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Abstract: This paper proposes a new interferometric near-field 3-D imaging approach based on 

multi-channel joint sparse reconstruction to solve the problems of conventional methods, i.e., the 

irrespective correlation of different channels in single-channel independent imaging which may 

lead to deviated positions of scattering points, and the low accuracy of imaging azimuth angle for 

real anisotropic targets. Firstly, two full-apertures are divided into several sub-apertures by the 

same standard; secondly, the joint sparse metric function is constructed based on scattering 

characteristics of the target in multi-channel status, and the improved Orthogonal Matching Pursuit 

(OMP) method is used for imaging solving, so as to obtain high-precision 3-D image of each  

sub-aperture; thirdly, comprehensive sub-aperture processing is performed using all sub-aperture 

3-D images to obtain the final 3-D images; finally, validity of the proposed approach is verified by 

using simulation electromagnetic data and data measured in the anechoic chamber. Experimental 

results show that, compared with traditional interferometric ISAR imaging approaches, the 

algorithm proposed in this paper is able to provide a higher accuracy in scattering center 

reconstruction, and can effectively maintain relative phase information of channels. 

Keywords: joint sparse reconstruction; interferometric inverse synthetic aperture radar; compressed 

sensing; near-field 3-D imaging; wide angle 

 

1. Introduction 

Near-field 3-D imaging is a microwave imaging technique that is developed on the basis of  

two-dimensional (2-D) synthetic aperture imaging. As it has higher spatial resolution capability, and 

has easy availability for engineering realization, near-field 3-D imaging is widely applied in Radar 

Cross Section (RCS) [1], non-destructive testing and evaluation (NDTE) [2,3], security check [4], 

concealed weapon detection [5–7], through-wall and inner wall imaging [8,9], breast cancer  

detection [10,11], etc. So far, a variety of techniques have been applied in near-field 3-D imaging to 

improve its performance, such as imaging based on range migration algorithm (RMA) [12–14] and 

polar format algorithm (PFA) [14], tomography imaging method [15], microwave holography 

method [16], confocal radar-based imaging [17], and NUFFT-based imaging [18,19]. 
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Imaging approaches as mentioned above are all based on the traditional Nyquist sampling 

principle and matched filtering. In general, high range resolution is obtained by transmitting 

wideband signals, and high azimuth resolution is obtained in longer synthetic aperture time. 

However, with higher requirements for imaging resolution, traditional imaging approaches are 

encountering problems such as the sampling rate is too high, the data volume is too large, and the 

fast processing is difficult to carry out. According to the Compressed Sensing (CS) [20,21], a sparse 

signal or a sparse signal in a particular transform domain is sampled in a way that is lower than or 

far below than requirements of the Nyquist sampling theorem. The high-dimensional target signal 

can be accurately reconstructed by applying low-dimensional observation data by solving a 

minimum L-norm constrained optimization problem. At present, many scholars are combining CS 

with high-resolution near-field imaging and have achieved a number of research results, which fully 

demonstrate great potential of CS in reducing data sampling rate and improving imaging  

resolution [3,8,22,23]. 

At present, research on near-field 3-D imaging mainly focuses on planar scanning 3-D imaging. 

Although high-resolution target 3-D images can be obtained by applying the planar scanning 3-D 

imaging, the size of sampling data is huge, and conducting the measurement is time-consuming and 

the imaging efficiency is low. For the interferometric inverse synthetic aperture radar (InISAR) [24,25] 

method, 3-D views of the target can be obtained by applying the multi-antenna phase interference 

method, and data acquisition and signal processing are relatively simple, which make it easy for the 

system to perform functions. Thus, InISAR can be widely used in near-field 3-D imaging. InISAR  

3-D imaging based on CS technology has the following advantages: (1) high-resolution ISAR images 

can be obtained only by short-time observation data. At the same time, rotation of the target can be 

approximately considered to be uniform in short-phase processing interval and thus the occurrence 

probability of range cell migration is reduced; (2) imaging results are not affected by sidelobe, and 

image resolution can be improved by increasing imaging grids, so that it is helpful to suppress 

angular glint phenomenon in InISAR imaging and (3) through the CS technology, the ISAR images 

can be further reconstructed by adopting sparse sampling data, thus reducing the pressure of  

data acquisition. 

