
sensors

Article

A Design and Simulation of the Opportunistic
Computation Offloading with Learning-Based
Prediction for Unmanned Aerial Vehicle (UAV)
Clustering Networks †

Rico Valentino 1, Woo-Sung Jung 2 and Young-Bae Ko 1,*
1 Department of Computer Engineering, Ajou University, Suwon 16499, Korea; ricovalentino94@ajou.ac.kr
2 Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea; woosung@etri.re.kr
* Correspondence: youngko@ajou.ac.kr; Tel.: +82-31-219-2432
† This paper is an extension version of the conference paper: Valentino, R.; Jung, W.; Ko, Y. Opportunistic

Computational Offloading System for Clusters of Drones. In Proceedings of the International Conference on
Advanced Communication Technology (ICACT’18), ChunCheon, Korea, 11–14 February 2018.

Received: 2 October 2018; Accepted: 29 October 2018; Published: 2 November 2018
����������
�������

Abstract: Drones have recently become extremely popular, especially in military and civilian
applications. Examples of drone utilization include reconnaissance, surveillance, and packet
delivery. As time has passed, drones’ tasks have become larger and more complex. As a result,
swarms or clusters of drones are preferred, because they offer more coverage, flexibility, and reliability.
However, drone systems have limited computing power and energy resources, which means that
sometimes it is difficult for drones to finish their tasks on schedule. A solution to this is required so
that drone clusters can complete their work faster. One possible solution is an offloading scheme
between drone clusters. In this study, we propose an opportunistic computational offloading
system, which allows for a drone cluster with a high intensity task to borrow computing resources
opportunistically from other nearby drone clusters. We design an artificial neural network-based
response time prediction module for deciding whether it is faster to finish tasks by offloading them
to other drone clusters. The offloading scheme is conducted only if the predicted offloading response
time is smaller than the local computing time. Through simulation results, we show that our proposed
scheme can decrease the response time of drone clusters through an opportunistic offloading process.

Keywords: drone cluster; computation offloading; neural network; wireless communication

1. Introduction

Unmanned Aerial Vehicles (UAVs), or drones, have gained much popularity in various
applications [1–3], including civilian and military applications. Undoubtedly, lower operational
cost and higher human safety are the main reasons for this boost in popularity. For example, UAVs are
used in several areas, including mail delivery, safety monitoring, smart cities, transport management,
and even disaster management [4]. In military application, drones are deployed for surveillance
system [5] and enemy engagement [6]. Moreover, the importance of drone deployment has been
shown recently from atmospheric applications point of view. UAVs or drones are utilized for
monitoring trace tropospheric gases [7]. As global emissions continue to be higher, it is needed
a technology that could detect trace gases accurately. Thus, the utilization of UAVs is proposed to
gather information about trace tropospheric gases. In [8], small drones are deployed to get enhanced
atmospheric physics measurements focusing on atmospheric sampling of thermodynamic parameters.
UAV experiment for real-time monitoring of Nanjing’s air pollution is conducted in [9], given that

Sensors 2018, 18, 3751; doi:10.3390/s18113751 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2755-2721
https://orcid.org/0000-0002-8799-1761
http://dx.doi.org/10.3390/s18113751
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/11/3751?type=check_update&version=1

Sensors 2018, 18, 3751 2 of 14

UAV has cheaper deployment cost than manned aircraft. Also, the feasibility of UAVs utilization for
measuring turbulence of atmospheric boundary level is proposed [10].

Recently, the deployment of multiple small UAVs as a cluster [11,12] or swarm to execute a variety
of tasks has gained more attention as it improves on the effectiveness of the current single UAV system
and has a lower cost. Operating a group of small drones rather than a single huge UAV has abundant
benefits, which include a guaranteed reliable ad-hoc network, improved operational performance,
extended mission coverage [13], and reduced possibility of detection by the enemy in a reconnaissance
mission. The tasks of drones are continuously growing larger and more complex despite drones’ limited
computing power and energy resources. Thus, it is harder for drones to complete these resource hungry
applications in a timely fashion. The problem of insufficient computing resources and energy can be
addressed using a computational offloading technique [14–16] to a nearby ground control station (GCS),
which has unlimited energy and powerful computational power. Alternatively, offloading could be done
to neighboring drones that have sufficient resources to process the given task. However, when too many
drones offload their workloads to a single GCS, there will be a bottleneck in the GCS, resulting in a longer
response time for application execution. Intuitively, the problem can be resolved by providing more
powerful GCSs around the drones’ operating site. However, drones services are often required in remote
areas, which lack in network infrastructures. In addition, in a disaster area where the communication
network has collapsed or in a military operation area, it is very difficult to deploy more powerful
GCSs. Therefore, to address the problem from another perspective, assuming that there will be many
more deployments of clusters of drones in the near future, we propose an offloading mechanism that
is not only done between drones and a GCS, but one that can be done between different clusters of
drones. A UAV cluster that requires higher computing power may borrow its neighboring cluster’s
idle resources for executing its own task.

In this paper, we consider the feasibility of applying a computation offloading technique to an
inter-cluster of drones. More specifically, we propose an opportunistic computation offloading scheme
with a learning-based prediction module between drone clusters. First, the head of the cluster will
identify the presence of other drone clusters nearby and it will then communicate whether those
clusters have idle computing resources. After that, the cluster head will estimate or predict the
response time of processing the workloads locally and compare it with that of offloading workloads
to the other clusters. The offloading decision will be made by considering some input parameters,
which include available computing power, application input size, computing power required to
complete the application, and the communication bandwidth of the wireless network. Furthermore,
response time estimation is made by adopting a machine learning technique to improve the accuracy
of the decision engine. From the estimated result, the cluster head will make the decision of whether
to complete the tasks locally or to offload them to the other cluster. If the estimated response time of
the offloading scheme is faster than that of the local response time, then offloading mechanism will be
triggered; otherwise, the application will be executed locally inside the cluster.

The contributions of this study are threefold:

• We design an opportunistic computation offloading scheme between clusters of drones with
the aim of reducing response time. The cluster head will decide whether to use the proposed
offloading scheme based on the decision engine prediction module output.

• We design and build a shallow neural network-based response time prediction module to give a
better prediction accuracy when compared to the heuristic algorithm.

• We build a NetworkSimulator-3 (NS-3)-based UAV network simulation system for evaluating the
drone wireless communication scheme with a mobility scenario.

