration will reach maximum and minimum, respectively. Additionally,
Figure 3b,d exhibits two possible fault meshing positions neither closet nor farthest to the sensor.
Therefore, these two amplitudes of fault induced vibration should fall between the above maximum
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and minimum values. Suppose using d(t) to represent the distance between the fault-meshing
positions, the propagating distances of the fault meshing positions to the sensor in Figure 3 through
transfer path 1 can be depicted in Figure 4.

t

d(t)

0 tplanet 2tplanet 3tplanet 4tplanet

...da

db

dc dd

...

Figure 4. Possible distances between the fault meshing positions and the sensor in Figure 3.

The fault-induced vibration will transmit through d(t) to the sensor so that the sensor captured
fault amplitude, Asen(t), can be represented as:

Asen(t) = Ame−ξwn
d(t)

v (3)

where v is the propagating speed of the fault induced vibration, d(t)
v means the attenuate time duration

from the fault meshing position to the sensor. Notice that for a determined planetary gear system,
ξ and wn in Equation (3) should be constant. Besides, the speed of a determined wave, v should also
be a constant. In such a scenario, the captured fault amplitudes only depend on the propagating
distance d(t).

Although it is difficult to accurately determine every fault meshing position so that to determine
the time-varying propagating distances, there should exist specific motion patterns of the meshing
positions relative to the sensor which satisfy the following criteria:

Asen(t) = Asen(t + Tmotion) (4)

where Tmotion represents the motion period of fault meshing positions. Meanwhile, Tmotion should be
the period of d(t). In order to make use of these fault amplitudes for the fault diagnosis of planet gear
fault, Tmotion should be derived as the prior knowledge.

2.2. Motion Period of Planet Gear Fault-Meshing Behavior

In this section, the motion behaviors of a single faulty tooth of a planet gear will be discussed.
Intuitively, concerning a fixed-sensor, the motion behavior of the planet gear fault-meshing positions
should follow some rules. The trouble is that the planet gear faulty tooth may sometimes mesh with the
ring gear or sometimes mesh with the sun gear. In this regard, these two conditions will be discussed
in the following, respectively.

2.2.1. Initial Fault-Meshing Position at Ring Gear

Assume an initial fault-meshing position that the faulty tooth of a specific planet gear is meshing
with the ring gear locating closest in line with the sensor. When the planet gear faulty tooth is again
meshing with the ring gear at the same position, a period is completed. Figure 5 illustrates the
schematic of this period.
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Figure 5. Schematic of the motion period of the initial fault-meshing position at the ring gear.

In Figure 5, the solid dot represents the faulty tooth of planet gear 1 is meshing with the ring gear.
Rotational directions of the sun gear, the analyzed faulty planet gear, and carrier are also annotated.
During one rotation cycle of planet gear 1, the faulty tooth will mesh with the sun gear or the ring gear
at different positions. Finally, after several rotations of the planet gear 1 or several rotations of the
carrier, a period will complete and then the next period will restart. Inspired by [26], this period is,
in essence, similar to the tidal period of the sun gear fault-meshing position. The tidal period of planet
gear fault-meshing position should be the analyzed planet gear and carrier both rotating minimal
integer cycles, simultaneously. In the following, we will derive this period in terms of rotation angles.

Here, we only consider the fault-meshing position is occurring on the ring gear. In such a scenario,
the fault-meshing times only counted once during one complete rotation of the planet gear. Between
every two times of the planet gear faulty tooth meshing with the ring gear, we use θcarrier to represent
the rotation angle of the carrier and ∆θ to describe the smallest angle between the fault-meshing point
to the sensor, both are shown in Figure 6.

(a) Assumed fault meshing position

1

2

3

4

=0 
 Fault Meshing point

4

1

2

3

(b) Following fault meshing position

= carrier 

ca
rrier



Planet carrier

Figure 6. Schematic of the rotation angle between each two times fault-meshing of planet gear 1.