In interferometric imaging, compressed sampling and sparse reconstruction can be separately 

performed for each channel, so as to reduce the system sampling rate and improve the quality of 

radar imaging. For example, 3-D InISAR imaging method based on sparse constraint model is 

proposed using the sparsity of ISAR images in reference [24]. However, traditional InISAR imaging 

methods have the following problems: (1) because the observation objectives are consistent, multi-channel 

echoes in the InISAR system have a strong correlation, i.e., images of each channel have the same 

target support set. However, in single-channel independent processing, such prior information is not 

considered, and consistent location and number of scattering points among channel images cannot 

be ensured, which means it cannot ensure that all scattering points on the target are located in 

positions with the same pixel in two interferometric images, thus reducing the estimation accuracy 

of interferometric phase information and (2) in InISAR imaging, scattering characteristics of the target 

vary with the observation angle, and the imaging azimuth accuracy is limited by scattering 

anisotropy of the target. 

Motived by the above problems in traditional InISAR imaging methods, this paper proposes the 

interferometric near-field 3-D imaging based on multi-channel joint sparse reconstruction. Firstly, a 

more universal multi-channel interferometric near-field echo signal model is set up; secondly, the 

two observed full apertures are divided into several sub-apertures according to the same criteria. By 

analyzing sparse characteristics of the target echo in each channel, a joint sparse constrained 

optimization model is set up and the problem of multi-channel high-resolution imaging is 

transformed into an optimization problem based on multi-channel joint sparse reconstruction. The 

improved orthogonal matching pursuit (OMP) is applied for high-resolution imaging solving to 

obtain 3-D images of each sub-aperture target; thirdly, the 3-D images of each sub-aperture are 

synthesized to obtain final 3-D imaging results of the target under full aperture; finally, the 

effectiveness of the proposed approach is verified by processing point target simulation data and 
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Backhoe electromagnetic simulation data, and the InISAR system is set up in the microwave anechoic 

chamber to verify the practical applications of the proposed approach by processing the measured 

data obtained. Compared with traditional InISAR imaging methods, the proposed method in this 

paper has the following advantages: (1) reconstruction accuracy of strong scattering centers in ISAR 

images is improved owing to utilization of correlation among cross channels, and relative phase 

information of cross channels is kept effectively, so as to obtain interferometric phase information 

with higher accuracy; (2) owing to sub-aperture synthesis method applied, the target with scattering 

anisotropy in all directions can be accurately described, and the problem that accuracy of imaging 

azimuth angle is limited can be overcome; (3) because of information complementation and 

redundancy among multi-channel signals applied, given relatively large compression sampling ratio, 

generation of false scattering points can be effectively suppressed, thereby improving the imaging quality. 

2. Signal Model of Inisar Near-Field Imaging 

The InISAR system includes multiple antennas. This paper proposes a dual-antenna ISAR 

imaging system. Figure 1 shows geometric relationship between antennas and the target, where 

antenna TR2 is located at origin O’. Antennae TR1 and TR2 form the vertical baseline along axis Z’. 

Define two coordinate systems, where T’(x’,y’,z’) is the radar coordinate system, axis y’ is the line of 

sight of radar, x’ and y’ represent the horizontal and vertical directions, respectively. T(x,y,z) is the 

target coordinate system, in which axis y is coincident with axis y’, and axes x and y represent the 

azimuth direction and range direction of ISAR, respectively, and distance between origins of the two 

coordinate systems is R0 (R0 < 4D2/, D is the maximum size of the target and  is the wavelength of 

the incident wave). The target is moving at a constant speed in plane (x,y) at an angular velocity , 

and plane (x’,y’) is parallel to plane (x,y). Assuming that coordinate of any point P on the target is 

(x,y,z), and the coordinate in the cylindrical coordinate system is (r0,0,z). Then, at the moment t, the 

distance from the antenna I (i TR1, TR2}) to the point P is: 

2 2 2
0 0

2 2 2
0 0 0 0 0 0

( ) ( ) ( tan )

       ( cos( )) ( sin( )) ( tan )

i i

i
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, (1) 

where, αi refers to the pitch angle from the antenna i to the origin of target coordinate system. 