Figure 1 shows the scenario of UAV clusters have identical services but different environmental
conditions. Say that two different clusters of UAVs make up a surveillance system over two
different coverage areas with the similar workload size. One cluster works in a harsher environment
(e.g., highly populated road) with many noise objects; the other cluster operates in a convenient

Sensors 2018, 18, 3751 3 of 14

environment (e.g., quiet road) nearby. Due to different environmental conditions, the first cluster will
have relatively more work and require more time to complete its tasks. The other cluster will finish its
task easily without additional burdens. When considering such a situation, the cluster that is deployed
in the quiet road will complete its work first. Thus, it will have available computing power and
resources that can be borrowed by the other UAV cluster. In other words, the first cluster has a chance
to utilize this opportunity to offload some parts of its tasks to the other UAV cluster. Furthermore,
since more clusters of drones will be deployed in various application services, the proposed scheme
can also be utilized between clusters of drones with different services. For example, this scenario can
happen when mail delivery drones fly close enough to a surveillance drone cluster. The surveillance
drones may take advantage of this opportunity to get more computing resources to help them finish
their work by sending an offloading request. After receiving a reply message, the surveillance drone
cluster head may decide whether to conduct the offloading scheme. This scenario may be also adopted
by other drone service scenarios.

The remainder of this paper is structured as follows. We summarize the motivation of this work
and related work in Section 2. Next, we present our opportunistic computational offloading scheme in
Section 3. Then, we show the simulation results in Section 4. Finally, we conclude this work in Section 5.

Sensors 2018, 18, x FOR PEER REVIEW 3 of 14

have relatively more work and require more time to complete its tasks. The other cluster will finish
its task easily without additional burdens. When considering such a situation, the cluster that is
deployed in the quiet road will complete its work first. Thus, it will have available computing power
and resources that can be borrowed by the other UAV cluster. In other words, the first cluster has a
chance to utilize this opportunity to offload some parts of its tasks to the other UAV cluster.
Furthermore, since more clusters of drones will be deployed in various application services, the
proposed scheme can also be utilized between clusters of drones with different services. For example,
this scenario can happen when mail delivery drones fly close enough to a surveillance drone cluster.
The surveillance drones may take advantage of this opportunity to get more computing resources to
help them finish their work by sending an offloading request. After receiving a reply message, the
surveillance drone cluster head may decide whether to conduct the offloading scheme. This scenario
may be also adopted by other drone service scenarios.

The remainder of this paper is structured as follows. We summarize the motivation of this work
and related work in Section 2. Next, we present our opportunistic computational offloading scheme
in Section 3. Then, we show the simulation results in Section 4. Finally, we conclude this work in
Section 5.

Figure 1. Drone clusters with identical service but different environmental conditions. GCS: Ground
Control Station.

2. Related Works

The concept of computational offloading has been studied for many years. In [17], Loke
investigated the possibility of handing off computing tasks to other devices via communication
interfaces. In [18], Kovachev et al. proposed an adaptive computation offloading middleware for
mobile devices to offload their computation tasks to a cloud server. The results show that the local
execution time can be reduced significantly through computation offloading. Deep reinforcement
learning-based computation offloading and resource allocations for mobile edge computing (MEC)
has recently also been studied in [19]. By adopting a machine learning technique, Li et al. [19] aim to
optimize the offloading decision and computational resource allocation for multiple user equipments
(UEs) that are trying to access the offloading service of a MEC server. However, when compared to
mobile devices, drones have a more dynamic environment, which makes it harder to predict the
response time of drones.

Offloading schemes for UAV systems have been developed recently. In [20], Jung et al. designed
a computation offloading system in surveillance drone to a GCS. Adaptive Computation Offloading
for Drone Surveillance System (ACODS) architecture is proposed in this work. By considering
computational cost, I/O cost, and networking cost, the ACODS system compares the delay that is
required to complete UAV jobs between being processed in UAV itself or in GCS. Then, the ACODS
system will adaptively determine whether to conduct an offloading scheme based on the decision
engine result. Ouahouah et al. in [21] proposed a computation offloading scheme among UAVs that
conducts internet of things (IoT) tasks. The offloading scheme is done among UAVs. The goals are to

Figure 1. Drone clusters with identical service but different environmental conditions. GCS: Ground
Control Station.

2. Related Works

The concept of computational offloading has been studied for many years. In [17], Loke investigated
the possibility of handing off computing tasks to other devices via communication interfaces. In [18],
Kovachev et al. proposed an adaptive computation offloading middleware for mobile devices to
offload their computation tasks to a cloud server. The results show that the local execution time can be
reduced significantly through computation offloading. Deep reinforcement learning-based computation
offloading and resource allocations for mobile edge computing (MEC) has recently also been studied
in [19]. By adopting a machine learning technique, Li et al. [19] aim to optimize the offloading decision
and computational resource allocation for multiple user equipments (UEs) that are trying to access the
offloading service of a MEC server. However, when compared to mobile devices, drones have a more
dynamic environment, which makes it harder to predict the response time of drones.

Offloading schemes for UAV systems have been developed recently. In [20], Jung et al. designed a
computation offloading system in surveillance drone to a GCS. Adaptive Computation Offloading for
Drone Surveillance System (ACODS) architecture is proposed in this work. By considering computational
cost, I/O cost, and networking cost, the ACODS system compares the delay that is required to
complete UAV jobs between being processed in UAV itself or in GCS. Then, the ACODS system will
adaptively determine whether to conduct an offloading scheme based on the decision engine result.
Ouahouah et al. in [21] proposed a computation offloading scheme among UAVs that conducts internet
of things (IoT) tasks. The offloading scheme is done among UAVs. The goals are to enhance the UAVs’

Sensors 2018, 18, 3751 4 of 14

lifetimes and reduce their response times; the solutions are modeled using linear integer programming.
Motlagh et al. [22] proposed the offloading of a UAV-based IoT platform’s workload to an MEC node
in a crowd surveillance use case. The goal is to reduce the processing time of recognition and detection.
A mobility-aware computation offloading decision scheme is proposed in [23]. Based on the mobility
information of the moving target object and network conditions, it will offload some computation
task that is related to the recognizing and tracking of a moving object to a remote control center.
Computation offloading in UAV network was also studied in [24]. Messous et al. [24] addressed the
computation offloading decision making problem in order to accomplish intensive computational
tasks by adopting a sequential game approach. However, neither of these works address the problem
of utilizing an offloading technique between clusters of drones. Moreover, a bottleneck may occur
if too many drones offload their task to a single GCS. Therefore, by using our proposed scheme,
which offloads the workload between clusters of drones, this bottleneck is resolved.

As for the drone mobility model, Bujari et al. [25] defined some drone scenarios and mobility
models. As an overview, the authors categorize a drone’s mobility model as pure randomized,
time-dependent, path-planned, group mobility, or topology-control-based. It is important to define the
mobility model of drones when simulating drone networks, because we want the drone movements in
the simulation to be really similar with the real world drone movements to get reliable results. In our
proposed scheme, we utilize path-planned mobility models to fit our simulation scenario.