In Figure 6, the gears are simplified as circles so that the rotation angles can be conveniently
demonstrated. Referring to the fixed sensor, from one fault-meshing point to the next, the rotation
angle of planet gear 1, θplanet, must be 2π radians. The time duration between each fault-meshing,
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tplanet, can be therefore determined by the rotation angle between two times of fault-meshing divides
the angular speed of the planet gear, as is given in Equation (5):

tplanet =
1

fplanet
(5)

where fplanet means the rotational frequency of the planet gear measured in Hz. The rotation angle of
planet carrier between every two times of fault-meshing of planet gear 1, θcarrier, can be determined in
the equation below:

θcarrier = ωcarriertplanet

=
2π fcarrier

fplanet

(6)

where θcarrier is measured in radians; ωcarrier denotes the angular speed of the carrier measured in
radians per second and fcarrier denotes the rotational frequency of carrier measured in Hz. Along with
the operation of planet gear 1 and the carrier, the faulty tooth meshing with ring gear will occur 1st,
2nd ... etc. times. Eventually, at mringth fault meshing (mring is an integer), the faulty tooth of planet
gear 1 will first return to the initial meshing position as shown in Figure 6a. If we use Φplanet−ring to
represent the total rotation radians of planet gear 1, and Φcarrier−ring to represent the total rotation
radians of the carrier, both total radians are at the mringth fault-meshing:

Φplanet−ring = θplanetmring

= 2πmring
(7)

and
Φcarrier−ring = θcarriermring

= 2π
fcarrier
fplanet

mring

(8)

where Φplanet−ring and Φcarrier−ring are both measured in radians.
According to the criteria of the tidal period of the planet gear fault-meshing positions, the planet

gear 1 and the carrier must rotate complete cycles, simultaneously. In other words, this means
Φplanet−ring and Φcarrier−ring must be an integer number of 2π, simultaneously. Equation (7) tells
that for any integer value of mring, Φplanet−ring is integer number of 2π. However, Φcarrier−ring from
Equation (8), which containing a ratio between fcarrier and fplanet, bring difficulty in determining the
integer cycles. According to [22], fcarrier and fplanet can be established by the gear-meshing frequency
of planetary gearboxes, as is shown in the following equation:

fcarrier
fplanet

=
Zplanet

Zring − Zplanet
(9)

where Zplanet and Zring represent the teeth number of the planet gear and the ring gear, respectively.
We substitute Equation (9) into Equations (6) and (8) and then get the expressions of θcarrier and
Φcarrier−ring:

θcarrier =
2πZplanet

Zring − Zplanet
(10)

and

Φcarrier−ring =
2πZplanet

Zring − Zplanet
mring (11)
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Equations (10) and (11) reveal that between two times of fault-meshing the carrier rotational angle,
and total rotational angle of the carrier to be a tidal period, intrinsically depends on the teeth number
of planet gear and ring gear. These teeth numbers are necessarily integer number.

Notice that both Φplanet−ring and Φcarrier−ring contains an integer term mring, it is reasonable to
take a ratio between Φplanet−ring and Φcarrier−ring to cancel the common divisor:

Φplanet−ring

Φcarrier−ring
=

nplanet−ring

ncarrier−ring
=

Zring − Zplanet

Zplanet
(12)

where nplanet−ring and ncarrier−ring represent the rotational cycles of the faulty planet gear and carrier
to be a tidal period (Φ = 2πn). Suppose a greatest common divisor of the numerator and denominator
exist in Equation (12), namely

X1 = GCD{Zring − Zplanet, Zplanet} (13)

where GCD{}means the greatest common divisor of the whole terms in the bracket.

Equation (13) tells that, when the planet gear rotates
Zring−Zplanet

X1 cycles and simultaneously carrier

rotates
Zplanet

X1 cycles, a tidal period is completed. Identically, we can also use the least common multiple
to represent the rotation cycles in a tidal period:

nplanet−ring =
LCM{Zring − Zplanet, Zplanet}

Zplanet
(14)

and

ncarrier−ring =
LCM{Zring − Zplanet, Zplanet}

Zring − Zplanet
(15)

The total fault meshing times in a tidal period can be therefore determined based on Equation (14)
or Equation (15):

mring =
LCM{Zring − Zplanet, Zplanet}

Zplanet
(16)

In this section, with consideration of the initial fault-meshing position that the faulty tooth of a
planet gear meshing with the ring gear, the motion period of the fault-meshing positions is derived in
terms of the rotation angle, which intrinsically depends on the teeth number of a planetary gearbox.
The time duration of this motion period can be determined by the rotational cycles of carrier or
planet gear:

ttidal−ring =
ncarrier−ring

fcarrier
=

nplanet−ring

fplanet
(17)

where ttidal−ring represents the motion period of the faulty tooth of a planet gear initially meshing
at the ring gear. In such a scenario, the period of the fault amplitudes in Equation (4) should be
Tmotion = ttidal−ring. This period should be considered during the signal modeling within faulty planet
gear so that some novel fault related sidebands can be revealed. In the next section, the motion period
of the faulty tooth initially meshing with the sun gear will be discussed.

