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Abstract: Continuous authentication systems for mobile devices focus on identifying users according
to their behaviour patterns when they interact with mobile devices. Among the benefits provided
by these systems, we highlight the enhancement of the system security, having permanently
authenticated the users; and the improvement of the users’ quality of experience, minimising
the use of authentication credentials. Despite the benefits of these systems, they also have open
challenges such as the authentication accuracy and the adaptability to new users’ behaviours.
Continuous authentication systems should manage these challenges without forgetting critical
aspects of mobile devices such as battery consumption, computational limitations and response
time. With the goal of improving these previous challenges, the main contribution of this paper is
the design and implementation of an intelligent and adaptive continuous authentication system for
mobile devices. The proposed system enables the real-time users’ authentication by considering
statistical information from applications, sensors and Machine Learning techniques based on anomaly
detection. Several experiments demonstrated the accuracy, adaptability, and resources consumption
of our solution. Finally, its utility is validated through the design and implementation of an online
bank application as proof of concept, which allows users to perform different actions according to
their authentication level.

Keywords: cybersecurity; continuous authentication; adaptability; sensors; applications; mobile
devices; machine learning; anomaly detection

1. Introduction

Continuous authentication systems for mobile devices aim to identify the owner of the device
permanent and periodically but not only at a given moment, as traditional systems do. This approach
provides several advantages like, for example, the improvement of both the level of security and the
user’s quality of experience (QoE) during the interaction with applications requiring authentication.
The fact of having the user permanently authenticated, and not from time to time, contributes to
providing a higher level of security and confidence compared to traditional methods. Additionally,
continuous authentication systems minimise the use of credentials during authentication processes [1].
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The previous aspects justify the relevance of continuous authentication systems in the present and
near future due to the amount of heterogeneous contexts with privacy concerns where sensitive or
confidential information should be protected.

The lifecycle of continuous authentication systems starts by modelling the users’ behaviour when
they interact with their mobile device for a given period of time (usually, some weeks is sufficient).
Once the data is acquired, it is preprocessed and stored in a dataset that contains relevant information
about the users’ behaviour patterns. To generate an accurate dataset with the user’s profile, the
right selection of characteristics or features belonging to different dimensions of the device (sensors,
applications, communications, screen gestures, etc.) is critical. Once the profile has been generated,
the last step consists in the comparison of the current mobile usage with the well-known user’s
behaviour stored in the dataset. This comparison is performed in real time and usually made using
semi-supervised or unsupervised Machine Learning (ML) techniques [2]. At this point, it is important
to highlight the suitability of using ML techniques. The set of different behaviours obtained from
the device while it is operated by the user is assumed to form a manifold embedded in the space of
features [3]. ML techniques try to compute an estimation of this region of the space. According to
that, a new behaviour is considered an anomaly if it is far away from this area. The manifold can be
so complex that it may not be easily represented by other simpler mechanisms as, for example, those
based on rules.

Despite the relevant benefits provided by current continuous authentication systems, they also
have open challenges that still require more effort and work from a research point of view. Among them,
we highlight the following ones:

• The selection of dimensions and features allowing for modelling the user’s behaviour in a precise and
effective fashion. The combination of several dimensions and features of mobile devices is one of
the critical aspects to obtain a great accuracy during the authentication process. Currently, most
of the proposals found in the literature only consider features belonging to one dimension [4].
This fact reduces the accuracy of the authentication system by obviating anomalous behaviours
detectable through complementary dimensions.

• The adaptability of the authentication systems to changes in the user’s behaviour. The decision of how
and when the user’s profile should be updated with new behaviours is critical to reach the desired
adaptability of continuous authentication systems. Additionally, forgetting old behaviours is
also an important aspect of an adaptable authentication system. In this context, the majority of
the existing solutions do not take into account adaptability aspects when they authenticate their
users [5].

• Continuous authentication enables a complete set of attack vectors for real-time behaviour spoofing.
Innovative spoofing techniques embedded at impersonating bots allow real-time human dynamics
acquisition and simulation, enabling precise behaviour replication on the user side [6]. Integrating
authentication mechanisms should also involve additional recognition measures to avoid artificial
actors—for instance, using non-simulable dimensions such as traceable hardware sensors.

With the goal of improving the previous challenges, the main contribution of this paper is the
design and implementation of an intelligent and adaptive system of continuous authentication for
mobile devices. The proposed solution relies on modelling and creating users’ profiles that contain data
and features related to the usage of the applications and sensors of the device. ML-based techniques
based on anomaly detection [7] are considered by our solution to measure the level of similarity
between the current usage of the device and the well-known usage. Different experiments provided
promising results in terms of accuracy, adaptability and resource consumption of the proposed
solution. Finally, to demonstrate the utility of our intelligent continuous authentication system, we
have designed and implemented an online bank application that allows users to perform different
sensitive actions according to their authentication level.
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The remainder of the paper is structured as follows. Section 2 discusses some related work from
the academia and industry focused on continuous authentication for mobile devices. Section 3 shows
the design details of the proposed solution. Section 4 shows the different decision to implement
the proposed intelligent and adaptive continuous authentication system. Section 5 depicts different
experiments that support the design decisions and demonstrate the suitability of our solution. Section 6
highlights the improvement of our solution with regard to the existing ones. A use case is shown in
Section 7 to demonstrate the utility of our system. Finally, conclusions and future work are drawn in
Section 8.

2. Continuous Authentication Systems

This section reviews and analyses, from different perspectives, existing continuous authentication
systems belonging to the academia and industry.

2.1. Continuous Authentication in the Academia

Among the continuous authentication solutions that we can find in the academia, one of the
most relevant is focused on identifying users through typing patterns and biometric behaviour [8].
Specifically, the authors acquired data such as rotation, vibration, or pressure by considering
touchscreens and sensors of mobile devices. Once the data was collected, they used semi-supervised
learning techniques to classify the profile according to the user’s behaviour. Another relevant article
is presented by Patel et al. in [4]. In this article, the authors performed an interesting analysis
about the different dimensions and ML algorithms that can be used in continuous authentication
systems. The analysed dimensions were facial recognition, gestures, applications and location.
The main conclusion of the authors was that the fact of merging data belonging to different
dimensions allows for obtaining better results in terms of accuracy and error rate. On the other
hand, Ehatisham-ul-Haq et al. in [9] presented a solution based on the use of sensors (accelerometer,
gyroscope, and magnetometer) to identify the users’ interaction with their device. Based on the users’
habits, the authors inferred different positions where the device could be located (pocket, at waist
height, in the upper arm, and on the wrist). In addition, after performing several tests with different
classification algorithms such as k-Nearest Neighbours [10], Bayes Net [11], Decision Tree [12] and
Support Vector Machines (SVM) [13], they concluded that the SVM algorithm is not appropriate for
mobile devices due to its high computational consumption. In contrast, Bayes Net is more appropriate
due to its trade-off between accuracy and consumption. Once the device position is determined,
the system calculates the Euclidean distance between the evaluated instance and the same position
training instances.

Another interesting work was presented by Fridman et al. in [14]. The authors considered
different features like the text written by the user, location, applications usage, and visited websites.
These features were evaluated separately to later combine the results obtained from the classification
process and determine if the user is authorised or not. A recent work of special interest is proposed
by Centeno et al. in [15]. This article proposed to perform the ML processes in the cloud, reducing
the consumption load in the device and making possible the execution of complex algorithms. In this
sense, they used Autoencoders to authenticate users, which allows a greater precision and resources
consumption by doing the operations on the cloud. Li et al. [16] evaluated the combination of telephone
calls, text messages, and application statistics to recognise users. In addition, the vectors generated on
each of these dimensions included data of the location of the device to provide extra information. This
study was carried out with 76 volunteers and the vectors of each of them were labelled. Finally, the
authors demonstrated that the use of dynamic datasets has a positive impact on the system accuracy.

It is also worth noting the work done by Li et al. [17], where the authors proposed a system that
applies data augmentation techniques [18], such as scaling, cropping, and jittering, on data obtained
from accelerometer and gyroscope sensors. Data augmentation improves the generalisation capacity of
the system. The ML method selected was One-Class SVM [19] after comparing it to others like Kernel
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Ridge Regression (KRR) [20] and k-Nearest Neighbours (kNN). Another interesting solution is the
proposed by de Fuentes et al. [21]. The authors of this work used non-assisted sensors, such as battery,
transmitted data, ambient light and noise to authenticate the user. This study collected information of
50 users over 24 months and then used supervised ML classification algorithms to identify the users.
Specifically, they used k-NN, Adaptive Hoeffding Tree [22] and Naive Bayes [23] algorithms. Finally,
SenGuard [24] is a continuous authentication system that combines movement data, voice, location,
and touches on the screen. The authors of this solution proposed classification algorithms since they
had information belonging to four users.