3. Opportunistic Computation Offloading Scheme

The architecture of the opportunistic computation offloading scheme between clusters of drones
is shown on Figure 2. We divide the drone system into offloading drones and neighbor drones.
Offloading drones conduct the offloading scheme and neighbor drones are the target for the offloading
service execution. In the offloading drone system, there is an offloading execution module, which is
the offloading framework to determine the offloading process. Computing resource control is used to
monitor the computational resources of the UAV. A network monitoring service is run to obtain the
instantaneous data rate of the UAV. A discovery service is used to determine whether the neighbor
drone cluster has idle resources. All previous information will be fed into the artificial neural network
(ANN)-based prediction module to estimate the response times for executing the application task locally
and using the offloading scheme service. The result of the predicted response time will be sent into
the offloading decision engine. If the offloading scheme has a shorter estimated response time than
the local computing scheme, then the task offloading service will be called to handle the distribution of
the workloads to the neighbor drones. Otherwise, the application job will be processed locally within
the cluster. A remote execution module is run under the neighbor drone system. It also has a discovery
service, which is linked into the computing resource control in order to send information about its
available computing power into the offloading request cluster.

Sensors 2018, 18, x FOR PEER REVIEW 4 of 14

enhance the UAVs’ lifetimes and reduce their response times; the solutions are modeled using linear
integer programming. Motlagh et al. [22] proposed the offloading of a UAV-based IoT platform’s
workload to an MEC node in a crowd surveillance use case. The goal is to reduce the processing time
of recognition and detection. A mobility-aware computation offloading decision scheme is proposed
in [23]. Based on the mobility information of the moving target object and network conditions, it will
offload some computation task that is related to the recognizing and tracking of a moving object to a
remote control center. Computation offloading in UAV network was also studied in [24]. Messous et
al. [24] addressed the computation offloading decision making problem in order to accomplish
intensive computational tasks by adopting a sequential game approach. However, neither of these
works address the problem of utilizing an offloading technique between clusters of drones.
Moreover, a bottleneck may occur if too many drones offload their task to a single GCS. Therefore,
by using our proposed scheme, which offloads the workload between clusters of drones, this
bottleneck is resolved.

As for the drone mobility model, Bujari et al. [25] defined some drone scenarios and mobility
models. As an overview, the authors categorize a drone’s mobility model as pure randomized, time-
dependent, path-planned, group mobility, or topology-control-based. It is important to define the
mobility model of drones when simulating drone networks, because we want the drone movements
in the simulation to be really similar with the real world drone movements to get reliable results. In
our proposed scheme, we utilize path-planned mobility models to fit our simulation scenario.

3. Opportunistic Computation Offloading Scheme

The architecture of the opportunistic computation offloading scheme between clusters of drones
is shown on Figure 2. We divide the drone system into offloading drones and neighbor drones.
Offloading drones conduct the offloading scheme and neighbor drones are the target for the
offloading service execution. In the offloading drone system, there is an offloading execution module,
which is the offloading framework to determine the offloading process. Computing resource control
is used to monitor the computational resources of the UAV. A network monitoring service is run to
obtain the instantaneous data rate of the UAV. A discovery service is used to determine whether the
neighbor drone cluster has idle resources. All previous information will be fed into the artificial
neural network (ANN)-based prediction module to estimate the response times for executing the
application task locally and using the offloading scheme service. The result of the predicted response
time will be sent into the offloading decision engine. If the offloading scheme has a shorter estimated
response time than the local computing scheme, then the task offloading service will be called to
handle the distribution of the workloads to the neighbor drones. Otherwise, the application job will
be processed locally within the cluster. A remote execution module is run under the neighbor drone
system. It also has a discovery service, which is linked into the computing resource control in order
to send information about its available computing power into the offloading request cluster.

Figure 2. Artificial neural network (ANN)-based opportunistic computation offloading system
architecture.

Figure 2. Artificial neural network (ANN)-based opportunistic computation offloading system architecture.

Sensors 2018, 18, 3751 5 of 14

3.1. Cluster Discovery Scheme

To execute the opportunistic offloading scheme, drone clusters must discover the existence of the
other clusters near them first. In the proposed offloading scheme, the fundamental cluster discovery
scheme is used. At the beginning phase of the offloading scheme, a cluster with a high intensity task (HIT)
that requires the offloading process tells its cluster head to broadcast a discovery message to the nearby
environment. The discovery message includes the source cluster ID and a discovery message header.

Drone cluster heads near the HIT drone cluster that received this discovery message will then reply
with a message based on their resource utilization situation. If the availability of their computation
resources exceeds a certain threshold value, then they will send back a reply message to the cluster head
of the offloading requester; otherwise, the message will be ignored. The reply message contains cluster
ID and resource utilization information. The HIT drone cluster head will receive the reply message,
and then it will save the existence information of nearby drone clusters and their computational
resource information to be used further in the next step.

The discovery message itself will be broadcasted periodically by the HIT drone cluster head
every t seconds. When discovery message has been sent n times with no reply messages received,
the broadcast interval t will be increased in order to minimize the message overhead. The cluster
discovery scenario is shown in Figure 3.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 14

3.1. Cluster Discovery Scheme

To execute the opportunistic offloading scheme, drone clusters must discover the existence of
the other clusters near them first. In the proposed offloading scheme, the fundamental cluster
discovery scheme is used. At the beginning phase of the offloading scheme, a cluster with a high
intensity task (HIT) that requires the offloading process tells its cluster head to broadcast a discovery
message to the nearby environment. The discovery message includes the source cluster ID and a
discovery message header.

Drone cluster heads near the HIT drone cluster that received this discovery message will then
reply with a message based on their resource utilization situation. If the availability of their
computation resources exceeds a certain threshold value, then they will send back a reply message
to the cluster head of the offloading requester; otherwise, the message will be ignored. The reply
message contains cluster ID and resource utilization information. The HIT drone cluster head will
receive the reply message, and then it will save the existence information of nearby drone clusters
and their computational resource information to be used further in the next step.

The discovery message itself will be broadcasted periodically by the HIT drone cluster head
every t seconds. When discovery message has been sent n times with no reply messages received, the
broadcast interval t will be increased in order to minimize the message overhead. The cluster
discovery scenario is shown in Figure 3.

(a) (b)

Figure 3. (a) Cluster discovery scenario and (b) Flowchart of cluster discovery process.

3.2. Computation Offloading Decision Module

The cluster head of the local UAV cluster will learn whether there exist other groups of drones
after the discovery process is finished. Then, it may be able to proceed to the offloading decision
taking stage, which will give a final offloading decision. Final decision will be either to execute the
job tasks locally inside the cluster or to do offloading scheme to other clusters. Many kinds of input
parameters are considered for taking the offloading decision. The discovery service will provide
drone clusters’ presence information and also their computing resources. The streaming image data
and other UAV tasks will be obtained from the camera or other sensors. More, the information about
vacant computing power on the cluster will be provided by the computing resource control module.
Network monitoring service will show the network channel condition between the cluster head and
UAV members.

To obtain the final offloading decision, the proposed scheme estimates the elapsed response time
(remotely or locally). By comparing whether computing the task locally is faster than offloading to
other clusters, the offloading decision engine will come to a final conclusion. In this system,

Figure 3. (a) Cluster discovery scenario and (b) Flowchart of cluster discovery process.