2.2.2. Initial Fault-Meshing with Sun Gear

Now assume the initial fault-meshing position that the faulty tooth of a planet gear meshes with
the sun gear locating closest in line to the fixed sensor. When the planet gear faulty tooth again meshing
with the sun gear at the same position, a period is completed. We give the schematic of this period in
Figure 7.
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Figure 7. Schematic of the motion period of the initial fault-meshing position at the sun gear.

If each tooth of sun gear is treated identically, the period of the fault-meshing positions equals
to ttidal−ring which we have derived in the Section 2.2.1. Because this period only requires the
analyzed planet gear and planet carrier rotating complete cycles, simultaneously. In practice, however,
imperfections due to the inevitable manufacturing assembly errors or an uneven load or after a period
of operation, different sun gear tooth may suffer from different working conditions. The teeth of
sun gear should not be treated identically due to the different tooth will result in different vibrations
pattern. In this regard, the period of the faulty tooth of a planet gear meshing with a specific tooth of
sun gear will be thoroughly discussed.

Inspired by the derived motion period in Section 2.2.1, the motion period of a faulty tooth meshing
with a specific sun gear tooth requires the sun gear, the analyzed planet gear, and the carrier rotating
integer cycles, simultaneously. We symbolize this typical motion period as ttidal−sun and will also
derive this period in terms of rotational angles.

Here, we only focus on the fault-meshing point occurring on the sun gear. Correspondingly,
this means the fault-meshing times only be counted once with respect to one complete rotation cycle
of the faulty planet gear. Between each two times of the faulty tooth of a planet gear meshing with
the sun gear, the rotation angle of the carrier, θcarrier, and the rotation angle of the specific tooth on
sun gear, θsunrot, both are shown in Figure 8.

(a) Assumed fault-meshing position

1

2

3

4

=0 
 Fault-Meshing point

1

2

3

4

(b) Following fault-meshing position

shaft


carrier



Planet carrier
Specific tooth of sun gear

= carrier 

Figure 8. Rotating angle between two times of fault-meshing.

Between every two times of fault-meshing, the rotation angle of the analyzed planet gear, θplanet,
equals to 2π radians; the rotation angle of carrier has been derived in Equation (8); the rotation angle
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of the specific tooth on the sun gear, θsun, should equal to the angular speed of sun gear shaft, ωsunrot,
multiply by the time duration, tplanet in Equation (5), as is given in Equation (18):

θsun = ωsunrottplanet = 2π
fsunrot

fplanet
(18)

where fsunrot means the rotational frequency of sun gear shaft which is measured in Hz.
The relationship between fsunrot and fcarrier can be determined through the meshing frequency [22]:

fsunrot

fcarrier
=

Zsun + Zring

Zsun
(19)

where Zsun represents the tooth number of the sun gear. According to the machinery handbook [32],
the relationship of the teeth number in a planetary gearbox must subject to the following rule:

Zring = Zsun + 2Zplanet (20)

Based on Equations (9), (19) and (20), θsun can be rewritten in the following:

θsun =
4πZplanet

Zsun
(21)

Equation (21) reveals that θsun also only depending on the teeth number of the sun gear and
planet gear.