2.2. Continuous Authentication in the Industry

The industry also is interested in the continuous authentication topic. One of the most relevant
solutions that we can find in the Android and iOS markets is the one provided by BehavioSec
(San Francisco, CA, USA) [25]. Through the use of behavioural biometric techniques, features belonging
to users’ behaviours are acquired and combined to guarantee a good accuracy of detection of anomalous
behaviour. This company offers a software development kit (SDK) for integrating the system in client’s
applications, and this SDK is available for Android, iOS and Web Browser apps. Another interesting
solution is presented by Veridium (Boston, MA, USA) [26]. It provides an SDK, for Android and iOS
devices that allows for integrating biometric authentication in any business application. Heterogeneous
features coming from the camera, sensors, touchscreen, and multiple biometric factors are acquired
and used to perform the authentication process. This solution ciphers the user information and stores
half of the information of features in the server and the other half in the device to improve its security.

The company Aware (Bedford, MA, USA) [27] provides another product to authenticate users
through behavioural and physiological biometric parameters, but not continuously as the previous
ones. This solution makes use of speech, facial, dynamic keys and fingerprint recognition. Its/user
product is named Knomi [28] and performs a biometric authentication through a collection of SDKs
that run on the devices (iOS and Android) and on the cloud. Knomi software enables a distributed
architecture on the cloud or a centralised deployment on the device.

Zighra (Ottawa, ON, Canada) [29] is another company that offers a product based on continuous
authentication. Specifically, Zighra offers a platform of continuous authentication and detection of
threats through the use of Artificial Intelligence for both mobile devices (with iOS and Android) and
web pages [30]. One of its products, SensifyID, combines knowledge of generative behaviour models
and biological systems. Specifically, this solution considers data from location, sensors, networks and
user’s writing techniques. This product is based on task-based authentication techniques. It means
that the user interacting with the device is asked to take specific actions to determine whether he/she
is the legitimate owner.

Despite the results provided by the previous solutions, both in academia and industry there
are open challenges such as the issues of adaptability, the improvement of the accuracy through
the selection of significant features, and the selection of ML algorithms. Furthermore, continuous
authentication systems should store and manage the users’ profiles according to the privacy regulation
established by the General Data Protection Regulation (GDPR) [31].

3. Design of the Adaptive and Continuous Authentication System

This section describes in detail the four phases making up the design of our intelligent and
adaptive continuous authentication system. In this context, the proposed system is based on the
acquisition of sensors and applications usage data to model the behaviour patterns of the device owner.
After examining the acquired data, we considered the use of machine learning techniques focused on
the detection of anomalies. The goal of using these algorithms is to learn the usual behaviour of the
device owner and detect when someone else is using the device. In the proposed solution, we have
also considered the automatic and real-time adaptability to user’s new behaviours, which is a missing
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aspect in the majority of the related works. The previous decisions have been made by considering the
restrictions of mobile devices in terms of battery, computational power and storage.

1. Phase 0: Feature engineering. This is a preliminary and non interactive stage where we make a
first selection of dimensions and features. This initial set is subsequently refined by using feature
selection techniques. It is important to notice that the whole process is done before deploying the
system in the mobile device.

2. Phase 1: Acquisition of behavioural data and dataset generation. This phase consists of
acquiring data from the mobile device and extracting the relevant features selected in phase
0. By doing it, we are able to capture the user’s behaviour and create a dataset. This dataset will
be updated in real time with the new user’s behaviours.

3. Phase 2: Computation of the authentication level. During this stage, an ML algorithm is trained
to fit a model from the user’s behaviour contained in the dataset. Periodically, the new user’s
behaviour is sampled and, then, evaluated by the fitted model which returns an authentication
level score.

4. Phase 3: Automatic adaptability to new behaviours. The last phase focuses on enabling the
system adaptability through the elimination/inclusion of old/new behaviours to the dataset.

A diagram with the different steps composing the design process is depicted in Figure 1. The rest
of the section describes in detail these phases.

Phase 1: Acquisition of behavioural 
data and dataset generation

5. Anomaly detection training

Phase 2: Computation of the 
authentication level

9. Anomalous behaviour 
detected

7. Insertion of the user's 
new behaviour

Phase 3: Automatic adaptability to new 
behaviours

Positive evaluation  

Periodic evaluation

6. Anomaly detection evaluation

2. Identification of significant 
features

1. Identification of relevant 
dimensions

3. Acquisition and storage of 
valuable data 

4. Dataset creation 

Phase 0: Feature engineering

Negative evaluation  

8. Removal of the user's 
old behaviour

10. Lock device

x3 Negative 
evaluations

Correctly 
unlocked

Figure 1. Phases and processes of the proposed adaptive and continuous authentication system.

3.1. Phase 0: Feature Engineering

A critical aspect of continuous authentication systems is the selection of the dimensions that provide
relevant information to model users’ behaviour (step 1 of Figure 1). Among the most well-known sources
of information available in mobile devices, the most relevant are the following ones:

• Sensors: the accelerometer, gyroscope, or GPS are examples of sensors available in mobile
devices. These sensors provide relevant information about physical movements, inclination,
or geographical position, respectively.
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• Gestures and touchscreen interactions: this dimension allows authentication systems to get relevant
data such as the pressure made by users when they touch the screen, the typical gestures, the area
of the screen used, or the speed sliding the fingers on the screen.

• Application statistics: aspects like the number of opened applications, the opening order, the time
of use, or the number of applications running in the background provide relevant information
about the user’s behaviour when he/she uses the mobile device.

• Typing patterns: the typing speed, repetition of words, number of mistypes, or expressions usage
also can be used to identify users.

By considering the previous dimensions, the typing patterns of the user were discarded in this
proposal due to the necessity of using the keyboard. This input method is not extensively used by the
the majority of applications, and besides, when used, it supposes only a small percentage of the total
device usage. In this sense, this dimension just could provide relevant information about the user’s
behaviour a limited number of times [9]. On the other hand, the touchscreen interactions were not
considered because they cause a high impact on the battery consumption [9]. Another drawback of
this dimension is that the touchscreen interactions can be different (or ineffective) depending on the
application type. For example, there are applications that just allow users to do limited actions that do
not provide as relevant information as, for example, pressing a button. In contrast, other applications
allow a rich variety of gestures, hence providing relevant information.

By considering the previous drawbacks, the continuous authentication system proposed in
this article considers the statistics of applications as well as the sensor information as the most
suitable dimensions to create a user’s behaviour profile. The statistics of applications provides useful
information about the user behaviour since they can model patterns such as a common application
opening order or user’s most used apps. These patterns can be used to identify the user and, therefore,
to authenticate him. Moreover, it is proved that this information is commonly used in several
papers and investigations, as shown in Section 2. Some papers that use this solution to classify
behaviour patterns are [14,32]. On the other hand, the sensors dimension is selected because it provides
information about how the user holds the device and moves it in a normal use. In addition, it is widely
used in other state-of-the-art systems (Section 2). Some related papers are [8,9,15,24], where it was
proved that it can model the user behaviour.

The next step was to identify significant features or characteristics belonging to the selected
dimensions (step 2). For that end, we started choosing a sufficiently wide set of features, which,
theoretically, might provide a differentiated modelling of user’s profiles and the subsequent
authentication of the user when he/she uses the mobile device. The first experiment of Section 5
describes both the initial feature set and the process followed to select the most discriminative set,
which was finally used in the Phase 1. The Table 1 lists the final features for each dimension.

Table 1. Final features selected for each category.

Dimension Features

Sensors (Gyroscope and Accelerometer)

Mean value for X, Y, Z and Magnitude (calculated as
√

X2 + Y2 + Z2)
Maximum value for X, Y, Z and Magnitude
Minimum value for X, Y, Z and Magnitude
Variance value for X, Y, Z and Magnitude
Peak-to-peak value (max-min) for X, Y, Z and Magnitude

Application usage statistics

Number of apps and number of different apps opened for
the last day and the last minute.
App most times used and number of times used in the last
minute. The same for the last day.
Last and next-to-last apps used.
Application most frequently used just before the currently
active application.
Bytes sent and received during the last minute.