3.2. Computation Offloading Decision Module

The cluster head of the local UAV cluster will learn whether there exist other groups of drones
after the discovery process is finished. Then, it may be able to proceed to the offloading decision taking
stage, which will give a final offloading decision. Final decision will be either to execute the job tasks
locally inside the cluster or to do offloading scheme to other clusters. Many kinds of input parameters
are considered for taking the offloading decision. The discovery service will provide drone clusters’
presence information and also their computing resources. The streaming image data and other UAV
tasks will be obtained from the camera or other sensors. More, the information about vacant computing
power on the cluster will be provided by the computing resource control module. Network monitoring
service will show the network channel condition between the cluster head and UAV members.

To obtain the final offloading decision, the proposed scheme estimates the elapsed response time
(remotely or locally). By comparing whether computing the task locally is faster than offloading to
other clusters, the offloading decision engine will come to a final conclusion. In this system, estimation

Sensors 2018, 18, 3751 6 of 14

of the response time is done by considering the communication delay (tcomm) and computing delay
(tcomp). Let T be the estimated time consumed for finishing all tasks.

T = tcomp + tcomm (1)

Application tasks are denoted as Ai = (worki, Ci, πi), where worki is the input parameter size of
application i, Ci is the computation cycle required to complete the task, and πi is the maximum tolerable
delay to finish the application task. Computation delay could be calculated by accumulating all the
computation power of each UAV cluster member. Computation power is obtained by multiplying
the fully utilized central processing unit (CPU) computing delay of one cycle of the task (toptimized)
with the available CPU resources (ravail) in percentage. CPU resources are usually partially used for
stabilizing the drone position in the air and also for processing other software tasks; hence, (ravail)
represents the idle computing resources of the CPU. Given that N is the total number of drones in
a cluster, the computation delay (tcomp) of each cluster can be written as (2).

tcomp = ∑N
i=1 (Ci x toptimizedi

x
1

ravaili
) (2)

Communication delay can be summarized into two types: cluster member to the cluster head
(tintra) within the same cluster and local cluster head to the remote cluster head (tinter). In predicting
the communication time cost, we consider the data rate of the communication network (BW). For the
tintra case, the maximum tintra(i) value will be used as the local communication cost, when considering
the fact that each member could have a different tintra value. For tinter, the total input parameter size of
the application task to be offloaded (workCH) will be divided by the network data rate at that time.

tintra = max
1≤i≤N

worki
BWi

. (3)

tinter =
workCH
BWCH

. (4)

Therefore, the estimated elapsed time for completing tasks locally (Tlocal) and doing offloading
(Tremote) can be written as (5) and (6), respectively (given that the remote cluster has j members).

Tlocal =

[
∑N

i=1

Ci x toptimizedi

ravaili

]
+ max

1≤i≤N

worki
BWi

(5)

Tremote =

[
∑N

j=1

Cj x toptimizedj

ravailj

]
+ max

1≤j≤N

work j

BWj
+

workCH
BWCH

(6)

From the estimated response time on (5) and (6), the decision engine is able to decide whether
to compute the tasks locally or to offload the job application to the remote UAV cluster. By sharing
the task opportunistically, the cluster’s task can be distributed more evenly; therefore, it would
likely to increase operation time of each drone because the scheme will prevent usage exploitation
of one single cluster only. Borrowing the available computing resources from other clusters would
likely decrease the response time of the drones. However, computing the estimated response time
heuristically could result in some error on the prediction module engine, which eventually will
decrease the offloading performance due to suboptimal decisions. Also, computing the response
time estimation every time that the UAV clusters want to finish its task will cause too much delay
overhead. Therefore, to enhance the current prediction module performance, we adopt a machine
learning technique to learn the optimal offloading decision given various combinations of the task size,
network condition, and computation resources of each UAV.

Sensors 2018, 18, 3751 7 of 14

3.3. Artificial Neural Network-based Response Time Prediction Module

To achieve a more accurate response time prediction module, we propose an artificial neural
network-based prediction module as a part of the decision engine on our system. Unlike the work
in [26], which uses a linear regression technique and heuristic algorithm to predict the estimated response
time, in this work, the proposed scheme utilizes the machine learning technique, specifically an ANN.
The main reason is that the response time value is actually non-linear data, so a higher prediction error
would likely to occur if linear regression was used. Instead, by adopting the ANN, we could train and
test the network to have a non-linear regression model to better estimate a response time.

Typical feed-forward neural networks are composed of an input layer, one or more hidden layers,
and a single output layer (see Figure 4). The input layer will include worki, Ci, πi, BW, and ravail as input
features. We use 10 hidden layers to achieve optimal performance for our computation offloading
scheme. The optimal number of the hidden layers can be obtained by brute force in the network
training session. The number of the hidden layers that will give the best performance will be different
as the data input changes; therefore, a validation technique is used to ensure the generality in the
trained prediction module. The output layer will give the estimated response time of our offloading
scheme. Our proposed scheme adopts an offline learning approach, so we trained our neural network
before deploying it to the drone system. By doing so, we only have one time delay cost for training the
network beforehand. After being trained, we deploy the ANN-based response time prediction module
to each drone cluster.

Sensors 2018, 18, x FOR PEER REVIEW 7 of 14

an ANN. The main reason is that the response time value is actually non-linear data, so a higher
prediction error would likely to occur if linear regression was used. Instead, by adopting the ANN,
we could train and test the network to have a non-linear regression model to better estimate a
response time.

Typical feed-forward neural networks are composed of an input layer, one or more hidden
layers, and a single output layer (see Figure 4). The input layer will include worki, Ci, πi, BW, and ravail
as input features. We use 10 hidden layers to achieve optimal performance for our computation
offloading scheme. The optimal number of the hidden layers can be obtained by brute force in the
network training session. The number of the hidden layers that will give the best performance will
be different as the data input changes; therefore, a validation technique is used to ensure the
generality in the trained prediction module. The output layer will give the estimated response time
of our offloading scheme. Our proposed scheme adopts an offline learning approach, so we trained
our neural network before deploying it to the drone system. By doing so, we only have one time
delay cost for training the network beforehand. After being trained, we deploy the ANN-based
response time prediction module to each drone cluster.

Figure 4. ANN-based response time prediction module.

3.4. Task Offloading Service

This service module is responsible for distributing the workload when the cluster head wants to
do the offloading process. The task offloading service will be run after the offloading decision is made.
After obtaining the information about the destination cluster and its resource information from the
offloading request reply message, this module will divide and distribute the workload between the
local cluster and the destination remote cluster. All of the workload will be sent through the local
cluster head to the destination cluster head. Each cluster head finally takes care of distributing the
smaller workload again to each cluster member. After processing the task, the task result is integrated
again in the cluster head in a similar way. Since our focus in this study is not on the load distribution
algorithm itself, we adopt an existing algorithm in this work [27–29].