Take Figure 8a as the initial position, assume that after msun times of fault-meshing, the faulty
tooth on planet gear 1 again meshing with the specific tooth of the sun gear. At the same time, the total
rotation radians of planet gear 1, the planet carrier and the sun gear can be expressed as follow:

Φplanet−sun = θplanetmsun

= 2πmsun
(22)

Φcarrier−sun = θcarriermsun

=
2πZplanet

Zring − Zplanet
msun

(23)

Φsun = θsunmsun

=
4πZplanet

Zsun
msun

(24)

where Φplanet−sun means the total rotation radians of the faulty planet gear; Φcarrier−sun means the
total rotation radians and Φsun means the total rotation radians of the sun gear, all of them are to be a
motion period. Based on the requirement of this motion period, all of the rotational radians must be
integer multiple of 2π, simultaneously. A ratio will be taken among Equations (22)–(24) to cancel the
common divisor:

nsun : nplanet−sun : ncarrier−sun =
Zring + Zsun

Zsun
:

Zsun + Zplanet

Zplanet
: 1 (25)

where nsun, nplanet−sun and ncarrier−sun represent the number of rotations of sun gear, faulty planet gear
and carrier in a motion period. Actually, determining the minimum integer rotation cycles of the three
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components is to find the least common denominator of Equation (25) and the number of rotating
cycles of the carrier can be determined:

ncarrier−sun = LCD{
Zring + Zsun

Zsun
,

Zsun + Zplanet

Zplanet
, 1}

=
LCM{Zring + Zsun, Zsun}

Zring + Zsun

LCM{Zsun + Zplanet, Zplanet}
Zsun + Zplanet

=
LCM{Zring + Zsun, Zsun}

Zring + Zsun
ncarrier−ring

(26)

where LCD means calculating the least common denominator of all the terms in the bracket.
Correspondingly, the rotation cycles of the sun gear and planet gear to be a motion period can
be determined:

nsun =
LCM{Zring + Zsun, Zsun}

Zsun
ncarrier−ring (27)

nplanet−sun =
LCM{Zring + Zsun, Zsun}

Zring + Zsun
nplane−ring (28)

The time duration to be a tidal period depend on the number of rotations of the shaft and the
input rotational frequency, as is shown:

ttidal−sun =
nsun

fsunrot
=

nplanet−sun

fplanet
=

ncarrier−sun
fcarrier

(29)

where ttidal−sun means the time duration of a motion period in which the initial fault-meshing position
at sun gear. In such a scenario, the motion period of fault induced amplitudes in Equation (4) should
be Tmotion = ttidal−ring. This period considering the sun gear teeth are different from each other and
more complete fault induced information is covered. Therefore, the vibration data measured in this
period can be used to diagnostic compound faults, such as the faults occurred on both sun gear and
planet gear teeth effectively.

In Sections 2.2.1 and 2.2.2, two typical motion periods for the faulty tooth of the planet gear
are discussed. These periods, which intrinsically based on the teeth number of planetary gearboxes,
are unique natures to describe the kinematic motion behaviors of the fault-meshing positions. Since
the time duration of ttidal−ring covers entire fault induced vibration by all the possible fault meshing
positions, we will discuss the application of this period for fault diagnosis by experimental studies.

3. Experimental Study

The experimental data are collected from a planetary gearbox test rig at University of Electronic
Science and Technology of China (UESTC), Equipment Reliability and Prognostic and Health
Management Laboratory (ERPHM). The configuration of the test rig is shown in Figure 9. More detail
information can be obtained in [1]. Geometry parameters of the planetary gearbox are listed in Table 1.

Table 1. Parameters of planetary gearbox.

Zsun Zplanet Zring N

28 36 100 4
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Figure 9. Experimental test rig.

The experiments are operated on the planetary gearbox, using an accelerometer to collect the data.
Four planet gear fault scenarios are considered, as is shown in Figure 10.

(a) Healthy (b)Root crack

(c) Tooth broken (d) Tooth missing

Figure 10. Planet gear health scenarios.

For each health scenario, 30 groups of data are acquired under the rotational speed of 1800 rpm
and 3000 rpm, the data length of 13.8 s, and sampling frequency of 7680 Hz. Since the sun gear is in
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full healthy state, we may explore the diagnostic ability of the difference data length selected based on
ttidal−ring. According to Table 1 and Equation (17), ttidal−ring can be determined in Table 2:

Table 2. Time duration of ttidal−ring.

Rotational Speed Time Duration of ttidal−ring

1800 rpm 48
35 s

3000 rpm 144
175 s

Each signal will be sliced into different lengths, namely 1
4 ttidal , 1

2 ttidal−ring, ttidal−ring and 2ttidal−ring.
For each signal pieces, we use two simple indicators, namely root mean square (RMS) and Kurtosis to
explore the diagnostic effects of those data lengths.