Sensors 2018, 18, 3769 7 of 29

Table 1 shows a new calculated coordinate called Magnitude. This value is used in [9,17] to
minimise the orientation sensitivity of the inertial sensors since X, Y and Z coordinates lectures can
have a negative value depending on the device orientation. Using this value allows the system to have
an always positive value, not sensitive to orientation.

3.2. Phase 1. Acquisition of Behavioural Data and Dataset Generation

Once our system is deployed in the user’s mobile, a preliminary dataset acquisition starts.
This acquisition will last for a configurable number of days (15 days in our experiments). During this time,
we periodically acquire and store the raw data needed to create the user’s behaviour profile (step 3).

The majority of continuous authentication solutions that we can find in the current state of the art
are based on temporal patterns. These solutions need a period of time probably longer than 15 days
in order to identify patterns at different scales to model the global user’s behaviour. Nevertheless,
our approach is based on the user’s statistical digital fingerprint obtained during their interaction
with the mobile device. Moreover, our goal is not to model the global user’s behaviour, but their
local behaviour within a given time window. Therefore, these 15 days are just an initial period of
time needed to have sufficient data to allow the ML algorithm to do the first evaluations adequately.
Additionally, the proposed system is adaptive; that is, it inserts each user’s new behaviour in the
dataset (when the behaviour is considered as belonging to the owner). In this way, we model not
only the user’s behaviour during the first 15 days, but we enrich continuously the dataset. Similarly,
the user’s oldest behaviours are progressively forgotten, thus maintaining an updated window of
features for a configurable period of time.

More information about the set-up of the collection process is provided in Section 4. Once the
relevant data has been stored, we process them through different mathematical operations and we
obtain the list of features shown in Table 1. After that, the features are grouped in vectors forming the
dataset (step 4).

3.3. Phase 2: Computation of the Authentication Level

The main goal of this phase consists of comparing the vectors of the dataset with the current
vector generated by the person that uses the mobile device in that particular moment. After this
comparison, we evaluate their level of similarity and decide if the confidence in the current user is
enough to consider him authenticated or not.

To perform this evaluation, it is critical to choose a suitable technique. In this sense, our solution
makes use of ML techniques based on anomaly detection. The anomaly detection algorithm used
during this phase is based on semi-supervised ML techniques, since all the generated vectors has the
same class (user class). The first time the algorithm is trained, only owner’s samples are used and
these vectors are supposed to be normal. After that, a vector generated in real time cannot be labelled
since the algorithm does not know beforehand if it belongs to the device owner or to a non-authorised
person. The operation of these anomaly detection algorithms is based on the existence of a dataset that
reflects the behaviour of the owner. Thus, the anomaly detection method is responsible for determining
in a non-intrusive way whether a current event (feature vector) fits into the patterns defined by the
available dataset. The process of using these techniques has the following two stages.

• Training. ML algorithms implicitly maintain an internal model. In this stage the model is fitted
with the updated dataset (step 5) in order to improve the accuracy of its predictions. Particularly,
ML techniques applied to anomaly detection usually compute a distance measure from the normal
cluster to the new sample and uses it to decide if it is anomalous or normal. Eventually, the
quality, variety, and quantity of the training data, together with the complexity of the internal
model determine the accuracy of the ML algorithm.

• Evaluation. ML algorithms evaluate the current vector of features extracted from the interaction
between the user and the mobile device. This evaluation is made by means of the model fitted in
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the training phase (step 5), and a distance is returned indicating the degree of similarity between
the current behaviour of the user and those learned by the model (step 6). If the level of similarity
is greater than a given threshold, the current user is deemed to be the owner and the current
vector is included in the dataset (step 7). This inclusion allows our system to ensure its automatic
adaptability. Furthermore, after adding the new vector to the dataset, we perform a maintenance
process to remove another one representing an old behaviour (step 8). In contrast, when the level
of similarity is lower than the given threshold, the current vector is discarded due to an anomalous
behaviour (step 9). If the current user generates three negative evaluations consecutively, the
device will be locked (step 10), so the authentication system avoids possible attacks such as
zero-effort attacks [33]. Section 5 describes in detail how the threshold was determined.

Anomaly detection techniques have been used in the cybersecurity field with excellent results,
for example, to detect anomalous network traffic or to reduce the latency in 5G networks [34,35].
Nowadays, we can find different anomaly detection algorithms such as OneClass-SVM (OC-SVM) [19],
Lineal Outlier Factor (LOF) [36], or Isolation Forest (IF) [37]. However, not all of these algorithms
can be used in devices with computational resource constraints. Table 2 shows a comparison of the
previous algorithms in terms of computational complexity. In these equations, n is the number of
instances in the dataset, nsv is the number of support vector, t, the number of trees, v, the number of
random samples taken from the dataset, k is the number of neighbours, and d is the dimension of the
feature vector. In that sense, IF has the lowest complexity because it can be reduced to O(n). It is due to
the fact that t and v values do not depend on either the number of instances or the size of each instance
(they have been set to 100 and 256 respectively).

Table 2. Computational complexity of IF, OC-SVM, and LOF. The variables are explained in the text.

Computational Complexity

Algorithm Training Evaluation of One Sample

Isolation Forest [37] O(nt · log(v)) O(t · log(v))
One-Class SVM [38] Between O(n2d) and O(n3d) O(nsvd)

Local Outlier Factor [36] O(1) O(nd)

In addition to the previous aspects, we have considered two main factors when choosing the
proper anomaly detection algorithm for our system: training execution time and evaluation execution
time. This is due to the fact that energy consumption is a critical issue in mobile devices. The ML
algorithm should consume as few resources as possible because it will be periodically training and
evaluating. Therefore, we have selected IF due to it has the lowest computational resource consumption
among the three ML methods proposed.

3.4. Phase 3: Automatic Adaptability to New Behaviours

Finally, the last phase is aimed at guaranteeing the adaptability of the continuous authentication
system to changes in the user’s behaviour. It is an important point of our proposal, which is missing
in most of the related works. This adaptability process is performed in real time and relies on the
periodical update of the dataset by inserting new behaviours and removing the old ones, whereupon
the ML model is retrained:

• A new user’s behaviour is inserted in the behavioural dataset when the evaluation phase is
positive, that is, the vector received an authentication level score indicating that it belongs to the
owner, or it is an acceptable deviation (step 7). This aspect allows our continuous authentication
system to learn a new user’s behaviour.

• The vectors associated with old behaviours will be progressively discarded as new vectors are
inserted to assign more importance to new user’s behaviours (step 8). This fact allows our solution
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to ensure the right to be forgotten as well as to avoid an increasing execution time in training and
evaluation due to the size of the dataset.

4. Deployment

This section is devoted to the implementation details of the proposed system. In this context,
we have designed and implemented a mobile application for the Android operating system that
implements our adaptive and continuous authentication system. The acquisition of some important
features, defined in Phase 0, is possible only with Android 5.0 (Application Programming Interface,
API, level 21) or newer. However, this requirement is fulfilled by more than 80% of mobile devices [39].

Figure 2 depicts a diagram of the most relevant classes making up our mobile application. These
classes implement the functionality described in Section 3. The collection services used to acquire the
user’s behaviour and create the dataset (Phase 1), the training and evaluation of the ML algorithm
(Phase 2), as well as the maintenance of the dataset adding and removing new behaviours (Phase3),
are some parts of the diagram that deserve an special mention. For clarity’s sake, we have drawn the
elements of Figure 2 using the same colors as the phases defined by Figure 1).

launch()

buildClassifier()

start()

addPositiveEvaluatedVector()

saveFeatureVector()

BOOT_COMPLETED

saveFeatureVector()

DataSensorsIntentService

<<Abstract>>
IntentService

onHandleIntent()

DataAppsIntentService
Anomaly Detection Imp 

(IF)

<<Interface>>
SensorEventListener

onSensorChanged()

<<Abstract>>
BroadCastReceiver

BootReceiver AlarmManager

buildClassifier()

Dataset Sensors Dataset AppStats

Inherits

Inherits

evaluateData() evaluateData()

DataSensorsIntentService

onHandleIntent()
saveFeatureVector()
evaluateData()

DatosAppsIntentService

onHandleIntent()
saveFeatureVector()
evaluateData()

AnomalyDetectionImp

buildClassifier()
distributionForInstance()
addPositiveEvaluatedVector()
removeOldFeatures()
lockDevice()

addPositiveEvaluatedVector()

removeOldFeatures() removeOldFeatures()

AlarmManagerImp

launch()

Phase 1: Acquisition of behavioural data 
and dataset generation.                            
Phase 2: Computation of the 
authentication level.                                                   
Phase 3: Automatic adaptability to new 
behaviours.