Assuming that the antenna transmits a step frequency wideband signal [26]: 
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0mf f f    is the frequency of the pulse centered at time mpt  and for pulses spaced equally in 

frequency and time; ( )mpt m pM T  ; f  is the frequency difference for each step in the pulse burst; 

T is the time interval between pulses (pulse repetition period of pulses in the burst); M the number 

of pulses in each burst; 0, 1p N  -the index of emitted burst. The echo of the target received by 

antenna i  after the coherent demodulation is (to understand easily, rectangular coordinates are 

used): 
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where, D  refers to the imaging scene area, ( , )x y  refers to the position coordinate of the target, and 

( , )ig x y  indicates the backscatter coefficient of the target at position ( , )x y  received by antenna i . 

Since the imaging process is a linear system, and in the high frequency region, the total scattering of 

the target can be seen as a linear superposition of multiple strong scattering points, i.e., ( )irs t  

represents superposition of echo signals of all scattering points at ( , )x y  in the entire imaging region 

( , )ig x y . The signal is a complex signal, amplitude ( , )ig x y  represents scattering intensity of 

scattering point ( , )x y , and phase exp( 4 ( , , ) / )m ij f R t x y c  contains position information ( , )x y  of 

the scattering point. [ ]
D

dxdy   represents the summation of all the scattered echoes in the imaging 

scene. With signal processing technology, the target image can be obtained by separating position 

( , )x y  and amplitude ( , )ig x y  from complex signal ( )irs t . 

O'O

x
'x

z

' yy 

'z

0R

1TR

2TR



( , , )P x y z

0
0r
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Figure 1. Geometric sketch of dual-antenna InISAR imaging. 

The imaging scene is discretized. In order to represent the radar signal as a matrix, the 

corresponding 2-D backscatter coefficient matrix is concatenated into a one-dimensional column 

vector by row or line: 

 (1,1), , ( ,1), (1, 2), , ( , 2), , (1, ), , ( , )
T

i i i i i i ig g g P g g P g Q g P Q     , (5) 

where, ig  refers to the vector of 1PQ  , and P  is the discrete grid number of axis x . Q  is the 

discrete grid number of axis y . 

According to the Formula (4), the discrete echo data can be indicated as follows: 

   
1

1 0

4
( )exp ,

PQ M

ir i i
l m m

s t g l j R t l





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 
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 
 , (6) 

where, m  refers to wave length corresponding to the frequency mf .  ,iR t l  refers to the distance 

between the thi  antenna and the thl  target at time t. 

The range (or frequency) and azimuth angle are also discrete in actual situations. Assuming that 

the range sampling point is N , the azimuth sampling point is M . The frequency of thn  

(frequency) pulse in the burst is defined by 0 ( 1) ,   1, 2, ,nf f n f n N      , where 0f  is the initial 

frequency, f  is the step interval, and the azimuth is discretized as ( 1) ,   1, 2, ,m m m M      , 

(   is the angular interval). Formula (6) can be discretized as: 

   
1

4
, ( )exp ,

PQ
n

ir n m i i m
l

f
s f g l j R l

c


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

 
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 
  (7) 

Equation (7) is represented as a matrix considering the effect of noise in actual situations: 

eir i i is A g  , (8) 
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where is  is a vector with the size of 1MN  , which is formed through signal sampling; iA  is a 

dictionary matrix with the size of MN PQ , which is formed through mapping relationship between 

the target and the signal; ig  is a vector with the size of 1PQ  , which is composed of scene 

backscatter coefficients; ei  is the additive complex noise in the channel. Specified composition of 

each vector and matrix in formula (8) is as follows: 

     

     
1 1 1 2 1

2 1

[ , , , , , , , ,

       , , , , , , ]
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s s f s f s f

s f s f s f
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  

 
 (9) 
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Following vectors are defined as: 

 ( , ) ( , ,1), ( , ,2), , ( , , )
T

n m n m n m n ma f a f a f a f PQ     . (11) 

Then the dictionary matrix can be obtained as: 

 1 1 1 2 1 2 1A ( , ), , ( , ), ( , ), , ( , ), , ( , ), , ( , )i M M N N Mf f f f f f                 (12) 

Therefore, the projection relationship between the scene and signal in i  channel is obtained. 