4. Performance Evaluation

4.1. Simulation Environment

In this section, we describe the performance evaluation of our proposed scheme while using the
NetworkSimulator-3 (NS-3) simulator. Since test-bed implementation is costly and the risk of using
drone clusters is very high, performance evaluation using a simulation tool is the best option. The
NS-3 simulator was chosen as the main tool for simulating our proposed scheme because its
implementation stack is very similar to the real-world network stack. In other words, by
implementing and simulating the scheme in NS-3, it is most likely that the implemented scenario will

Figure 4. ANN-based response time prediction module.

3.4. Task Offloading Service

This service module is responsible for distributing the workload when the cluster head wants
to do the offloading process. The task offloading service will be run after the offloading decision is
made. After obtaining the information about the destination cluster and its resource information from
the offloading request reply message, this module will divide and distribute the workload between
the local cluster and the destination remote cluster. All of the workload will be sent through the local
cluster head to the destination cluster head. Each cluster head finally takes care of distributing the
smaller workload again to each cluster member. After processing the task, the task result is integrated
again in the cluster head in a similar way. Since our focus in this study is not on the load distribution
algorithm itself, we adopt an existing algorithm in this work [27–29].

Sensors 2018, 18, 3751 8 of 14

4. Performance Evaluation

4.1. Simulation Environment

In this section, we describe the performance evaluation of our proposed scheme while using the
NetworkSimulator-3 (NS-3) simulator. Since test-bed implementation is costly and the risk of using
drone clusters is very high, performance evaluation using a simulation tool is the best option. The NS-3
simulator was chosen as the main tool for simulating our proposed scheme because its implementation
stack is very similar to the real-world network stack. In other words, by implementing and simulating
the scheme in NS-3, it is most likely that the implemented scenario will also work well in a real-world
environment. Moreover, NS-3 supports mobility models for node mobility, so the UAV mobility model
can be implemented more easily.

Main differences between normal ad-hoc nodes and drone nodes can be seen clearly from the
computing power model and mobility model. In this study, the computing power model value from
each drone is obtained using a reference computing power value as in [20]. Moreover, we utilized
path-planned mobility model for UAV clusters to match our simulation scenario by modifying the
waypoint mobility model on NS-3.

To the best of our knowledge, utilizing ANN for computational offloading between clusters of
UAVs has not been studied in the literature. Thus, our main focus in this performance evaluation is
to investigate the response time reduction by comparing our proposed offloading scheme’s response
time to the response time for locally completing jobs in the cluster. Also, we focus on error reduction
by using an ANN-based response time prediction module to obtain a better result in the final decision
engine. In this simulation study, drone clusters perform the proposed scheme in at 40 GHz and
80 GHz of bandwidth. More bandwidth means that the drone cluster networks have a higher chance of
achieving a faster data rate to send the workloads. The total application size is also varied from 1–75 MB
to demonstrate the performance of the proposed offloading scheme further. Table 1 summarizes the
simulation parameters that are used in this study.

Table 1. Parameters and values setup for simulation analysis.

Simulation Parameters Values

Application input size 1–75 MB
MAC & PHY IEEE802.11ac

Network bandwidth 40 GHz and 80 GHz
Propagation loss model Three log distance Nakagami fading
Simulation environment 1 km × 1 km
UAV computing power 217.6 ns/Byte

Discovery message interval 5 s

UAV: Unmanned Aerial Vehicles.

4.2. Simulation Results

In this section, we discuss the simulation result and analysis. We focus more on the response
time parameter for this simulation result as our goal is to reduce the application response time by
providing an opportunistic offloading scheme. Recall that response time is a very important factor
for UAVs or drones, since they have a relatively short lifetime. Application work size is chosen as the
other parameter to show how it affects the proposed offloading scheme’s performance.

Figure 5 shows the response time comparison between the proposed scheme and full local
computing when using the 80 GHz network bandwidth. The full local computing scheme executes the
application fully within the cluster without considering the offloading scheme. Meanwhile, the proposed
scheme’s response time is obtained by performing the offloading scheme according to the offloading
decision engine. The learning-based prediction module will predict the estimated response time of
the offloading scheme and forward the result to the decision engine; thus, if the estimated offloading

Sensors 2018, 18, 3751 9 of 14

response time is faster than with no offloading scheme, the drone will execute the offloading service.
In this scenario, the drone cluster that wants to use the offloading scheme selects a nearby targeted
cluster. We vary the remote targeted cluster members as three and six drones. A larger cluster means
there is a higher chance of more computing resources being available.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 14

tasks were supposed to be offloaded to obtain a faster response time, the offloading decision engine
decided to do local computing instead because the prediction module result was incorrect. Thus, this
scenario degrades the offloading scheme performance. With a better response time prediction
module, the ANN-based offloading scheme can obtain better performance.

Figure 5. Response time comparison with 80 GHz bandwidth.

When the targeted offloading drone cluster had six members, it can be seen that our proposed
scheme had a faster response time by 50.7% and 29.3% as compared to the fully local and linear
prediction-based scheme, respectively. When some drone clusters wanted to use the offloading
scheme, they selected a targeted cluster to offload their tasks. The targeted drone cluster could have
various numbers of cluster members. We show that when the targeted cluster has more members,
performance is increased. This could happen because having a larger number of cluster members
increases the chance of having more computing resources. According to our prediction model, the
performance will be increased when the remote drone cluster has more power resources and better
network conditions.

In Figure 6, the network bandwidth setting is changed into 40 GHz bandwidth. The
instantaneous data rate was smaller as the bandwidth decreased. It can be seen in Figure 6 that the
overall performance of our proposed scheme is lower compared to at 80 GHz bandwidth. This is
because one of the main factors determining the offloading response time is communication cost. If
the application workload size is not too large and the network data rate is small, it will be better to
use local computing because of the communication cost of sending the data with the offloading
scheme. Our proposed scheme has 18.3% and 30% better performance compared to the fully local
scheme when the number of remote members is three and six, respectively. As the network
bandwidth decreased, more application tasks were executed locally; therefore, the response time was
closer to that of the fully local scheme. Moreover, our proposed scheme had a 7.4% and 13% gain as
compared to the linear prediction-based scheme when the targeted cluster had three and six remote
members, respectively.

Because the response time data is not linear, using linear prediction for this kind of environment
produce relatively more errors. Therefore, in this work, we proposed an ANN-based response time
prediction module to predict the non-linear data of response time. In this simulation, we used 10
hidden layers in the ANN network. The number 10 was obtained through a brute force mechanism
to train our network to have the best performance results. We adopted the Levenberg-Marquardt [30]
optimization algorithm to train our network.

Figure 5. Response time comparison with 80 GHz bandwidth.

