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Abstract: The reliability of a navigation system is crucial for navigation purposes, especially in areas
where stringent performance is required, such as civil aviation or intelligent transportation systems
(ITSs). Therefore, integrity monitoring is an inseparable part of safety-critical navigation applications.
The receiver autonomous integrity monitor (RAIM) has been used with the global navigation satellite
system (GNSS) to provide integrity monitoring within avionics itself, such as in civil aviation for
lateral navigation (LNAV) or the non-precision approach (NPA). However, standard RAIM may not
meet the stricter aviation availability and integrity requirements for certain operations, e.g., precision
approach flight phases, and also is not sufficient for on-ground vehicle integrity monitoring of several
specific ITS applications. One possible way to more clearly distinguish anomalies in observed GNSS
signals is to take advantage of time-delayed neural networks (TDNNs) to estimate useful information
about the faulty characteristics, rather than simply using RAIM alone. Based on the performance
evaluation, it was determined that this method can reliably detect flaws in navigation satellites
significantly faster than RAIM alone, and it was confirmed that TDNN-based integrity monitoring
using RAIM is an encouraging alternative to improve the integrity assurance level of RAIM in terms
of GNSS anomaly detection.

Keywords: global navigation satellite system; receiver autonomous integrity monitor; time delay
neural network; integrity monitoring; augmentation systems

1. Introduction

In areas that require stringent performance when using the global navigation satellite system
(GNSS), such as civil aviation or intelligent transportation systems (ITSs) (e.g., electronic fee collection,
route guidance, advanced driver assistance systems including collision avoidance systems, and
intelligent speed adaptation), the integrity of GNSS plays an important role and its monitoring
is required. In these liability-critical applications, the reliability of location solutions derived from
navigation data must be considered [1–4]. This measure of reliability is referred to as the integrity
of the navigation system and is a feature that notifies users in time when it is undesirable to use a
navigation system. Unacceptable position deviations can have a significant impact on positioning and
navigation functions, significantly degrading performance; thus, integrity monitors need to be utilized
for the detection and exclusion of abnormal signal sources before estimating a user’s position [1,2,5].

GNSS provides some basic integrity information to users, such as satellite health status, through
navigation messages. However, this information is delayed and is not delivered fast enough for
applications that require high levels of safety. As it typically takes from 15 min to several hours to
deliver warning to users this delay is problematic for applications that require high levels of safety
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and therefore these messages have no meaningful capabilities for integrity monitoring [6]. Instead,
users can determine the integrity using either receiver autonomous integrity monitors (RAIMs),
which have been used for many years in various application fields, or an external integrity data
source from a GNSS augmentation system, such as ground-based augmentation systems (GBAS) or
satellite-based augmentation systems (SBAS), to verify the integrity of the estimated position using
reference receivers [7–10]. The basic concept of RAIM is to use redundant observations to identify and
exclude erroneous measurements to ensure that the quality of the estimated position is reliable. The
consistency of redundant measurements provides a clue as to whether the navigation satellites are
operating out of their normal range and whether the position calculated with this error is unusable.

However, most studies related to RAIM have primarily focused on the flight phase of the
non-precision approach (NPA), which can become an issue that needs to be addressed when RAIM
is used for certain services, such as approach with vertical guidance (APV); the alert limits for NPA
are quite moderate, but they are considerably tighter for the APV service. The APV service has lower
alert limits because hazardously misleading information (HMI) events can occur when the position
error exceeds the alert limit while the system is declared available [8,10–13]. Typical RAIMs cannot
prove that an HMI event will be identified all the time with an overly high probability of ensuring
integrity requirements. In addition, recent studies have focused more on improving the availability
of RAIM in multi-constellation GNSS. This is being developed with dramatic progress and better
performance, rather than on improving the RAIM integrity level [14–17]. The operation of autonomous
vehicles for the implementation of ITS does not require a large separation distance to compensate
for the limitations of navigation accuracy, which greatly improves the safety ratings. The extensive
use of these autonomous GNSS-based techniques is currently constrained by strict safety regulations,
such as the required navigation performance (RNP), which is specified in terms of accuracy and
integrity requirements for a given operating mode. RNP was originally developed for air navigation
and has since been extended to ground vehicle navigation [3,4]. Therefore, an alternative integrity
augmentation mechanism is needed to detect error sources that exceed a predefined stringent safety
limit and safely send alerts to manned/unmanned ground systems to avoid the constraints.