The radar signal model in the interferometric channel is represented as follows: 

1 1 1 1

2 2 2 2

   0

0    

r

r

s A g e
s Ag e

s A g e

       
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       

, (13) 

where, s  corresponds with the echo signal in the interferometric channel, A  corresponds with the 

dictionary matrix in the interferometric channel, g  corresponds with the backscatter coefficient in 

each interferometric channel, and e  corresponds with the additive noise in each interferometric 

channel. It should be noted that the dictionary matrix corresponding with each interferometric 

channel may be the same. However, in order to keep their generality, dictionary matrixes of the two 

interferometric channels should be represented separately. 

In order to reduce the sampling data of each interferometric channel effectively, the 

'( ' )M M M  angular position is randomly selected to transmit signal in the azimuth direction, and 

then '( ' )N N N  frequency point is randomly selected in the distance direction. After compressed 

sampling, the interferometric echo signal model can be represented as follows: 

1

2

    0
' ' '

0     
s s s Ag e A g e

 
         

, (14) 

where, 's  refers to CS echo signal with the size of 2 ' ' 1N M  , a r
i i i     refers to the 

measurement matrix corresponding with each channel,   refers to the Kronecker product, 'A  

refers to the sensing matrix with the size of 2 ' 'N M PQ , g  refers to the scene backscatter 

coefficient with the size of 2 1PQ  , and 'e  refers to noise with the size of 2 1PQ  . 

Since 'M M , 'N N , recovery of the signal s  from the measurements 's  is ill-posed in 

general. However, according to the CS theory, when the matrix 'A A   has the Restricted Isometry 

Property (RIP) [27], it is indeed possible to recover the K  largest ig ’s from a similarly sized set of 

' ' ( log( / ))M N K MN K   measurements 's . The RIP is closely related to an incoherency property 

between   and A , where the rows of   do not provide a sparse representation of the columns 

of A , and vice versa. 
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In order to obtain the target images of each channel, the problem of interferometric near-field 

imaging can be converted into an optimization and reconstruction problem of two independent 

channels according to CS theory and sparse space distribution characteristics of the target scene: 

1 1 1 1 10 

2 2 2 2 20 

min g   . . s ' A ' g

min g   . . s ' A ' g

F

F

s t

s t





  


 

 (15) 

where, 
0
  refers to the zero norm of vector, namely the number of non-zero elements in the vector, 

F
  refers to the Frobenius norm of matrix, and i  is a positive number which depends on the noise 

level. In Formula (15), it is quite important to select an appropriate noise level for the final 

optimization result: too high noise level will lead to the loss of some weak scattering points, while 

too low noise level will make it difficult to suppress strong noises. In Formula (15), optimization 

solving can be performed by applying the OMP method which not only guarantees reconstruction 

accuracy, but also has high computational efficiency. 

3. Joint Sparsity Constraint Near-Field 3-D Imaging of Inisar Based on CS 

3.1. Algorithm Flow Description 

We first give the flow of the proposed approach in this paper, and describe the solution precisely 

in the following subsections. The process of the proposed approach is presented as follows: 

Step 1: Full apertures of the two channels are divided into several sub-apertures by the same 

criteria, and each sub-aperture has a very small azimuth angle range. 

Step 2: Global sparsity constraint and improved OMP algorithm are applied to obtain the 2-D 

complex images 1I  and 2I  of each sub-aperture in the two channels. 

Step 3: Two images of each sub-aperture are performed with interferometric processing to obtain 

projection coordinates of the scattering points along the baseline. 

Step 4: 3-D images of each sub-aperture target are constructed by synthesizing the 2-D ISAR images 

of the interferometric processing results. 

Step 5: 3-D images of all sub-apertures are processed synthetically to obtain the final 3-D images. 

Step 6: The imaging flow is shown in Figure 2. 

3.2. Joint Sparse Constrained Optimization Model 

As mentioned in Section 2, a small amount of compressed sampled data is used to achieve  

high-resolution reconstruction of the scene in the single-channel independent CS approach. 

However, it cannot guarantee consistency of positions and numbers of all scattering points in each 

channel, and integrity of the cross-information of channels is destroyed, which are not favorable for 

target scattering information extraction. In addition, complementarity and redundancy among  

multi-channel data does not fully exploit in the single-channel independent CS approach, so it cannot 

further improve the SNR gain and reduce data volume of the system. 
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Figure 2. Imaging flow of proposed approach. 