The application workload size is varied from 1–75 MB of streaming image data. From Figure 5, it is
shown that, by applying our proposed offloading scheme, the drone system can reduce the response
time when compared to performing the application task locally. When the chosen remote cluster target
had three drone members, our ANN-based offloading scheme reduced the response time by an average
of 39% and 20.5% as compared to the fully local computing scheme and linear prediction scheme,
respectively. In the linear prediction scheme case, it had higher prediction error probability compared
to the ANN-based prediction scheme. This is because when the offloading tasks were supposed
to be offloaded to obtain a faster response time, the offloading decision engine decided to do local
computing instead because the prediction module result was incorrect. Thus, this scenario degrades
the offloading scheme performance. With a better response time prediction module, the ANN-based
offloading scheme can obtain better performance.

When the targeted offloading drone cluster had six members, it can be seen that our proposed
scheme had a faster response time by 50.7% and 29.3% as compared to the fully local and linear
prediction-based scheme, respectively. When some drone clusters wanted to use the offloading scheme,
they selected a targeted cluster to offload their tasks. The targeted drone cluster could have various
numbers of cluster members. We show that when the targeted cluster has more members, performance
is increased. This could happen because having a larger number of cluster members increases the
chance of having more computing resources. According to our prediction model, the performance will
be increased when the remote drone cluster has more power resources and better network conditions.

In Figure 6, the network bandwidth setting is changed into 40 GHz bandwidth. The instantaneous
data rate was smaller as the bandwidth decreased. It can be seen in Figure 6 that the overall
performance of our proposed scheme is lower compared to at 80 GHz bandwidth. This is because one
of the main factors determining the offloading response time is communication cost. If the application
workload size is not too large and the network data rate is small, it will be better to use local computing
because of the communication cost of sending the data with the offloading scheme. Our proposed
scheme has 18.3% and 30% better performance compared to the fully local scheme when the number of
remote members is three and six, respectively. As the network bandwidth decreased, more application
tasks were executed locally; therefore, the response time was closer to that of the fully local scheme.
Moreover, our proposed scheme had a 7.4% and 13% gain as compared to the linear prediction-based
scheme when the targeted cluster had three and six remote members, respectively.

Sensors 2018, 18, 3751 10 of 14

Sensors 2018, 18, x FOR PEER REVIEW 10 of 14

Figure 6. Response time comparison with 40 GHz bandwidth.

Figure 7 shows the response time estimation result when using both linear prediction and ANN
prediction. It can be seen that the ANN prediction provides a closer estimation to the ground truth
response time data as compared to linear prediction. Because the ANN-based prediction module uses
a non-linear training method, so it follows the ground truth data better.

Figure 7. Response time estimation result comparison.

Figure 8 shows the error graph between ANN prediction and linear prediction. As can be seen
in this graph, ANN prediction has a smaller error percentage as compared to the linear prediction.
By having a better response time prediction module, the drone clusters system will have a better
performance in deciding whether to do the offloading scheme or local computing. Figure 9 shows the
ANN training error histogram. We used 70% of data for training, 15% for testing, and 15% for
validation. The validation phase was necessary to provide our network with more generality for
facing a variety of input data. Moreover, we varied the number of training data from 150 to 1000 data.
We found that the average error predictions for 150 and 1000 data are 3.1% and 2.4%, respectively. It
shows that our neural network design is able to overcome the generality issue of the input data. It
means that even though the total of the training data is small, the performance is not greatly reduced.
It is because we use the validation phase on our training effort to provide generality to our network.

Figure 6. Response time comparison with 40 GHz bandwidth.

Because the response time data is not linear, using linear prediction for this kind of environment
produce relatively more errors. Therefore, in this work, we proposed an ANN-based response time
prediction module to predict the non-linear data of response time. In this simulation, we used 10 hidden
layers in the ANN network. The number 10 was obtained through a brute force mechanism to train our
network to have the best performance results. We adopted the Levenberg-Marquardt [30] optimization
algorithm to train our network.

Figure 7 shows the response time estimation result when using both linear prediction and ANN
prediction. It can be seen that the ANN prediction provides a closer estimation to the ground truth
response time data as compared to linear prediction. Because the ANN-based prediction module uses
a non-linear training method, so it follows the ground truth data better.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 14

Figure 6. Response time comparison with 40 GHz bandwidth.

Figure 7 shows the response time estimation result when using both linear prediction and ANN
prediction. It can be seen that the ANN prediction provides a closer estimation to the ground truth
response time data as compared to linear prediction. Because the ANN-based prediction module uses
a non-linear training method, so it follows the ground truth data better.

Figure 7. Response time estimation result comparison.

Figure 8 shows the error graph between ANN prediction and linear prediction. As can be seen
in this graph, ANN prediction has a smaller error percentage as compared to the linear prediction.
By having a better response time prediction module, the drone clusters system will have a better
performance in deciding whether to do the offloading scheme or local computing. Figure 9 shows the
ANN training error histogram. We used 70% of data for training, 15% for testing, and 15% for
validation. The validation phase was necessary to provide our network with more generality for
facing a variety of input data. Moreover, we varied the number of training data from 150 to 1000 data.
We found that the average error predictions for 150 and 1000 data are 3.1% and 2.4%, respectively. It
shows that our neural network design is able to overcome the generality issue of the input data. It
means that even though the total of the training data is small, the performance is not greatly reduced.
It is because we use the validation phase on our training effort to provide generality to our network.

Figure 7. Response time estimation result comparison.

Figure 8 shows the error graph between ANN prediction and linear prediction. As can be seen
in this graph, ANN prediction has a smaller error percentage as compared to the linear prediction.
By having a better response time prediction module, the drone clusters system will have a better
performance in deciding whether to do the offloading scheme or local computing. Figure 9 shows
the ANN training error histogram. We used 70% of data for training, 15% for testing, and 15% for
validation. The validation phase was necessary to provide our network with more generality for
facing a variety of input data. Moreover, we varied the number of training data from 150 to 1000 data.
We found that the average error predictions for 150 and 1000 data are 3.1% and 2.4%, respectively.
It shows that our neural network design is able to overcome the generality issue of the input data.

Sensors 2018, 18, 3751 11 of 14

It means that even though the total of the training data is small, the performance is not greatly reduced.
It is because we use the validation phase on our training effort to provide generality to our network.Sensors 2018, 18, x FOR PEER REVIEW 11 of 14

Figure 8. Prediction error graph.

Figure 9. ANN training error histogram.

Because drones have limited power resources, energy consumption becomes a significant issue
in terms of drones’ flying time. Energy consumption of drones can be expressed as 𝐸 = 𝑧 𝐶 , where
Ci is the computation cycle required to complete the task and zi represents energy consumption per
CPU cycle to complete application task Ai. According to the practical measurement in [31], we set 𝑧 = 10 (𝐹) where F is the drone computation capacity (i.e., CPU cycles per second). In this
simulation experiment, F is set to 1 GHz/s. In Figure 10, average battery consumption of full local
scheme and the proposed scheme are shown. Our proposed scheme could reduce the average battery
consumption on various application workload sizes by around ~50% as compared to the full local
scheme. This happens because parts of the application tasks are offloaded to the other drone cluster;
therefore, the energy consumption is mostly spent on operating motors in the air only.