For this reason, the goal of this paper is to devise a new method to more efficiently capture
anomalous behavior in a ranging signal. This method should have the reduced anomalies detection
time in GNSS augmentation systems, while also increasing the availability of RAIM to meet the more
strictly regulated service level. One possible way to more easily distinguish anomalies in observed
GNSS signals is to take advantage of a time-delayed neural network (TDNN), which is a nonlinear
model, as opposed to simply using RAIM alone. TDNNs can be used to estimate useful information
about faulty characteristics, which are expressed in irregular sequences as the range residual calculated
through received GNSS signals, by modeling the test statistic calculated over the existing RAIM.
The association of the time series of the test statistic achieved from RAIM combined with TDNN for
GNSS augmentation systems ultimately enables the computation of the dissimilarity between the
current trend (based on online measurements) and the past trend (when the navigation satellites are
under normal conditions) in order to increase navigation system integrity.

Two case studies have been investigated to assess the performance of the proposed integrity
monitoring strategy for anomalous event detection in GNSS. One study uses data generated via
software simulation and the other uses real GPS data collected from an integrity monitoring system
installed on the rooftop of a multi-media building in Soonchunhyang University, Korea. During
testing, we accounted for a step-type anomalous failure event, which results in an instantaneous
large measurement jump. The test results demonstrate the feasibility of detecting a bad navigation
satellite faster than typical RAIMs. This means the proposed method can be used with APV or
intelligent transportation systems, which require much higher integrity conditions for safety, which
are not achievable through RAIM. Employing TDNN-based integrity monitoring using RAIM is a very
effective alternative to improve the assurance level of the integrity of typical RAIMs. The ability to
detect anomalies has been improved, especially when there is an abnormality in the measurements, and
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our proposed method shows a clear advantage in being able to detect small variations, as compared to
a typical monitor.

2. GNSS Signal Modeling

Supposing ρ ∈ Rn×1 is the measurement of the pseudo-range obtained from navigation messages
of n visible navigation satellites, the basic measurement formulation between the position of a user
followed by a linearization and the difference of the predicted and observed measurements can be
described by the following linear equation [6]:

δy = Hδx + ε, ε ∼ N(0, σ2 I) (1)

Here, δy ∈ Rn×1 is the measurement residual formed by the differences between the predicted
range and the measured range on a basis of the nominal user position and the clock bias. Additionally,
H ∈ Rn×4 is the observation matrix formulated by linearization for the nominal user position and
clock bias, while δx ∈ Rn×1 is the navigation error state that includes three components of the actual
position deviation from the nominal position plus the user clock bias deviation. Finally, ε ∈ Rn×1 is
the measurement error produced by the typical receiver noise, imprecise information of the satellite
position and satellite clock error, unanticipated errors caused by satellite failure, and so on. These
errors can take the form of a standard Gaussian distribution with zero mean and covariance σ2 I [11,18].
Based on the fact that at least four satellites can be seen in most cases, redundant pseudo-range
information is available, and the position estimation is attained from the best fit of the over-determined
data. The least squares of the state at an instance k are estimated as follows:

δxk,LS = H+
k δyk (2)

Here, H+
k denotes the pseudo inverse of Hk (i.e., H+

k = (HT
k Hk)

−1HT), the estimate of δyk is
δỹk = Hkδxk,LS, and the error of the range residual is defined as δεk = δyk − δỹk. RAIM is the easiest
and most cost-effective architecture for integrity monitoring, quantifying a self-consistency checking
concept of redundant measurements. Its test statistic is described based on the sum of the squared
range residual error as:

ΞRAIM,k =
√

δεk
Tδεk/σ2(nk − 4) (3)

The general threshold value of RAIM (i.e., TRAIM,k) is directly computed by the cumulative
distribution function of χ2(nk − 4) at an instance k with desired values of PFA and PMD: TRAIM,k =

Q−1(PFA|nk − 4) [1,2]. Here, since the range residual error statistic is a quadratic form of δεk, the
probability of a false alarm (i.e., PFA) is presented by the chi-squared distribution and is proportional
to the normal random measurement noise εk. Once a satellite that has been corrupted by anomalies is
noticed, it should be eliminated to ensure uninterrupted navigation.