Two ISAR images used in the InISAR imaging are usually highly correlated, so they are more 

obvious in joint sparsity. Based on such prior information, the following joint sparse metric functions 

with global sparsity can be obtained as: 
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 
1

1 2,0
0

g g g ,   1
p p p

p
p   , (16) 

where, 
0
  is zero norm, which represents the number of non-zero elements in the vector. Different 

p  values correspond with different mixed norm forms. This paper defines the following three global 

sparsity constraints: 

(1) when 1p  ,  1 21,0 0
g g g  , is termed as mixed sum norm, i.e., sparsity of amplitude sum 

of the two ISAR images is taken as the global sparsity constraint; 

(2) when 2p  ,  
1

2 2 2
1 22,0

0

g g g  is termed as mixed Euclidean norm; 

(3) when p   ,  1 2,0 0
g max g , g

  is termed as mixed infinite norm, i.e., the sparsity of one 

of the two ISAR images (with larger amplitude) is taken as the overall sparsity constraint. 

The mixed sum norm and mixed Euclidean norm are both measured by taking the number of 

non-zero elements of amplitude sum of images in all channels as the global sparsity. Since the 

scattering points are aligned at different angles, the additivity is reasonable. The mixed infinite norm 

takes the number of non-zero elements of the pixel point with the largest amplitude in each image as 

the joint sparsity, and can also ensure that scattering points in the reconstructed sub-aperture images 

are aligned. 

3.3. Optimal Solution Algorithm Constrained by Joint Sparse 

According to the constructed global sparsity constraint function, the problem of InISAR imaging 

solution is transformed into the problem of multi-channel joint sparse optimal reconstruction problem: 

1 2

2
1 1 1 2

,0 2,
2 2 2 2

s ' A ' g
min g    . .  

s ' A ' g
pg g

s t




  


 

, (17) 

where,   is determined by the minimum noise level of each channel to ensure that each channel can 

generate the target image. In Formula (17), data cannot be processed directly by applying the 

traditional CS optimal reconstruction algorithm. In [28], an improved convex optimization approach 

was proposed to solve the joint sparse imaging problem of interferometric channels. As sparse 

reconstruction is only performed for azimuth, the computational complexity is not high. While it is 

applied to the 2-D sparse reconstruction concerning range and azimuth as studied in this paper, the 

computational complexity becomes intensive, especially in high-resolution imaging. The target 

coefficient vector to be reconstructed usually has a large size, and thus the memory shortage of the 

computational platform will be inevitably encountered for practical applications. OMP algorithm is 

a commonly used greedy algorithm, which has high computational efficiency and can guarantee 

excellent reconstruction results. Therefore, this paper proposes an effective and improved OMP 

algorithm to solve the multi-channel joint sparse reconstruction problem based on OMP algorithm. 

Regarding the three mixed norm solutions proposed in this paper, step (2) is different in the way of 

index finding: 

(1) Initialization: number of iterations 1t  , and support set 0 =0 . For the thi  channel, its 

initialized target vector 0g 0i ， , and incremental matrix ,0 0i  , which is composed of column 

vectors in the support set. Make ,ri t  the residual signal after t  iterations, and initialize ,0r =s 'i i

. 

(2) Obtain index t  by solving the following formulas: 

Mixed sum norm:  
2

, 1 ,
{1, , } 1

arg max r ,A 't i t i k
k PQ i

 


 

 


, (18) 
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Mixed Euclidean norm:  
12 2 2

, 1 ,
{1, , } 1

arg max r ,A 't i t i k
k PQ i

 


 

 


, (19) 

Mixed infinite norm: 
  , 1 ,
1,2{1, , }

arg max max r ,A 't i t i k
ik PQ

 




   
 

, (20) 

where, ,A 'i k  is the k  column vector in perception matrix. 

(3) `Record the obtained index t  to the support set and its corresponding vector in A 'i  to the 

incremental matrix: 

 

, , 1 ,

;

 A '
t

t t t

i t i t i 





   

    

 (21) 

(4) Adopt the least square method to calculate the projection coefficient of each channel: 

 , ,
g

g arg min s ' g   1, 2
i

i t i i t i i    (22) 

(5) Update residual signal ,ri t : 

 , , ,r s ' g   1,2i t i i t i t i    (23) 

(6) For the number of iteration 1t t  , repeat step (2) to (4) until the energy of the residual signal 

is lower than the preset threshold Thres or the number of iterations reaches the preset sparsity 

K. 