BootReceiverImp

start()

<<Abstract>>
DeviceAdminReceiver

DeviceLocker

lockDevice()

Inherits

lockDevice()

Figure 2. Diagram of the most important classes and processes of the system.

With the goal of carrying out the acquisition of relevant data from sensors and applications (the
step 3 of Phase 1), we have implemented the following classes and methods. Each class is tagged
with the value (A) when it belongs to the Android libraries, and the value (O) when it is one of our
implemented classes:

• BootReceiverImp (O). This class is the starting point. It inherits from BroadcastReceiver [39], which
belongs to the Android library. BootReceiverImp receives an event when the mobile device is
turned on and configures the alarms needed to execute the functionality of our mobile application,
even when the application is not running.
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• AlarmManagerImp (O). Its functionality focuses on reducing the consumption of battery by
executing the services periodically and not continuously. The launch() method is in charge
of scheduling periodically the data collection services using the setExact() method from
AlarmManager class [39].

• IntentService (A). This class allows the execution in background of the needed operations to obtain
the data from which the features will be computed.

• DataAppIntentService (O). This class utilises the Android.app.usage class [39] to gather data about
the applications usage. The onHandleIntent() method is responsible for the periodical collection
of the application data and the calculation of the related features. Every 60 s, if the device is
unlocked, this method gathers the list of applications used in that minute, ordered by the moment
in which each app was put in foreground; the opening sequence; and the time of use of each
application since there are statistics. After that, it carries out different operations to obtain and
calculate the application features enumerated in Table 1.

• DataSensorsIntentService (O). This class obtains data coming from the device sensors. It implements
the Android.hardware.SensorEventListener interface, which is used to receive notifications from a
variety of sensors. The onHandleIntent() method periodically acquires data coming from different
sensors. Specifically, every 20 s, if the device is unlocked, this method reads the X, Y and Z
sensors (accelerometer and gyroscope) values for 5 s. Then, a moving average with a window of
three samples is applied to these values, having an effect similar to a low-pass filter and, hence,
reducing the measurement error. These filtered values are then aggregated into the sensor features
show by Table 1.

After obtaining periodically the features, the next step is to generate the dataset that models the
user’s behaviour. In this context, the DataSensorsIntentService and DataAppIntentService classes
have a common method, saveFeatureVector(), in charge of saving periodically the features in two
different datasets. One for the sensors’ features, and another one for the applications. In this point,
it is important to clarify that the datasets are generated after monitoring the user’s behaviour for 15
days. This period of time has been defined after performing several experiments with different time
duration, concluding that it is an acceptable time to obtain accurate authentication results.

Once the dataset has been created, Phase 2 starts (step 5 of Figure 1). In this phase, we used the
implementation of IF provided by the Weka library [40]. Our mobile application implements the
AnomalyDetectionImp class, which uses some of the methods provided by the Weka library to train and
evaluate IF; specifically, the buildClassifier() and distributionForInstance() methods, respectively.

Regarding the training phase, we use the buildClassifier() method to build two IF: one for detecting
anomalies in the sensor dataset, and another for detecting anomalies in the application dataset.
The configuration parameters set for the IF training are shown in Table 3.

Table 3. Configuration parameters to train the Isolation Forest algorithm.

Method Frequency Parameters Return

After phase 1 Dataset (15 days),
buildClassifier() Every positive evaluation Number of decision trees (100), Nothing 1

Sample size (256)
1 Although BuildClassifier() does not return anything, this method is responsible for generating decision trees
that later will be used during the evaluation phase.

The first training of our models is performed after finishing the Phase 1 (15 days) with the
aforementioned dataset containing feature collection. Each of them uses one different dataset: sensor
dataset and application dataset. From that particular moment, in this proof of concept, the IF algorithms
are trained separately every positive evaluation, but it can be configured according to the requirements
of the scenario.
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On the other hand, the evaluation of the new two feature vectors (sensors and apps) are also
carried out separately and every 60 s, which coincides with the acquisition frequency of feature vectors.
However, it could be different, and we could reduce the frequency for energy consumption restrictions.
To reach that goal, the AnomalyDetectionImp class executes the distributionForInstance() method for both
IF algorithms, receiving as parameters the corresponding vector to be evaluated. As a result, we obtain
the scores of the two current vectors of features (sensors and applications), that is, a number between 0
and 1 (where 0 means highly anomalous and 1 completely normal). The configuration parameters,
considered to evaluate the IF algorithm, are shown in Table 4.

Table 4. Configuration parameters to evaluate the Isolation Forest algorithm.

Method Frequency Parameters Return

distributionForInstance() Each 60 s Current features vector Double (0.0–1.0)

Once evaluations for sensors and applications are performed, the scores should be normalised
before combining them to get a unique and final score. This score will represent the authentication
level of the user interacting with the device in that particular moment. In this sense, a min-max
normalisation is required because each evaluation is computed by a different IF algorithms, resulting
in output values belonging to different ranges of the interval [0, 1]. The normalisation expression can
be found in Equation (1), where NS is the normalised score, x is the current evaluated vector value,
and max, min are the maximum an minimum values obtained during the evaluation of the dataset:

NS =
(x−min)

(max−min)
. (1)

After normalising the two evaluations, Equation (2) shows the next step, which consists in
combining and calculating the final authentication level score:

AL = Las ·Wa +
Lss + Pss

2
· (1−Wa). (2)

In the previous equation, AL is the Authentication Level score [0, 1] calculated by our solution to
indicate how similar the behaviour of the current user is compared to the owner. Las is the classification
score of the last application vector (normalised), Lss is the classification score of the last sensor vector
(normalised), and Pss is the classification score of the penultimate sensor vector (normalised). Wa is a
constant parameter that indicates the weight or importance of the last application vector in the final
result. In this case, Las has the value of 0.5 because we assumed that sensor and application dimensions
have the same relevance to determine whether the behaviour of the current user belongs to the owner
of the device. As previously, this parameter can be modified according to the scenario characteristics.

If the AL score is higher than a given threshold, which has been previously defined by us
(explained in the Section 5.1.5), the user is positively authenticated by the proposed system. In this
case, the AnomalyDetectionImpIF class has two different methods in charge of providing adaptability
to new user’s behaviours in real time. On the one hand, the addPossitiveEvaluatedVector() method
inserts the new vectors of features in both datasets (sensors and applications). On the other hand, the
removedOldFeatures() method removes old vectors of features stored in both datasets. However, if the
AL score is lower than the threshold, the user is not authenticated and the datasets are not updated.
Furthermore, if the AL is not over the threshold after three consecutive evaluations, the lockDevice()
method will be called, which uses DeviceLocker class to lock the device screen. This class inherits from
Android.app.admin.DeviceAdminReceiver [39] and uses the Android.app.admin.DevicePolicyManager [39]
class functionality to lock the device. As said in Section 3, this action is performed to prevent a
zero-effort attack.
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5. Experiments

This section shows different experiments carried out to validate the viability of our intelligent and
adaptive continuous authentication system. Specifically, to design and implement our system, we have
performed a pool of experiments related to the accuracy of the system, its adaptability to changes in
the user’s behaviour, its resiliency against adversarial attacks, and its resource consumption in terms
of energy, storage, and time.

5.1. First Experiment: Feature Engineering and Anomaly Detection Performance

This first experiment is part of the aforementioned Phase 0 and it focuses on the selection of
relevant features, as well as the determination of the threshold used to distinguish between anomalous
and normal behaviours. To reach those goals, the experiment has been carried out by using the
preliminary dataset obtained in stage 0. Its aim is to extract the most discriminative features from the
initial feature set (listed in Table 5), train two IF algorithms with each set of features and test whether
the selected set has a better classification performance by means of precision vs. recall AUC (Area
Under Curve) measure. After that, a suitable threshold to separate normal from anomalous samples
was determined for the winner model in order to obtain an estimation of the classification performance
reached. Finally, the suitability of the previous threshold has been validated with 50 different users.

5.1.1. Data Collection

Table 5 lists the set of features used to obtain our initial dataset from two different users: UserA (the
owner) and UserB (an unknown person). To perform this experiment, the owner of the mobile device,
UserA, trained our authentication system for 15 days. Once this process was finished, we created one
dataset with all the application usage features, and another with all the sensor features. In the case of
the application usage dimension, vectors were generated every 60 s when the device was not locked.
As a result, once the training was completed, the owner had generated 8700 vectors (780 KB). In the
case of sensor dimension, vectors were acquired every 20 s when the device was not locked. The total
number of vectors generated by this dimension is 13,800 (4 MB). Both datasets were labelled as normal.
After that, a new user, UserB, started using the UserA’s mobile device. The user data was collected for
five days, generating two new datasets labelled as anomaly.