From Figures 11a–c and 12a–c, the data length with 1
4 ttidal−ring, 1

2 ttidal−ring, and ttidal−ring can not
separate all the health scenarios clearly. A trend can be discovered that as the data length becomes
longer, the better fault separation ability will be obtained due to more fault induced information
is covered. Finally, Figures 11d and 12d both reveal that, when the data length achieve 2 times of
ttidal−ring, the health scenarios are clearly identified. This is because the initial fault meshing positions
for different signal segments may be different relative to the sensor. 2 times of ttidal−ring measured data
length guarantee that each signal segment covers the fault induced vibration by all the possible fault
meshing positions. Consequently, 2 times of ttidal−ring data length can be used as the minimal required
analyzed data length for effective fault diagnosis of the planet gear fault.

(a) Data length with
1

4
tidal ringt  second   (b) Data length with

1

2
tidal ringt  second 

(c) Data length with tidal ringt  second  (d) Data length with 2 tidal ringt  second 

Figure 11. Diagnostic effects under rotational speed of 1800 rpm.
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(a) Data length with
1

4
tidal ringt 

second (b) Data length with
1

2
tidal ringt 

second 

(c) Data length with tidal ringt  second (d) Data length with 2 tidal ringt  second 

Figure 12. Diagnostic effects under rotational speed of 3000 rpm.

4. Conclusions

In this paper, a method is originally proposed to determine the motion periods of the planet
fault meshing positions. Due to the unique initial fault meshing position of a faulty planet gear,
two scenarios are considered, namely: 1. Initial fault meshing position occurs at the ring gear; 2. Initial
fault meshing position occurs at the sun gear. The motion periods are summarized in terms of rotation
cycles, and we again highlight them in the following:

• Condition 1: Fault meshing initially occurred on the ring gear

nplanet−ring =
LCM{Zring − Zplanet, Zplanet}

Zplanet
(30)

ncarrier−ring =
LCM{Zring − Zplanet, Zplanet}

Zring − Zplanet
(31)

ttidal−ring =
nplanet−ring

fplanet
=

ncarrier
fcarrier

(32)

• Condition 2: Fault meshing initially occurred at the sun gear

nsun =
LCM{Zring + Zsun, Zsun}

Zsun
ncarrier−ring (33)
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nplanet−sun =
LCM{Zring + Zsun, Zsun}

Zring + Zsun
nplanet−ring (34)

ncarrier−sun =
LCM{Zring + Zsun, Zsun}

Zsun
ncarrier−ring (35)

ttidal−sun =
nsun

fsunrot
=

nplanet−sun

fplanet
=

ncarrier−sun
fcarrier

(36)

These periods, which intrinsically depend on the teeth number of gears, are unique natures to
reflect faulty planet gears of planetary gearboxes. With these prior fault motion periods, it is more
reasonable to diagnosis faults by a single sensor. Experimental studies demonstrate the minimal
required analyzed data length, namely 2ttidal−ring, achieve effective fault diagnosis of planet gear
fault. This criteria can be widely applied for the ring-gear fixed planetary gear system and have great
potential for the industrials.
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Appendix A. Geometrical validation of the motion periods

The appendix mainly using the geometrical analysis to validate the derived expressions of motion
periods with our experimental planetary gearbox. Once a planetary gearbox is determined, some
parameters, such as the rotation angles between every two times of fault-meshing could be determined
based on Table 1. We list the values of those known parameters, θcarrier, θplanet, θsun and values of GCD
in Table A1.

Table A1. Parameters which can be determined by a planetary gear system.

Known Parameters Values/Unit Description

θcarrier
9

16 /cycle Rotation angle of carrier between two times of fault-meshing
θplanet 1/cycle Rotation angle of the faulty planet gear between two times of fault-meshing
θsun

8
7 /cycle Rotation angle of sun gear between two times of fault-meshing

LCM{Zring − Zplanet, Zplanet} 576 LCM between Zplanet and (Zring − Zplanet)
LCM{Zring + Zsun, Zsun} 896 LCM between 2(Zplanet + Zsun) and Zsun

Additionally, for different initial fault-meshing conditions, some key parameters namely, mring,
nplanet−ring, ncarrier−sun as well as nplanet−sun, are listed in Tables A2 and A3 for validation.
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Table A2. Parameters which need to be validated—Initial fault meshing position at ring gear.