3. TDNN for Anomalous Event Detection

Many applications require temporal information to be processed, such as trends in specific time
windows, time series to a certain time, and so on. Common tasks dealing with temporal information
include time-series prediction, classification, or mapping to other time series [19]. Long-term behavior
can typically be modeled using neural networks (NNs) that have been successfully applied to
compensate for the time delay in nonlinear processes. NNs may adopt two types of mechanisms
(i.e., a non-recurrent structure based on delay elements in the feedforward direction and a recurrent
structure with delayed feedback) to store temporal information internally. Unlike biological neural
networks, connections between artificial neurons are not usually added or removed after the network
has been created. Instead, connections are weighted and the weights are adapted by a learning
algorithm. An input signal propagates through the network in the direction of the connections until it
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reaches the output of the network. In supervised learning, the learning algorithm adjusts the weights to
minimize the discrepancy between the output of the network and the desired value provided [20–22].

The Recurrent Neural Network (RNN) architecture, e.g., Long Short Term Memory (LSTM), has
been shown to effectively learn the temporal dynamics of the signal, but the training is complicated by
the increased network complexity [23–26]. Another weakness of RNN is that the deeper the structure,
the more difficult it becomes to learn as the gradient has to pass through several hidden states and be
involved in optimization. When compared to recurrent structures in this aspect, feedforward learning
is relatively fast, simple, and more efficient for modeling uncomplicated temporal dynamics. TDNNs,
which were originally designed for speech recognition, perform exceptionally well when modeling
dynamic systems with large time delays [27]. They are modified feedforward networks designed to
capture the dynamics of modeled processes. Because a feedforward network has no internal memory to
store information about the past, it is insufficient for processing temporal sequences [20]. To overcome
this limitation, the memory of the past is introduced by means of extending the input of the network
using tapped delay lines as synapses.

For this reason, although there are various neural network structures for learning the long
temporal dependencies, we adopted a TDNN to capture the GNSS anomalous behavior through the
change of metric, which is less dynamically changed, and will be described later. Because there is no
modification to the network topology, a standard learning technique is typically based on temporal
backpropagation, and the weights that look at the gradient of the error surface in TDNNs are adjusted.
The stimulus signal yk is captured and processed with synaptic weights w by the sum function, and the
newly generated activation potential of the neuron is achieved by the activation function ϕ, as shown
in Figure 1. Then, the output of the network is given by:

yk+1 = ϕo

(
∑ L

j=1woj·ϕj

(
∑ M

i=1yk−i+1wji + bj

)
+ bo

)
(4)

Here, M is the number of inputs and L is the number of neurons in the hidden layer. The usual
choice of an activation function is a sigmoid, ϕ(t) = 1/(1 + e−t), or hyperbolic tangent, ϕ(t) =

(e2t − 1)/(e2t + 1), but any differentiable function can be employed. The advantage of these two
functions is that each first derivative can be represented by its own simple function.
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Figure 1. Architecture of the time-delayed neural network (TDNN).

Among the many algorithms used for training TDNNs, the Levenberg–Marquadt optimization
scheme is considered to be the most effective [23,27–30]. The Levenberg–Marquadt method adaptively
varies the parameter updates to reduce the sum of the squares of errors of the form:

E(w) = e(w)Te(w) =
∞

∑
k=0
‖ek(w)‖2 (5)
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Here, ek(w) is the error in the k-th epoch and e(w) is a vector with element ek(w). If the difference
between the former weight vector and the newly calculated weight vector is small, the error vector can
be expanded into a first order through a Taylor series [31,32].

If a function E(w) needs to be minimized with respect to the weight vector w, then Newton’s
method becomes:

∆w = −
[
∇2E(w)

]−1
∇E(w) (6)

Here, ∇2E(w) is the Hessian matrix and ∇E(w) is the gradient. It can then be shown that:

∇E(w) = JT(w)e(w) (7)

∇2E(w) = JT(w)J(w) + ∑ N
k=1ek(w)

∂2ek(w)

∂wi∂wj
(8)

Here, J(w) is the Jacobian matrix, which consists of the first derivatives of the network errors
regarding the weights and biases. It can be assumed that the second term of (8) is trivial, as compared
to the product of the Jacobian matrix for the Gauss–Newton method, such that:

∆w = −
[

JT(w)J(w)
]−1

JT(w)e(w) (9)

In order to avoid the instance where the simplified Hessian matrix shown above is not invertible,
the Levenberg–Marquadt modification of the Gauss–Newton method can be obtained as [31]:

∆w = −
[

JT(w)J(w) + γI
]−1

JT(w)e(w) (10)

Here, I is the identity matrix and γ is a parameter used to ensure that the matrix [JT(w)J(w) + γI
]

is positive definite, thereby making it invertible. Choosing a pertinent value of γ is extremely important
for the function of the algorithm because it is responsible for the stability and convergence speed.