Table 5. List of initial features.

Dimensions Features

Mean value for X, Y, Z and Magnitude (calculated as
√

X2 + Y2 + Z2).
Sensors (Gyroscope, Maximum value for X, Y, Z and Magnitude.

Accelerometer and Magnetometer) Variance value for X, Y, Z and Magnitude.
Minimum value for X, Y, Z and Magnitude.
Peak-to-peak (max-min) value for X, Y, Z and Magnitude.

Application usage statistics

Number of apps and number of different apps, open since the system
has information. The same for the last day and the last minute.
Apps most frequently used, average use time, and number of
times used in the last minute. The same for the last day.
Last and next-to-last apps used, number of times and average use time.
Application most frequently used just before the currently
active application and number of uses.
Bytes sent and received during the last minute.

5.1.2. Feature Selection

Since dimensionality reduction usually provides an improvement in the detection of
anomalies [41,42], a selection of the most relevant features was performed. First, after carrying out a
variety of tests and analysing their results, we concluded that the data acquired from the magnetometer
sensor were erratic, since the values depend on the geographical orientation of the device. After that,
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we decided to do feature selection by using a random forest in order to obtain a subset of the features
with the most discriminating properties.

For this procedure, an auxiliary labelled and balanced dataset was created by combining both
application and sensor information from UserA and UserB. The new vectors were created concatenating
every vector from the sensor dataset with the corresponding application vector closest in time.
The resulting dataset was then labelled accordingly (UserA’s samples as normal and UserB’s as
anomaly), and the random forest was trained.

One interesting property of random forest is that, after training, it provides an estimation of the
discriminating power of each feature during the classification process. These values represent the
relative weight or importance of each feature in the decision [43]. These coefficients were used to select
a subset of features that covered 95% of the total relative weight. The selected subset was already
presented in Table 1, whereas the initial feature set can be found in Table 5.

5.1.3. Application and Sensor Datasets’ Aggregation

Once we have the two sets of characteristics, the next step is to combine the relevant features of
each dimension to evaluate the user’s behaviour and detect anomalous patterns using the IF algorithm.

Only one IF would be necessary for anomaly detection. However, we realised that the
performance was improved if a specialised IF was trained with each dataset (applications and sensors).
After training, a sample is then classified by obtaining the anomaly score from each IF, averaging the
two scores, and using this result together with a decision threshold to predict whether the sample is
normal or anomalous.

The output of our model had to combine the outputs of the two aforementioned IFs, but each
output had a different range. To make them compatible, the scores from each IF in the training stage
were normalised to the range [0, 1]. Then, they were averaged to obtain a single value of anomaly
estimation. This procedure was done twice: once with the initial set of features and the other one with
the set selected by means of the random forest. As a result, we obtained two models to be compared in
order to decide which had a better performance.

5.1.4. Performance Comparison for Feature Set Selection

In order to determine whether the new feature set had a better performance than the initial set, we
needed to obtain a measure of the performance for every threshold. In our case (an anomaly detection
context), the dataset is highly unbalanced, making the accuracy meaningless. In this case, a more
suitable estimator is the precision vs. recall AUC. The next equations define a classification algorithm,
the concepts of precision (3), recall or TPR (True Positive Rate) (4), and F1-score (5), which combines
precision and recall in a single value for comparison purposes:

Precision =
True Positives

(True Positives + False Positives)
, (3)

Recall or TPR =
True Positives

(True Positives + False Negatives)
, (4)

F1-score =
2× Precision× Recall

Precision + Recall
. (5)

In other words, the precision tells us how good our classifier is detecting real anomalies, that is,
the higher the precision, the lower the false alarm percentage; recall indicates how good it is recognising
all the real anomalies, that is, the higher the recall, the fewer anomalies remain undetected; finally,
F1-Score is the harmonic average of precision and recall. F1-score allows for summarising in one value
both precision and recall, making the comparison of results easier.

Figure 3 plots both precision vs. recall curves and shows that the selected feature set has a greater
AUC. It can also seen that it has better classification performance for every threshold since filtered
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features line (blue) is always over the unfiltered features line (green); therefore, the set of selected
features was chosen for the next step.
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Figure 3. Area under the curve (AUC) of our model trained with both the initial and selected set
of features.

5.1.5. Determination of the Optimal Threshold

In our anomaly detection context, a sample is considered normal if its classification score is over
a given threshold; otherwise it is considered anomalous. In order to reach an optimal classification
performance, we need to determine the optimal threshold. Figure 4 depicts three curves: precision,
recall and F1-score vs. threshold. The figure shows how, when the threshold is very low (less than
0.30), the precision is 1 (every normal known behaviour is evaluated as normal) and recall is 0 (every
anomalous known behaviour is evaluated as normal). In the same way, when threshold is too high
(more than 0.93), the precision value is 0.50 and recall is 1 because every behaviour evaluated will
be taken as anomalous, even the known normal ones. Thereby, threshold should be established at
an intermediate value that provides the best performance. Here, the chosen threshold will depend
strongly on our requirements. A common selection criterion is the maximum F1-score (0.84 in this
case, corresponding to a precision of 0.77 and a recall of 0.92), resulting in a threshold of 0.728. In our
case, we preferred this last threshold because the highest F1-score guarantees a good balance between
precision and recall, without prioritising any of them.
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Figure 4. Recall, precision and F1-score vs. threshold when our model is trained with only the selected
features from UserA’s dataset, and evaluated on users A and B.
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5.1.6. Anomaly Detection Results

Once the threshold was selected, our system was tested with UserA and UserB. Table 6 shows the
confusion matrix with the classification results of a test set with 200 new samples (100 normal samples
from UserA and 100 anomalous from UserB) together with the precision and recall.

Table 6. UserA (normal) vs. UserB (anomalous) confusion matrix.

UserB Vectors UserA Vectors Precision/Recall Score

Predicted as anomaly TP: 92 FP: 27 Precision 77%
Predicted as normal FN: 8 TN: 73 Recall 92%

In addition, we performed some additional tests to validate the model and demonstrate that our
continuous authentication system could accurately classify as anomalous the behaviour of users others
than UserB. In this sense, fifty new users, who had not used the device during the training phase,
started using our solution. The TPR measurements obtained after evaluating 100 samples from each
new user (anomalous behaviour) are shown in Figure 5.
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Figure 5. True positive rate for the 50 evaluated anomalous users.

Figure 5 shows how TPR measurements of the fifty users range from 48% to 98%. This variability
indicates that, depending on the users’ behaviour, the proposed system recognises the anomaly more
or less accurately. By analysing the results, we realised that the users interacting with the mobile device
lying on a table obtained a lower TPR. This is motivated by the fact that the owner sometimes operated
the device on a table, resulting in almost constant sensor measurements and, hence, evaluations with a
higher AL score. Additionally, it is important to notice that the mean TPR of all evaluations is 82%,
which is aligned to the results shown in Table 6, where the TPR is 92% and the True Negative Rate
(TNR = TN/(TN + FP)), associated with the performance of the device owner, is 73%.

In conclusion, the proposed solution is able to distinguish the normal user’s behaviour (UserA)
among another 50 anomalous users with satisfactory performance. Regarding the recall value, it is
92% and the precision is 77%.

5.2. Second Experiment: Adaptability to New Behaviours

This experiment demonstrates how the proposed system is able to adapt itself to changes in the
user’s behaviour in real-time. For that end, our model is based on the combination of two IF algorithms
(sensors and applications) trained with selected features stored in the sensor and application datasets,
respectively. The output of our model is called AL (Authentication Level) and its expression can be



Sensors 2018, 18, 3769 16 of 29

found in Equation (2). In order to make our system adaptive, we propose the partition of the AL score
in four segments, meaning respectively: certainly anomalous, possibly anomalous, possibly normal
and certainly normal. To determine the range of values of each segment, we based our decision on
the precision of the model obtained in the first experiment. Once the four ranges are established,
our system uses them to decide when and how to adapt to a change in the user’s behaviour. Every 60 s,
our system uses the ML model to generate a new AL score from the application and sensor information,
summarising the behaviour of the user during that period of time. The actions that our system takes to
adapt itself depend on the score segment to which the value belongs. When new vectors are added,
the oldest vectors will be discarded; therefore, the dataset will always contain a fresh set of user’s
behaviours. The rest of the section describes in detail this experiment.