Figure 8. Prediction error graph.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 14

Figure 8. Prediction error graph.

Figure 9. ANN training error histogram.

Because drones have limited power resources, energy consumption becomes a significant issue
in terms of drones’ flying time. Energy consumption of drones can be expressed as 𝐸 = 𝑧 𝐶 , where
Ci is the computation cycle required to complete the task and zi represents energy consumption per
CPU cycle to complete application task Ai. According to the practical measurement in [31], we set 𝑧 = 10 (𝐹) where F is the drone computation capacity (i.e., CPU cycles per second). In this
simulation experiment, F is set to 1 GHz/s. In Figure 10, average battery consumption of full local
scheme and the proposed scheme are shown. Our proposed scheme could reduce the average battery
consumption on various application workload sizes by around ~50% as compared to the full local
scheme. This happens because parts of the application tasks are offloaded to the other drone cluster;
therefore, the energy consumption is mostly spent on operating motors in the air only.

Figure 9. ANN training error histogram.

Because drones have limited power resources, energy consumption becomes a significant issue in
terms of drones’ flying time. Energy consumption of drones can be expressed as Ei = ziCi, where Ci
is the computation cycle required to complete the task and zi represents energy consumption per
CPU cycle to complete application task Ai. According to the practical measurement in [31], we set
zi = 10−27(F)2 where F is the drone computation capacity (i.e., CPU cycles per second). In this
simulation experiment, F is set to 1 GHz/s. In Figure 10, average battery consumption of full local
scheme and the proposed scheme are shown. Our proposed scheme could reduce the average battery
consumption on various application workload sizes by around ~50% as compared to the full local
scheme. This happens because parts of the application tasks are offloaded to the other drone cluster;
therefore, the energy consumption is mostly spent on operating motors in the air only.

Sensors 2018, 18, 3751 12 of 14
Sensors 2018, 18, x FOR PEER REVIEW 12 of 14

Figure 10. Average battery consumption of full local scheme and proposed scheme.

5. Conclusions and Future Work

Drones are gaining in popularity, and this is proven by the many services that are now provided
by drones. Due to the need of more complex workloads as drone technology grows, the utilization of
multiple UAVs or drone clusters is preferred because clusters of drones are capable of increasing the
coverage area, reducing response time, and offering more reliability than a single UAV. However,
drones still have limited battery and computing power; therefore, in order to increase their operating
time and reduce their response time, in this study, we proposed a scheme to conduct computational
offloading opportunistically between drone clusters. By estimating the elapsed response time of
processing tasks locally or remotely, the proposed method can adaptively offload some work to a
remote drone cluster. By using the proposed scheme, we can increase drone operation time by
distributing the workload more evenly and reduce the response time by borrowing available
computing resources from other drone clusters. Moreover, the ANN-based response time prediction
was utilized to give the offloading system better performance. In future work, we would like to
implement our opportunistic offloading scheme between drone clusters on various real test bed
environments and enhance the current offloading algorithm.

Author Contributions: R.V. conceived the main idea, designed algorithms, performed simulation experiments,
and wrote this paper. W.-S.J. and Y.-B.K. contributed to idea development, structuring, reviewing, and polishing
the original manuscript.

Funding: This research was partially supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01059049), by
the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Ulsan metropolitan city
subsidy project [18AS1310, Development of smart HSE system for shipbuilding and onshore plants], and by the
MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support
program (IITP-2018-2018-0-01431) supervised by the IITP (Institute for Information & communications
Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bupe, P.; Haddad, R.; Rios-Gutierrez, F. Relief and emergency communication network based on an
autonomous decentralized UAV clustering network. In Proceedings of the SoutheastCon, Fort Lauderdale,
FL, USA, 9–12 April 2015.

2. Lyu, J.; Zeng, Y.; Zhang, R. UAV-Aided Offloading for Cellular Hotspot. IEEE Trans. Wirel. Commun. 2018,
17, 3988–4001.

3. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned Aerial Vehicle with Underlaid Device-to-
Device Communications: Performance and Tradeoffs. IEEE Trans. Wirel. Commun. 2016, 15, 3949–3963.

Figure 10. Average battery consumption of full local scheme and proposed scheme.

5. Conclusions and Future Work

Drones are gaining in popularity, and this is proven by the many services that are now
provided by drones. Due to the need of more complex workloads as drone technology grows,
the utilization of multiple UAVs or drone clusters is preferred because clusters of drones are capable
of increasing the coverage area, reducing response time, and offering more reliability than a single
UAV. However, drones still have limited battery and computing power; therefore, in order to increase
their operating time and reduce their response time, in this study, we proposed a scheme to conduct
computational offloading opportunistically between drone clusters. By estimating the elapsed response
time of processing tasks locally or remotely, the proposed method can adaptively offload some work
to a remote drone cluster. By using the proposed scheme, we can increase drone operation time
by distributing the workload more evenly and reduce the response time by borrowing available
computing resources from other drone clusters. Moreover, the ANN-based response time prediction
was utilized to give the offloading system better performance. In future work, we would like to
implement our opportunistic offloading scheme between drone clusters on various real test bed
environments and enhance the current offloading algorithm.

Author Contributions: R.V. conceived the main idea, designed algorithms, performed simulation experiments,
and wrote this paper. W.-S.J. and Y.-B.K. contributed to idea development, structuring, reviewing, and polishing
the original manuscript.

Funding: This research was partially supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01059049),
by the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Ulsan metropolitan city
subsidy project [18AS1310, Development of smart HSE system for shipbuilding and onshore plants], and by the MSIT
(Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program
(IITP-2018-2018-0-01431) supervised by the IITP (Institute for Information & communications Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bupe, P.; Haddad, R.; Rios-Gutierrez, F. Relief and emergency communication network based on an autonomous
decentralized UAV clustering network. In Proceedings of the SoutheastCon, Fort Lauderdale, FL, USA,
9–12 April 2015.

2. Lyu, J.; Zeng, Y.; Zhang, R. UAV-Aided Offloading for Cellular Hotspot. IEEE Trans. Wirel. Commun. 2018,
17, 3988–4001. [CrossRef]

3. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned Aerial Vehicle with Underlaid Device-to-Device
Communications: Performance and Tradeoffs. IEEE Trans. Wirel. Commun. 2016, 15, 3949–3963. [CrossRef]

http://dx.doi.org/10.1109/TWC.2018.2818734
http://dx.doi.org/10.1109/TWC.2016.2531652

Sensors 2018, 18, 3751 13 of 14

4. Motlagh, N.H.; Taleb, T.; Arouk, O. Low-altitude unmanned aerial vehicles-based internet of things services:
Comprehensive survey and future perspectives. IEEE Internet Things J. 2016, 3, 899–922. [CrossRef]

5. Ma’sum, M.A.; Arrofi, M.K.; Jati, G.; Arifin, F.; Kurniawan, M.N.; Mursanto, P.; Jatmiko, W. Simulation
of intelligent Unmanned Aerial Vehicle (UAV) For military surveillance. In Proceedings of the
International Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali, Indonesia,
28–29 September 2013.