To provide information about GNSS anomalous events to users, we propose installing an
additional integrity monitor on the augmentation system by identifying the observation of an irregular
time series in the test statistic in terms of the range residual error along with an appropriate model.
Naive approaches of modeling processes include methods like averaging past data points, returning
a previous data point, and linear extrapolation. While these methods may be sufficient for some
relatively simple time series, more sophisticated methods are required to cope with real-world time
series, such as navigation signals [33,34].

TDNNs use historical data to estimate future values by finding a model of the process that
empirically fits past data. Additionally, TDNNs that have noise suppression capabilities are referred
to as finite impulse response (FIR) networks because of their tapped delay lines, which represent
past activities. The irregularities observed in navigation measurements, which represent the intrinsic
dynamics of the navigation satellites and/or the nonlinearity of the environments in the navigation
signal path, can be captured by mapping the observable past terms to future ones [19]. TDNNs can
later be united with the time series of the test statistic through typical RAIMs.

Figure 2 depicts the overall schematic of the proposed approach for integrity monitoring.
To ensure that the received navigation signal dynamics (which is the time series of the test statistic
ΞRAIM,k) remain in the network input, the metric (which is achieved based on the sum of the squared
range residual error calculated by a standard RAIM) is changed into the delayed form of the metric
in time:

Ξ̃TDNN,k = f (ΞRAIM,k, ΞRAIM,k−1, . . . , ΞRAIM,k−M+1) (11)



Sensors 2018, 18, 3800 6 of 13

Here, Ξ̃TDNN,k is the network output, which is the estimated quantity of ΞRAIM,k+1, and M is the
number of tapped delay lines. Once the TDNN is trained, the newly proposed test statistic is created,
as follows:

ΘTDNN,k = ‖Ξ̃on
TDNN,k − Ξ̃o f f

TDNN,k‖ (12)

Here, Ξ̃o f f
TDNN,k is the estimated output through the TDNN whose propagated input signal is

formed on the basis of the offline pseudo-range obtained when GNSS satellites are under normal
conditions. Alternatively, Ξ̃on

TDNN,k is the output estimated with the online pseudo-range. This

approach responds directly to the dissimilarity between Ξ̃o f f
TDNN,k (representing an ordinary state)

and Ξ̃on
TDNN,k when the output is contaminated by anomalies. Any peak in the computed discrepancy

between these is used to trigger an alarm. This enhanced inconsistency activates a caution message.
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Figure 2. Schematic of the proposed integrity monitoring strategy based on estimated measurements
made by TDNN.

The detection threshold is generally computed with the mean and standard deviation of the
metric ΘTDNN , which is obtained in (12):

TTDNN = µ(ΘTDNN)± K f f d·INF·σ(ΘTDNN) (13)

Here, µ(ΘTDNN) and σ(ΘTDNN) are the mean and standard deviation of ΘTDNN , respectively.
K f f d is a multiplier used to satisfy the probability of fault-free detection given by the requirement
conditions; for code-carrier divergence monitors supporting the use of ground-based augmentation
systems (GBAS) in CAT-I operation this specific value is 1× 10−8. An inflation factor INF, which is an
inflated value of the standard deviation, overbounds the true error distribution to avoid continuity
risks [34,35].

In summary, the role of the test statistic in (13) is to measure any differences between the estimated
quantities of Ξ̃o f f

TDNN,k and Ξ̃on
TDNN,k. This measurement changes the consistency of the estimates based
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on assumptions related to GNSS anomalies. Then, the test statistic in (13) is compared with the
thresholds, which are pre-specified as described in (3), to see if an alarm should be published.

4. Simulation Case Studies

In this section, we consider two case studies to evaluate the capabilities of the proposed integrity
monitoring architecture for anomalous event detection in GNSS. One case study uses synthetic data
generated by software simulation and the other uses raw GPS data saved from an installed integrity
monitor. For testing and evaluation purposes, we first simulated a 24-h-long GPS data sample using a
virtual reference station (36.76907◦ N, 126.93490◦ E) located on the rooftop of a multi-media building in
Soonchunhyang University, Korea. Figure 3 shows the exposed time of the GPS satellites seen through
the synthetic data with an elevation mask set to five degrees; this shows that the number of visible
satellites is at least nine.
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Figure 3. Exposed time of GPS satellites visible when the elevation mask is five degrees.