5.2.1. Certainty Classes

Our first step was to define the four score segments. To this end and using the behaviour dataset
collected from UserA and UserB, the classification precision that our model gives for each label
(“normal” and “anomaly”) was computed for each possible threshold. Figure 6 plots the two precision
curves obtained.
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Figure 6. Precision curves on both normal and anomalous behaviours.

The curves of Figure 6 show the collected behaviour vectors evaluated by the model, obtaining an
AL score, which was used to classify them with respect to a given threshold. If the AL value is lower
than the threshold, the vector is classified as anomalous; otherwise, the vector is considered normal.
The precision curve of the “normal” label in Figure 6 shows that every vector with an AL score above
0.78 is correctly classified as normal. Similarly, the precision curve of the anomaly label shows that
every vector with an AL score below 0.35 is correctly classified as anomalous. Additionally, there is
a value where both curves cross, that is, 0.67. Below this value, the number of samples classified as
anomalous exceeds the number of samples classified as normal, and above this value the opposite is
true. Table 7 shows the different certainty classes established.

Table 7. Certainty classes defined for the threshold values.

Threshold Possible User Behaviour

[0.0, 0.35) Certainly anomalous
[0.35, 0.67) Possibly anomalous
[0.67, 0.78) Possibly normal
[0.78, 1.0) Certainly normal
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5.2.2. Adaptability

Once the previous thresholds were defined, we evaluated how the AL of a vector changes when
a set of vectors associated with similar behaviours are inserted in the dataset. Instead of forcing the
owner of the mobile to repeat approximately the same actions with the apps for hours, we created
two sets made up of variations of a user’s vector (one set for the sensor dataset and another for the
application dataset) by adding some noise. In the case of the sensor vector, where the values are float,
a random noise obtained from a normal distribution with mean 0 and variance 0.05 was added. In the
case of the application vector, the noise was obtained by sampling a uniform distribution between 0
and 1. For each integer attribute composing the vector, we subtracted 1 if the random sample was
below 0.2. In contrast, when the random sample was above 0.8, we added 1 to the integer value.

With these tests, we tried to figure out how many times it would be required to introduce
a vector with similar features to produce an adaptation of the authentication system to the new
behaviour. At the same time, the old vectors representing outdated user’s behaviours would be
removed. This adaptation would happen, for example, if a new application was installed on the
mobile, or the user operates the device with the unusual hand due to an injury.

The aim of our first test was to demonstrate the adaptability of the system to changes in the
application dimension. The action studied was the installation of a new application in the user’s
mobile. After the installation, the mobile device was used in a usual way; therefore, only the application
dimension would be affected by this change.

A set of 1000 vectors was generated by adding noise to a vector collected from the owner while
using the mobile device with the new application. Each generated vector was evaluated by the IF
algorithm, and added to the dataset (removing the oldest vector) if the score belonged to the ranges
possibly normal or certainly normal. After each insertion, the model was trained again. This was
repeated for each vector in the set. Figure 7 shows how the normalised evaluation score for applications,
Las in Equation (2), increases when vectors are added to the dataset.
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Figure 7. App evaluation scores of the new application vectors as the number of similar new
vectors increases.

Similarly, the same procedure was performed using a new sensor vector representing a behaviour
change. In this case, Figure 8 shows how the sensor vector evaluation score, Lss in Equation (2),
increases when new vectors are added to the dataset.
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Figure 8. Sensor evaluation scores of the new sensor vectors as the number of similar new
vectors increases.

Figures 7 and 8 depict that, when a family of new vectors is introduced in the dataset, the
evaluation scores progressively increase, eventually changing the evaluation score of those vectors to
certainly normal.

Finally, after performing the experiment and observing the results, we can conclude that the
proposed continuous authentication system is able to adapt itself to a new behaviour in about
300 iterations, which is equivalent to 5 h of device usage for this particular case. The main reason for
that duration is due to the fact that IF needs a significant number of similar vectors to start scoring
them as normal. This could be improved by increasing the number of random samples. However, this
number usually is hard-coded in the machine learning libraries. Specifically, each IF is configured to
construct 100 decision trees by using only 256 randomly sampled vectors from the dataset. The way IF
scores a vector is by averaging the scores from each decision tree. Then, a new vector is included in
the training process only if it is selected in this random sampling. In addition, this vector has to be
frequent enough to be randomly included in several trees and to have an impact on the final score.
Therefore, the adaptability time is directly related to the number of similar instances of one vector
contained in the dataset.

5.3. Third Experiment: Adversarial Attacks

This experiment shows how the proposed intelligent and adaptive continuous authentication
system reacts to two adversarial attacks. In this sense, we defined a scenario where the owner of the
device spent two weeks interacting with the device. During these two weeks, phase 1 of the proposed
solution was executed, acquiring data from sensors and applications and generating a dataset. Once
phase 1 was finished, our system trained the IF algorithm with the previous dataset. After that, we
prepared the following two adversarial attacks:

1. Trial and error attack. The mobile device was operated for 10 min by five attackers who were not
aware of the owner’s behaviour.

2. Shoulder surfing attack. The device was operated for 10 min by five attackers who had seen the
owner’s behaviour in terms of position and applications usage for five minutes.

For each one of the previous attacks, we evaluated the vectors (attempts) generated by the
attackers during the 10-minute interaction with the mobile device, and analysed the AL provided by
our solution.
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Figure 9 shows the AL results obtained by the five attackers during the trial and error attack. As it
can be seen, 49 of the 50 attempts (10 per each one of the 5 attackers) obtained an AL value lower than
the 0.728 threshold calculated in the Experiment 1 (Section 5.1). It means that they were detected as
anomalous users or attackers. Here also, it is important to note that the majority of the evaluations are
between the values 0.4 and 0.65 (established as possibly anomalous by Table 7).
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Figure 9. Trial and error attack scores.

The results of Figure 9 demonstrate that, when the user’s behaviour is not known, the system
obtains a high accuracy detecting anomalies. Another important point to note is the fact that two of
the attackers (Attacker 5, attempt 6 and Attacker 6, attempt 5) obtained an AL value higher than 0.68,
our adaptability threshold. This fact can occur due to a random similarity between the attacker and
the owner. Anyway, as it is indicated in Table 7, the values comprised between 0.67 and 0.78 represent
that possibly it is the owner, but the system does not have the total certainty.

On the other hand, Figure 10 shows the AL results obtained by the five attackers of the shoulder
surfing attack. As can be seen, the AL values are higher than in the trial and error attack. In this
case, there are 9 of 50 attempts with an AL score higher than the authentication threshold (0.728),
which means that they were authenticated as the owner. Another important aspect to highlight is that
the majority of the AL scores are comprised between 0.6 and 0.7. That indicates that they could be
normal (see Table 7).
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Figure 10. Shoulder surfing attack scores.
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After analysing the results of both attacks, when an attacker is aware of the owner’s behaviour
he/she obtains higher AL scores than if not, as expected. However, the proposed system is able to
detect correctly 98% of trial and error, and the 82.5% of shoulder surfing attacks. These percentages are
completely aligned with the results obtained in the Experiment 1 (Table 6), where the precision for
anomalies was 77%, and the recall was 92%.

In conclusion, this experiment has demonstrated the resiliency of the proposed solution to
adversarial attacks such as trial and error and shoulder surfing. The main reason why our solution
is robust to these adversarial attacks is the correct selection of features. On the one hand, regarding
the application dimension, there are some features that cannot be learned by attackers when they
look at the owner’s behaviour. Among these features, we highlight the number of apps opened
during the last minute, or the application opening order. On the other hand, regarding the sensor
dimensions, although attackers can learn the position in which the owner uses the device, they cannot
duplicate the vibrations, inclination and orientation of owner’s device in specific moments. In this
sense, the inclination and orientation alter the mean values, and the vibrations affect the maximum,
minimum and variance of the accelerometer and gyroscope. Additionally, the fact that attackers do
not know either the exact moment when the evaluation is performed or the evaluation frequency
increases the level of difficulty to copy the owner’s behaviour. Finally, it is also important to note that
the proposed system locks the mobile device when the AL score is lower than the predefined threshold
(0.782) three consecutive times. Nevertheless, to obtain accurate results in this experiment, we have
disabled this security mechanism.

5.4. Fourth Experiment: Resources Consumption

The experiments shown in this section focus on measuring the energy, storage, and time
consumption of the proposed system. For that, we have been performed different tests in the two
following mobile devices: Huawei P10 Lite, 3300 mAh battery, Android 7.0; and Xiaomi Redmi Note 4
Pro, 4180 mAh battery, Android 6.0.