Compared with the standard OMP algorithm, the proposed algorithm is mainly improved in 

step (2). In the standard OMP algorithm, the support set for different channels may be different, 

because the index ,t i  is determined only for the single-channel signal itself: 

 , , 1 ,
{1, , }

arg max r ,A   1,2t l i t i k
k PQ

i 




 


. (24) 

Such independent processing makes inconsistent positions and number of non-zero coefficients 

in the target vector finally reconstructed in each channel, which is not favorable for extraction of 

target scattering information. For the improved OMP algorithm, the multi-channel target scattering 

information is used to determine candidate vectors and solve the projection coefficients of each 

channel in the same support set, so as to ensure the consistency of the position and number of non-

zero coefficients in target vector reconstructed in each channel. 

Setting of the preset threshold Thres is related to the noise level of the echo signal. Considering 

the high SNR ratio, the threshold can generally be set as about 0.05 of the energy of the echo signal. 

At this time, most of the scattering centers on the target can be accurately reconstructed; whereas, 

with the increase of noise in echo signal, the set threshold value also increases, so as to avoid more 

false scattering points caused by noise in the generated image. If the sparsity K  is known, the 

reconstruction results obtained by applying the CS matching pursuit reconstruction algorithm are 

quite excellent but it is difficult to obtain accurate sparsity in actual engineering. In such case it always 

requires a large number of SAR images for statistical analysis to determine approximate sparsity K  

range of different kinds of observation scenes, and then obtain the optimal sparsity K within the 

determined range by the optimization criteria. 
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3.4. Extraction of Target Scattering Information 

When the distance between the target and the antenna satisfies the near-field condition and the 

baseline of the antennas is much smaller than 0R , according to plane spectrum theory [29], the 

distance in Formula (1) can be represented as: 

0 0 0 0 0 0( ) ( cos( )) cos cos sin( ) cos sin ( tan )sini i i i iR t R r t r t R z                , (25) 

where, 0 0

0 0 0

sin( )
arctan

cos( )

r t

R r t

 


 

 
  

  
 is the angle between the target and antenna in the plane Oxy. 

To simplify the expression, the Cartesian coordinates of the target are represented in the cylindrical 

coordinate system, so Equation (25) can be expressed as: 

2 2
0 0 0 0 0 0( ) ( cos( )) ( sin( )) cos ( tan )sini i i iR t R r t r t R z             . (26) 

Then, the echo signal of the scattering point P  can be represented as: 

0cos ( tan )sin
( ) exp 4 i i i

i i

R z
s t g j f

c

  


   
  

 
, (27) 

where, 2 2
0 0 0 0 0( cos( )) ( sin( ))R r t r t         . This item is the same for the two antennas. 

According to Formula (26), it is found that phase information of the scattering point in target ISAR 

image contains height information of the scattering point, interferometric processing for two ISAR 

images is conducted, and the interferometric phase difference of P  images is: 

 

 

2 0 2 2 1 0 1 1

2 1 0 2 2 1 1 2 1

4
cos ( tan )sin ( cos ( tan )sin )

4
      = (cos cos ) (tan sin tan sin ) (sin sin )

f
R z R z

c

f
R z

c


      


       

        

     

 (28) 

In the InISAR imaging system, the baseline length is much less than the distance between the 

antennas and target, so pitch angle difference between the antenna 1TR  and 2TR  is very small, 

namely 2 1     , 1  . In this paper, the antenna 2TR  is at the origin, so 1 0  , 2   , 

and the height of the scattering point can be estimated as: 

2 0 2 2

2

cos tan sin
4

sin

R
z


   




  



 (29) 

When the antenna 1TR  and 2TR  are symmetrically distributed in the coordinate origin, 

namely 1 2  , the height of the scattering point is estimated as: 

18 sin
z



 


  (30) 

For target containing K  scattering points, the height of each scattering point can be estimated 

by interferometric processing of the corresponding pixel points in the two ISAR images. 

In actual processing, in order to avoid possible ambiguity of interferometric phase difference, 

the following judgements on the interferometric phase difference are required: 

  ,   -2

  ,   2

if

if

   

   

  


    
. (31) 

 

  



Sensors 2018, 18, 3750 11 of 29 

 

4. Experiments and Analysis 

In order to verify the effectiveness of the algorithm in this paper, point target simulation data, 

electromagnetic software simulation data, and measured data in anechoic chamber is adopted to 

carry out imaging verification and performance analysis, respectively. 