6. Karthigeyan, P.; Raja, M.S.; Prabu, S.; Gnanaselvam, R. Flying robot—A drone for urban warfare. In Proceedings
of the International Conference on Pervasive Computing (ICPC), Pune, India, 8–10 January 2015.

7. Schuyler, T.J.; Guzman, M.I. Unmanned aerial systems for monitoring trace tropospheric gases. Atmosphere 2017,
8, 206. [CrossRef]

8. Jacob, J.D.; Chilson, P.B.; Houston, A.L.; Smith, S.W. Considerations for atmospheric measurements with
small unmanned aircraft systems. Atmosphere 2018, 9, 252. [CrossRef]

9. Zhou, S.; Peng, S.; Wang, M.; Shen, A.; Liu, Z. The characteristics and contributing factors of air pollution in Nanjing:
A case study based on an unmanned aerial vehicle experiment and multiple datasets. Atmosphere 2018, 9, 343.
[CrossRef]

10. Witte, B.M.; Singler, R.F.; Bailey, S.C.C. Development of an unmanned aerial vehicle for the measurement of
turbulence in the atmospheric boundary layer. Atmosphere 2017, 8, 195. [CrossRef]

11. Liu, K.; Zhang, J.; Zhang, T. The clustering algorithm of UAV Networking in Near-space. In Proceedings of the 2008
8th International Symposium on Antennas, Propagation and EM Theory, Kunming, China, 2–5 November 2008.

12. Zang, C.; Zang, S. Mobility prediction clustering algorithm for UAV networking. In Proceedings of the 2011
IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011.

13. Bekmezci, I.; Sahingoz, O.K.; Temel, S. Flying Ad-Hoc Networks (FANETs): A Survey. Ad Hoc Netw. 2013,
11, 1254–1270. [CrossRef]

14. Ashok, A.; Steenkiste, P.; Bai, F. Enabling Vehicular Applications using Cloud Services through Adaptive
Computation Offloading. In Proceedings of the MCS, Paris, France, 11 September 2015.

15. Messous, M.; Sedjelmaci, H.; Houari, N.; Senouci, S. Computation offloading game for an UAV network in mobile
edge computing. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris,
France, 21–25 May 2017.

16. Kumar, K.; Lu, Y. Cloud Computing for Mobile Users: Can Offloading Computation Save Energy? Computer 2010,
43, 51–56. [CrossRef]

17. Loke, S.W. The Internet of Flying-Things: Opportunities and Challenges with Airborne Fog Computing and
Mobile Cloud in the Clouds. arXiv, 2015; arXiv:1507.04492.

18. Kovachev, D.; Yu, T.; Klamma, R. Adaptive Computation Offloading from Mobile Devices into the Cloud.
In Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with
Applications, Leganes, Madrid, Spain, 10–13 July 2012.

19. Li, J.; Gao, H.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource
allocation for MEC. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference,
Barcelona, Spain, 15–18 April 2018.

20. Jung, W.S.; Yim, J.; Ko, Y.B.; Singh, S. ACODS: Adaptive computation offloading for drone surveillance
system. In Proceedings of the 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net),
Budva, Montenegro, 28–30 June 2017.

21. Ouahouah, S.; Taleb, T.; Song, J.; Benzaid, C. Efficient offloading mechanism for UAVs-based value added
services. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–6.

22. Motlagh, N.H.; Bagaa, M.; Taleb, T. UAV-Based IoT Platform: A Crowd Surveillance Use Case.
IEEE Commun. Mag. 2017, 55, 128–134. [CrossRef]

23. Kim, B.; Min, H.; Heo, J.; Jung, J. Dynamic Computation Offloading Scheme for Drone-Based Surveillance
Systems. Sensors 2018, 18, 2982. [CrossRef] [PubMed]

24. Messous, M.; Arfaoui, A.; Alioua, A.; Senouci, S. A Sequential Game Approach for Computation-Offloading in
an UAV Network. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference,
Singapore, 4–8 December 2017.

http://dx.doi.org/10.1109/JIOT.2016.2612119
http://dx.doi.org/10.3390/atmos8100206
http://dx.doi.org/10.3390/atmos9070252
http://dx.doi.org/10.3390/atmos9090343
http://dx.doi.org/10.3390/atmos8100195
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://dx.doi.org/10.1109/MC.2010.98
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.3390/s18092982
http://www.ncbi.nlm.nih.gov/pubmed/30200675

Sensors 2018, 18, 3751 14 of 14

25. Bujari, A.; Palazzi, C.E.; Ronzani, D. FANET Applications Scenarios and Mobility Models. In Proceedings of the
3rd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, Niagara Falls, NY, USA, 23 June 2017;
pp. 43–46.

26. Rico, V.; Jung, W.S.; Ko, Y.B. Opportunistic Computational Offloading System for Cluster of Drones.
In Proceedings of the IEEE International Conference on Advanced Communications Technology (ICACT),
Chuncheon-si Gangwon-do, Korea, 11–14 February 2018.

27. Wolski, R.; Gurun, S.; Krintz, C.; Nurmi, D. Using bandwidth data to make computation offloading decisions.
In Proceedings of the 2008 IEEE International Symposium on Parallel and Distributed Processing, Miami,
FL, USA, 14–18 April 2008.

28. Maza, I.; Caballero, F.; Capitan, J.; de Dios, J.M.; Ollero, A. A distributed architecture for a robotic platform
with aerial sensor transportation and self-deployment capabilities. J. Field Robot. 2011, 28, 303–328. [CrossRef]

29. Hyoung-Joong, K. A Novel Optimal Load Distribution Algorithm for Divisible Loads. Clust. Comput. 2003,
6, 41–46.

30. Wilamowski, B.M.; Yu, H. Improved computation for Levenberg-Marquardt training. Trans. Neural Netw. 2010,
21, 930–937. [CrossRef] [PubMed]

31. Wen, Y.; Zhang, W.; Luo, H. Energy-optimal mobile application execution: Taming resource-poor mobile
devices with cloud clones. In Proceedings of the 2012 IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012;
pp. 2716–2720.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/rob.20383
http://dx.doi.org/10.1109/TNN.2010.2045657
http://www.ncbi.nlm.nih.gov/pubmed/20409991
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Opportunistic Computation Offloading Scheme
	Cluster Discovery Scheme
	Computation Offloading Decision Module
	Artificial Neural Network-based Response Time Prediction Module
	Task Offloading Service

	Performance Evaluation
	Simulation Environment
	Simulation Results

	Conclusions and Future Work
	References