The aim of the case study with the synthetic data is to show that the proposed monitoring for
augmentation systems can shorten the detection time of an anomalous event, allowing this method
to be used in safety and critical transportation applications. The test statistic of the standard RAIM
architecture (i.e., ΞRAIM,k) in (3) was initially obtained through the received GPS signals and used to
detect any divergence between the normal and abnormal states. Subsequently, the obtained metric was
fed into the TDNN to be trained based on the Levenberg–Marquadt algorithm derived in (10) such that
the TDNN showed the relationship of (11). Next, the estimated quantity of ΞRAIM,k+1 (i.e., Ξ̃TDNN,k)
obtained through the trained TDNN was used to form the newly proposed test statistic by comparing
estimates based on the offline pseudo-range (extracted when the navigation messages are healthy) and
estimates using the online pseudo-range.

The proposed monitor ΘTDNN , represented by RAIM/TDNN, was evaluated against a standard
integrity monitor ΞRAIM, represented by RAIM. The threshold value of RAIM (i.e., TRAIM) was directly
computed by the cumulative distribution function of χ2(nk − 4) to satisfy the required probability
of a false alarm (i.e., 1× 10−8) to support the use of GBAS in CAT-I operation [35]. Additionally,
the detection threshold of ΘTDNN (i.e., TTDNN in (13)) was computed based on the mean and standard
deviation of ΘTDNN . Finally, K f f d was selected to be 5.73 to satisfy the probability of fault-free detection
specified by the continuity requirement of 1× 10−8, and the original standard deviation was inflated
by the inflation factor INF = 1.1615, which overbounds the true error distribution to avoid continuity
risks, as shown in Figure 4. In Figure 5, the metric of RAIM/TDNN and its determined upper and
lower thresholds are shown.
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For the tests, we took into account a step-type anomalous failure event, which results in an
instantaneous large measurement jump, such as a sudden change in the GPS receiver clock bias due to
an oscillator or an erroneous upload of the ephemeris. To simulate the effects of this instantaneous
jump error, we first inserted a 100-m bias into the pseudo-range measurement of PRN9 at 10 a.m. for
an hour; it seems that there is no possibility of reliable detection of such defects by RAIM, as shown in
Figure 6. In contrast, we observed that RAIM/TDNN can perfectly sense this type of jump error; thus,
the capability of failure detection of RAIM/TDNN is far superior to that of RAIM.
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the observed PRN9 from the GPS synthetic data: (a) receiver autonomous integrity monitor (RAIM)
and (b) RAIM/TDNN.

For an additional assessment of the proposed RAIM/TDNN, raw data were obtained from a
GPS antenna-receiver module, which consisted of a NovAtel GPS-703-GGG antenna and a NovAtel
Flexpak6 receiver. The GPS antenna was installed on the rooftop (36.76907◦ N, 126.93490◦ E) of
a multi-media building in Soonchunhyang University, Korea, as shown in Figure 7. The receiver
was connected directly to a PC that continuously stores GPS raw data using a 1-Hz sampling rate.
The proposed RAIM/TDNN architecture was tested for 24 h periods and data sets were archived for
3 July, 6 July, and 7 July 2018. The detection threshold of RAIM/TDNN (i.e., TTDNN) was computed
using the mean and standard deviation of ΘTDNN . Additionally, K f f d and INF were selected to be 5.73
and 1.6127, respectively, to satisfy the probability of fault-free detection specified by the continuity
requirement of 1× 10−8, as shown in Figure 8. For the tests, the pseudo-range measurements of PRN9
were contaminated by adding a constant bias error (+100 m) for an hour at 10 am, without loss of
generality. As shown in Figure 9, which is analogous to the previous test results using synthetic data,
the proposed RAIM/TDNN detected this error level well, whereas the existing RAIM did not detect it
at all. It should be noted that such an error level, which may be significant for reliable and seamless
navigation, can be ignored without quickly responding and issuing an alarm with RAIM.
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To further assess the proposed RAIM/TDNN monitor, we applied a +100-m bias alternately to
all visible satellites over a period of one hour starting at 1 pm. The results, shown in Figure 10, once
again confirm that the proposed anomaly detection scheme is capable of detecting bad navigation
satellites far faster and more reliably than RAIM for all visible satellites. To evaluate the generalized
performance, the anomaly detection performance of RAIM/TDNN was tested in terms of the detection
rate and compared with that of RAIM when injecting a +150-m bias for an hour while changing the
injection start time for all active satellites. These results showed that the proposed RAIM/TDNN
monitor is considerably more suitable for detecting abnormalities than currently used RAIM, as shown
in Table 1. RAIM exhibited instability with wide detection rates ranging from 0% to 99.7%, whereas
RAIM/TDNN consistently showed detection rates of 100%. It was confirmed, once again, that the
proposed RAIM/TDNN is more likely to detect faulty measurements.
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Table 1. Detection rate when injecting a +150-m bias for an hour while changing the injection start time
for all active satellites.