5.4.1. Energy Consumption Experiment

Energy consumption is one of the most important concerns of continuous authentication systems
for mobile devices. In this sense, we performed the following energy consumption experiment to
calculate the impact of our system on the battery life of two different mobile devices. The main goal of
this experiment was to measure both the battery percentage and the total amount of milliampere hour
(mAh) consumed by our solution in a complete life cycle.

In this experiment, we monitored the battery consumption when the mobile devices were used in
a normal way during the evaluation phase. In this phase, the data collection and evaluation services
were running every minute (having the device unlocked) and every 20 s, respectively (as explained in
Section 4).

To obtain the results shown in Table 8, the experiment was repeated 10 times in each device
averaging the measurements. As an illustration, the Xiaomi device had our continuous authentication
system running an average of 10 h per day, until the battery became drained. The total energy
consumed by our system was 293 mAh, that is, 7% of the total battery capacity (4180 mAh). As can be
seen in Table 8, the Huawei device behaved similarly.

Table 8. Battery consumption of the adaptive and continuous authentication system.

Device Total Battery mAh Consumed % Battery
Consumed

Execution
Time

Time
Unlocked

Xiaomi Redmi Note 4 Pro 4180 mAh 293 mAh 7% 2 h 5 m 10 h 9 m
Huawei P10 Lite 3000 mAh 334 mAh 11% 2 h 23 m 11 h 15 m
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By taking into account the previous results, we conclude that the energy consumption of our
solution is acceptable because it does not penalise, in a significant way, the normal functioning of the
mobile devices and, therefore, the users’ quality of experience.

5.4.2. Storage Consumption Experiment

Storage consumption is another key aspect of mobile devices due to their limitation in terms of
resources. In this sense, we carried out an experiment focused on calculating the storage required by
our intelligent and adaptive continuous authentication system. Specifically, Table 9 shows, for two
different devices, the size and number of vectors of the datasets generated after a collecting period of
15 days. At this point, it is important to note that, during the collecting period, both devices were used
in the usual way.

Table 9. Storage consumption of our adaptive and continuous authentication system.

Device App
Dataset Size

Vectors in
App Dataset

Sensor
Dataset Size

Vectors in
Sensor Dataset

Device
Storage

Xiaomi Redmi Note 4 Pro 780 KB 8700 4 MB 13,800 64 GB
Huawei P10 Lite 164 KB 1670 1.7 MB 7500 32 GB

As can be observed in Table 9, for both devices, the storage consumption of the application and
sensor datasets is less than 1% of the device available storage, which is negligible. This fact is rather
positive because it enables our continuous authentication system to work without storage concerns in
practically any device.

5.4.3. Time Consumption Experiment

Finally, time consumption is another critical aspect for a continuous authentication system
operating in real time, such as the proposed in this article. In this sense, the last experiment focused on
measuring the time required by our solution to decide whether the current user is the owner of the
device, or not. With that goal in mind, we measured the time required by our proposal to perform the
training and evaluating processes. This was repeated 10 times. The averaged results are depicted in
Table 10.

Table 10. Time consumption of our adaptive and continuous authentication system.

Device Processor Application
Training

Application
Evaluation

Sensor
Training

Sensor
Evaluation

Xiaomi Redmi Note 4 Pro
Mediatek Helio X20
(10 cores at 1.4 GHz) 1.5 s 1.1 ms 3.4 s 1.4 ms

Huawei P10 Lite
ARM Cortex A53

(8 cores at 2.1 GHz) 0.9 s 0.8 ms 2.1 s 1.0 ms

The times shown in Table 10 are rather acceptable since the training and evaluation processes
of both dimensions (applications and sensors) are executed in less than five seconds in both devices.
In this sense, to improve these times we propose to train the IF algorithm less frequently, instead of
every dataset update (frequency used in our proof of concept). The training process could be done at
the beginning of every day or every a given number of hours (e.g., the five hours needed to incorporate
a new behaviour in our second experiment). The evaluation process can be considered negligible (1 ms).

6. Discussion

This section discusses and compares the main characteristics of the most relevant solutions
presented in Section 2 with the adaptive and continuous authentication system proposed in this article.



Sensors 2018, 18, 3769 22 of 29

The solution presented by Bo et al. in [8] uses typing patterns and sensor data to classify the
user’s behaviour, by means of both a semi-supervised (OC-SVM) and supervised (SVM) methods.
In contrast to our solution, this proposal does not propose any technique to enable the system
adaptability to new behaviours. Moreover, the paper does not include a discussion of the training and
evaluation complexity.

Ehatisham-il-Haq et al. [9] presented a system to identify the interaction of users with their
devices based on the use of the accelerometer, gyroscope and magnetometer. The authors combine
a k-means clustering and a classification method to obtain an anomaly score. Several ML classifiers
are assessed, and eventually the SVM algorithm is selected, providing high accuracy (99.18%) at the
expense of a excessive computational cost. The power consumption is not analysed; however, the
authors recommend algorithms such as Bayes Net or Decision Tree which need less resources with just
a small decrease on accuracy to be used with smartphones. In addition, the system does not take into
account the possibility of changes in the user’s behaviour over time. This work provides information
about the execution time of the evaluation: 2.32 s for k-NN, 5.61 s for Bayes Net, 10.11 s for Decision
Tree, 25.21 s for SVM. In overall, Bayes Net shows the best performance in accuracy/time execution.

The proposal presented by Fridman et al. in [14] acquired features such as location, applications
usage, text typed by the user and visited websites to later combine the results obtained from the
classification process. In this paper, the location is the dimension with more relevance to classify the
user’s behaviour. However, this dimension has a great impact in the battery consumption, which
is critical in the mobile device context. Additionally, if a malicious user operates the mobile in the
same places as the owner, the authentication process will fail. Finally, like the previous proposals, this
solution make use of supervised classification algorithms to determine the user’s behaviour and its
solution does not consider the possibility of adaptation to new behaviours.

Another interesting authentication system is proposed by Centeno et al. in [15]. This proposal
obtains information about the sensors of the device to detect anomalies in the user behaviour.
This solution has a high computational cost since Autoencoders [44] are used to perform the
authentication process. This fact provokes that training is carried out in the cloud, with the privacy
concerns associated with the handling of sensitive information. Additionally, another limitation of this
proposal is that, to ensure its proper functioning, the mobile device must be connected to the internet.

The proposal of Li et al. [17] obtains excellent results in terms of accuracy, False Acceptance
Rate, False Rejection Rate and Equal Error Rate. However, their proposal is not adaptive. In addition,
the energy consumption of their system is higher than the consumption of ours. On the other hand,
the work proposed by de Fuentes et al. [21] performs a user classification based on non-assisted sensors
achieving 97% of accuracy using only battery reading information. When the system tries to identify
both user and environment by combining data from different sensors, like battery readings, ambient
light and ambient noise sensors, it obtains 81.35% of accuracy. The algorithm that provides the best
results in this case is k-NN. However, this solution does not take into account the adaptability of
the system.

The Veridium product [26] authenticates the user by means of biometric information. This solution
splits the vectors of features acquired into two sets. One of them is stored in cloud servers, and the
other is stored in the device. Therefore, the mobile devices must always have an active internet
connection. If the internet connection is down, the mobile will not be able to access to both parts and,
therefore, it will not be able to evaluate the user. As it is a market product, it is not specified what
type of ML technique has been used. This product is designed for authenticating the user based on
biometric information, but it does not work as a continuous system that evaluates the user periodically.

The company Aware [27] provides a market product that combines behavioural and physiological
parameters to authenticate users. The main limitation of this product is that it only authenticates the
user at specific times; that is, the product does not perform a continuous authentication of the user.
Although this proposal makes use of some well-known dimensions, this product can not be compared
with our system because it is not a continuous authentication solution.



Sensors 2018, 18, 3769 23 of 29

Finally, the company Zighra [29] provides its product known as SensifyID. SensifyID uses
its own Artificial Intelligent algorithm, which runs in the cloud and it is not public. Due to the
private nature of the solution, it is not possible to compare it with ours in terms of accuracy and
resource consumption. Zighra claims that its AI is able to quickly learn the user’s behaviour (about
15 interactions). This proposal requires an active internet connection to perform the authentication
process, which is an important drawback depending on the use scenario.