Undetermined Parameters Values/Unit Description

mring 16/times Total fault-meshing times of a motion period
nplanet−ring 16/cycles Number of rotations of the faulty planet gear in a motion period
ncarrier−ring 9/cycles Number of rotations of carrier in a motion period

Table A3. Parameters which need to be validated—Initial fault meshing position at sun gear.

Undetermined Parameters Values/Unit Description

msun 112/times Total fault-meshing times of a motion period
nsun 288/cycles Number of rotations of the sun gear in a motion period

ncarrier−sun 63/cycles Number of rotations of carrier in a motion period
nplanet−sun 112/cycles Number of rotations of faulty planet gear in a motion period

We first validate the correctness of the values in Table A2, a geometrical derivation is demonstrated
to track the trace of the fault-meshing point until a period is achieved. Take Figure 6a as the initial
position, namely the faulty tooth of sun gear is meshing with ring gear which locating closest to the
sensor. Based on the known rotation angles in Table A1, during one rotation cycle of the planet gear
1, the carrier will rotate 9

16 cycle (202.5◦). We use ∆θ to represent the smallest angle degree between
the fault-meshing position and the sensor so that the fault-meshing position can be mathematically
determined. Figure A1 gives the each fault-meshing position in a motion period.
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Figure A1. Each fault meshing postion in a motion period.
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Figure A1 reveals that, for the initial fault-meshing position at the ring gear, after planet gear
1 rotates 16 cycles, or fault-meshing occurred 16 times, the faulty tooth of planet gear 1 first return to
its initial meshing-position. The result of the geometrical demonstration is identical with the results
nplanet−ring and mring which derived by the number of teeth in Table A2.

Now we will validate the correctness of the derived values in Table A3. Since the sun gear has
28 teeth, we symbolize the teeth with the number from 1 to 28. Take Figure 8a as initial fault-meshing
position, namely the faulty tooth of planet gear meshing with tooth number ’1’ of the sun gear.
When the faulty tooth of planet gear 1 first return to the initial meshing-position, namely the planet
gear rotates 16 cycles, the number of rotations of the sun gear, nsun−p, can be determined based on
Equation (33):

nsun−p =
2Zplanet

Zsun
16 = 41

1
7

(A1)

At the same time, the symbolized tooth number of the sun gear, Tsun−1, which is being meshed
with the faulty tooth at the initial position can be determined based on Equation (A1) and Zsun:

Tsun−1 = mod(nsun−pZsun, Zsun) + 1 = 5 (A2)

where mod(a, b) means the reminder of a/b.
Equation (A2) tells that when the planet gear 1 rotates 16 cycles, the faulty tooth will mesh with

the tooth number ’5’ of sun gear at the initial fault position. After 2nd 16 rotation cycles of planet
gear 1, the faulty tooth will mesh with the tooth number of Tsun−2, in which,

Tsun−2 = mod(nsun−pZsun, Zsun) + Tsun−1 = 9 (A3)

Equation (A3) reveals that after 2nd 16 rotations cycles or 32 rotation cycles of planet gear,
the faulty tooth will mesh with the tooth number ’9’ at the initial position. In the same token, Figure A2
gives the sun gear tooth sequence that each time the faulty tooth of planet gear return to the initial
position. Where Msun represents the tooth sequence of the sun gear.

61 2 3 4 5 7sunM

1 16st rotation cycles
Rotations of Planet gear 1

Sensor

2 16nd rotation cycles

8 9 10 11 13 1514 1612

3 16rd rotation cycles

17

4 16th rotation cycles

18 19 20 21 22 2317 24 25 26 27 28 1

5 16th rotation cycles 6 16th rotation cycles

Sensor

7 16th rotation cycles

sunM

Rotations of Planet gear 1

Initial meshing 
position

Figure A2. Tooth sequence of the sun gear.

Figure A2 tells that if the initial fault-meshing position that the faulty tooth of planet gear 1 with
tooth number ’1’ of sun gear, after 7th 16 rotation cycles or 112 rotation cycles of planet gear 1, the tooth
’1’ of sun gear first return to the initial position. The total fault-meshing, msun, occurred 112 times on
the sun gear. The result of geometrical analysis is in full agreement with the nplanet−sun in Table A3.
The derivation of the tidal period of faulty planet gear is validated.
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