PRN
Block-
Type

Bias Injection
Start Time (h)

Detection Rate (%)
PRN

Block-
Type

Bias Injection
Start Time (h)

Detection Rate (%)

RAIM RAIM/TDNN RAIM RAIM/TDNN

1 IIF 11 13.6 100 17 IIR-M 13 0.3 100
2 IIR 19 55.8 100 18 IIA 10 47.8 100
3 IIF 6 48.3 100 19 IIR 14 1.67 100
4 N/A - - - 20 IIR 23 99.7 100
5 IIR-M 19 55.8 100 21 IIR 7 63.9 100
6 IIF 14 4.4 100 22 IIR 6 41.6 100
7 IIR-M 9 0.8 100 23 IIR 6 0.3 100
8 IIF 8 99.7 100 24 IIF 23 98.6 100
9 IIF 8 15.0 100 25 IIF 5 34.2 100
10 IIF 11 0.0 100 26 IIF 5 97.5 100
11 IIR 10 47.8 100 27 IIF 11 33.6 100
12 IIR-M 16 50.3 100 28 IIR 12 16.7 100
13 IIR 19 53.1 100 29 IIR-M 5 71.1 100
14 IIR 6 66.9 100 30 IIF 11 20.3 100
15 IIR-M 21 99.7 100 31 IIR-M 7 99.7 100
16 IIR 11 13.1 100 32 IIF 5 70.0 100

5. Conclusions

The reliability of a navigation system is a very important factor in areas where strict performance
is required (e.g., civil aviation and ITS). Therefore, integrity monitoring is an inseparable part of
safety-critical navigation applications. To ensure system integrity, a navigation system should quickly
detect faults or failures and promptly warn users. Although a standard RAIM technique has been
devoted to GNSS to provide integrity monitoring within avionics itself, such as in civil aviation for
LNAV or NPA, typical RAIMs cannot guarantee that an HMI event will be identified all the time with an
overly high probability of ensuring tighter integrity requirements. In addition, RAIM is insufficient for
on-ground vehicle integrity monitoring of various types of location-based ITS applications, including
vehicles that carry hazardous materials and GNSS-based electronic fee collection.

To overcome such limitations of RAIM, we proposed an efficient way to ensure more stringent
integrity requirements by capturing unusual behavior through GNSS augmentation systems while
significantly reducing the anomalies detection time. A TDNN incorporated within RAIM was used to
more clearly distinguish anomalies in observed GNSS signals to estimate useful information about
the faulty characteristics, rather than simply using RAIM alone. By combining the test statistics from
RAIM and a TDNN, we can compute the dissimilarity between the current trend (based on online
measurements) and the past trend (where GNSS satellites were in a normal state). This allows the
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integrity of the navigation system to be enhanced. Performance assessments of the proposed integrity
monitor were conducted based on raw GPS data and data sets generated by software simulation.
Based on this performance evaluation, it was confirmed that the defects of navigation satellites can be
detected more reliably and quickly using our proposed system, as compared with conventional RAIM.
Abnormal phenomena at a level that could not be sensed via RAIM were detected, thus improving the
ability to detect abnormalities.

Based on these results, GNSS augmentation systems can be easily constructed by using the
proposed enhanced integrity monitor. Therefore it is applicable to ITS fields sensitive to the reliability
of location information. It is also expected that it can serve as another integrity monitor for improving
performance of GBAS or SBAS in the aviation sector. It is necessary to conduct an analysis of whether
the proposed monitor can be installed in the GBAS ground facility for use as a CAT-II/III monitor in
the future.
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