Except the work of Ehatisham-il-Haq et al. [9], which provides information about the execution
time, and the work of Li et al. [17], which provides information about time efficiency and energy
consumption, the rest of papers and commercial products do not provide information about time,
storage or energy consumption. We consider this information relevant to determine whether
the proposed system meets two basic requirements for being executed on mobile devices. First,
the proposed continuous authentication system should have a low power consumption, since battery
power is limited. This restriction is related to the execution time and is the reason why it is preferable
to choose a faster method even if its accuracy is slightly smaller. Secondly, the size of the dataset in
memory should be as small as possible because memory can be a scarce resource.

As can be seen in Table 11, our proposal improves some of the limitation of existing solutions.
To reach it, our solution combines two dimensions (the application statistics and the sensors of
the device) with a semi-supervised anomaly detection algorithm to perform the authentication
process. In addition, the proposed system is adaptive and detects changes in the user’s behaviour
without forgetting the resource consumption limitations of mobile devices. Moreover, the proposed
continuous authentication system is also self-contained in the device, so an active internet connection
is not necessary.

Table 11. Comparison of the different continuous authentication systems from academia and industry.

Proposal Dimensions Adaptive ML Technique Precision

Bo et al. [8] Writing Patterns and Sensors No OC-SVM SVM
Accuracy: 72.36%

FAR 1: 24.99%

Ehatisham-ul-Haq et al. [9]. Accelerometer, Gyroscope and Magnetometer No k-Means Bayes Net Accuracy: 87.34–90.78%

Fridman et al. [14]
Location, Text Written, Visited Websites

and Applications Usage No SVM
Accuracy: 95%

EER 2: 5%

Parreño Centeno et al. [15] Sensors Yes Autoencoder
Accuracy: 97.8%

EER 2: 2%

Li et al. [17] Gyroscope and Accelerometer No OneClass-SVM
FAR 1: 7.65%
FRR 3: 9.01%
ERR 2: 8.33%

De Fuentes et al. [21]
Battery, Transmitted data

Ambient light, Noise No
k-NN, Naïve Bayes,
Adaptive Hoeffding

Trees

Accuracy:
81.35%

Weidong Shi et al. [24]
Movement, Voice,

Location and Screen touches No Naïve Bayes
Accuracy:

95–97%

Veridium [26]
Sensors, Camera,
Touchscreen and

Multiple Biometrics Factor
Unknown Unknown Unknown

Aware [27]
Speech Recognition, Facial
Recognition, Dynamic Key

and Fingerprint Recognition
Unknown Unknown Unknown

Zighra [29]
Location, Sensors,

Newtorks and
user’s writing techniques

Yes
Zigrha

Algorithm Unknown

BehavioSec [25]
Sensors, Keystrokes

and Touchscreen interaction Yes
BehavioSec
algorithms

Accuracy:
97.4–99.7%

Our solution
Sensors and

Applications Usage Yes Isolation Forest
Precision: 77%

Recall: 92%
Accuracy 4: 82.5%

1 FAR: False Acceptation Rate; 2 EER: Equal Error Rate; 3 FRR: False Rejection Rate; 4 Calculated from Table 6.
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7. Use Case: Online Banking Mobile Application

This section shows a use case that highlights the utility of our continuous authentication system
in a relevant scenario such as an online banking mobile application. In this context and as proof
of concept, we have designed and implemented a banking mobile application for our Nevele Bank
MOCK [45]. This mobile application implements the functionality of the Nevele bank [46] by allowing
users to see the status of their bank accounts, make transfers with different amounts of money,
and so on. Additionally, our banking application is able to communicate through an API with our
continuous authentication mobile application explained in Section 4. The fact of integrating the banking
mobile application with our continuous authentication system allows the user to minimise the use of
authentication credentials. Therefore, the banking application will allow the user to perform certain
operations or not depending on the AL score returned by our adaptive and continuous authentication
system. The interaction sequence between the user, the banking application, and our continuous
authentication system is shown in Figure 11.

USER
BANKING 

APPLICATION

CONTINUOUS 
AUTHENTICATION 

SYSTEM

Make an operation

checkAuthenticationValue()

authenticationValue
[authenticationValue>threshold] allow()
[authenticationValue<threshold] deny()

Interaction with mobile device

Figure 11. Flow diagram of the use case.

To perform the tasks allowed by the online banking application, we have established four
thresholds related to the AL score returned by our system in real time (see Table 12). To determine the
thresholds, we have used the information that provide the experiment performed in Section 5.2.

Table 12. Thresholds with AL score to perform different actions of the banking application.

Threshold Possible Actions

0.0–0.35 The banking application cannot be opened
0.35–0.67 Sensitive data and transaction are blocked
0.67–0.78 Sensitive data and transactions lower than e20 are allowed
0.78–1.0 Full access

At this point, we have performed different experiments to show the utility of our solution in a
banking scenario. For that end, our authentication system has been trained for 15 days by the UserA,
and we show the cases identified by Table 12.



Sensors 2018, 18, 3769 25 of 29

7.1. The Banking Application Cannot Be Opened

A new person, UserB, uses the mobile device in his/her own way and our continuous
authentication system compares the current behaviour with the well-known in real time. Since the
obtained AL score is 0.26, lower than the minimum value required to open the banking application,
UserB is not able to do it. The left side of Figure 12 is a screen-shot of our banking application of the
Nevele bank. The upper part of the screen-shot shows a notification with the AL score obtained by
our authentication system, and the lower part depicts the output of the application, indicating that it
cannot be opened.

Figure 12. UserB using the online banking application.

7.2. Sensitive Data and Transactions Are Blocked

After that, UserB simulates the UserA’s behaviour by using the same applications. However,
since our solution considers data from sensors as well as statistical data from the applications usage,
it returns an AL result of 0.63. This value is lower than 0.67, which means that UserB can open the
banking application, but he/she cannot see sensitive information such as the account status. The right
side of Figure 12 shows the output of our banking application in the previous case.

7.3. Sensitive Data and Transactions Lower than e20 Are Allowed

In this step, the UserA starts using the mobile device in a normal way but also using a new
application that has not been used during the training phase. For this point, the AL score returned
by our solution is 0.71 (third threshold in Table 12). It means that UserA can see sensitive data and
perform transaction lower than e20 without additional credentials. Transactions of more than this
amount require an additional authentication process. The left side of Figure 13 shows when UserA
accesses the account bank information, and the right one the moment when additional credentials are
requested to make a transference higher than e20.
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Figure 13. UserA using the online banking application after UserB.

7.4. Full Access

Finally, when UserA makes a normal use of the mobile device (as in the training process),
the value obtained is higher than 0.78. It means that UserA has the possibility to access his/her
sensitive information as well as making transactions of any amount without requiring additional
authentication processes. Figure 14 shows when the amount of e1500 is transferred without requiring
additional authentication factors or processes, since the continuous authentication system scores the
current user (owner’s device) with a high authentication level.

Figure 14. UserA using the online banking application with full access.
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This use case has shown the utility of our continuous authentication in a real environment, such as
online banking. Specifically, we have demonstrated that it is possible to improve the user experience
and the level of security by using our adaptive and continuous authentication system.

8. Conclusions and Future Work

In this article, we have designed, implemented and validated an intelligent and adaptive
continuous authentication system for mobile devices that models the users’ behaviours by considering
data coming from applications’ usage statistics and sensors. The proposed solution is able to adapt
itself to changes in the user’s behaviours and uses anomaly detection based on semi-supervised ML
techniques to perform the authentication process. The viability of the proposal has been demonstrated
through a pool of experiments that show promising results in terms of accuracy, adaptability, resilience
to attacks, and resource consumption. Finally, a use case focused on an online banking application
demonstrates the utility of our continuous authentication system.

As future work, we consider extending our dataset with additional dimensions and features,
such as temporal pattern information to recognize possible daily or weekly user routines, or features
in frequency domain. Additionally, we plan to include data augmentation to make our system more
resilient to small input variations. Our aim is to broaden the spectrum of inputs, obtaining richer
profiles which make our model more robust and, at the same time, increase the authentication accuracy.
Other aspect to be managed is how to calculate the optimal duration of the first phase of acquisition
of behavioural data. In addition to the previous improvements, as part of our future work, we also
plan to launch or solution as a final product that meets the real requirements of the current market.
To that end, we intend to implement our authentication system in other platforms such as iOS as well
as to evaluate the viability and usability of our solution on a larger scale. In addition, we plan to
develop an API to facilitate the integration of the system with existing mobile applications that require
authentication. Finally, we consider to assess our system performance with other ML algorithms that
are more resource consuming when training and test computation are performed in the cloud.
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