4.1. Numerical Simulations 

The simulation target is composed of 46 scattering centers withe shape of plane model, and its 

distribution is shown in Figure 3. Stepped frequency signal of radar transmission and system 

parameters setting are as shown in Table 1. 

  
(a) (b) 

Figure 3. Geometric distribution for scattering model of plane point. (a) 2D distribution diagram of 

scattering point; (b) 3-D distribution diagram of scattering point. 

Table 1. Simulation parameter. 

Parameter Parameter Value 

Carrier frequency 10 GHz 

Bandwidth 4 GHz 

Frequency step interval 40 MHz 

Azimuth accumulation angle 20° 

Azimuth sampling interval 0.2° 

Distance between antenna and target 2 m 

Baseline length 0.02 m 

Independent CS processing and joint CS processing based on global sparsity are separately used 

for InISAR imaging. The 3-D distribution of scattering points is shown in Figure 4. The above 

experiments are carried out with full data and signal without noise. Figure 4a is the single-channel 

independent processing reconstruction result, Figure 4b–d are the global sparse joint sparse 

reconstruction results. It can be seen from the figures that traditional single-channel independent 

processing can basically reflect the 3-D distribution of scattering points of the target, but cannot 

guarantee location consistency of all scattering points in different channels, which results in deviated 

location estimation. While with the proposed method, consistency of location and number of 

scattering points and more accurate reconstruction results can be ensured. 
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(a) (b) 

  
(c) (d) 

Figure 4. 3-D Imaging results of near-field InISAR. (a) Traditional imaging approach, (b) Global 

sparsity mixed sum norm processing; (c) Global sparsity mixed Euclidean norm processing (d) Global 

sparsity mixed infinite norm processing. 

4.1.1. Precision Analysis of Scattering Point Coordinate Estimation 

Based on the above experiments, three typical scattering points are selected for statistical 

comparison. It can be seen from the coordinate values of scattering points in the Table 2 that the 

conventional imaging approach has obvious deviation in estimating the height coordinate values of 

scattering points, while the proposed approach is more accurate in estimating the location of 

scattering points. For example, when estimating the height information, the maximum deviation of 

the traditional imaging approach is 0.6438, while the maximum deviation of the approach in this 

paper is 0.046. Compared with the traditional method, the accuracy of the proposed approach is 

improved by roughly 90% as indicated by statistical analysis of the location errors of all scattering points. 

Table 2. Comparison of coordinates of typical scattering points. 

 
Scattering Point 1  

(x, y, z) 

Scattering Points 2  

(x, y, z) 

Scattering Points 3  

(x, y, z) 

Theoretical coordinate (0.0125, 0.2688, 0) (0.1438, 0.2438, 0) (0.1188, 0.1688, 0.0467) 

Traditional imaging  (0, 0.24, 0.6438) (0.12, 0.23, 0.14) (0.1, 0.1, 0.13) 

Mixed sum norm  (0.009, 0.26, 0) (0.1387, 0.24, 0.046) (0.11, 0.1, 0.046) 

Mixed infinite norm  (0.008, 0.26, 0) (0.1387, 0.24, 0.046) (0.1063, 0.1, 0.046) 

Mixed Euclidean  (0.01, 0.265, 0) (0.139, 0.241, 0.03) (0.1163, 0.15, 0.046) 

4.1.2. Precision Analysis of Interferometric Phase 

For near-field InISAR imaging system, to estimate the height information of target scattering 

point through the phase difference of corresponding pixel among complex images of various 

channels, it must ensure the consistency of strong scattering position among various channels images 
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during imaging of various channels. The accuracy of interferometric phase has a direct influence on 

imaging quality. Figure 5 is the interferometric phase distribution of the complex image of two 

channels after processing. According to the comparative study on Figure 5a–d, the accuracy of 

scattering point in obtaining interferometric phase is higher and broader for the proposed approach 

comparing with that of the independent single-channel processing imaging approach. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Interferometric phase image of near-field InISAR 3-D imaging. (a) Traditional imaging 

approach, (b) Global sparsity mixed sum norm processing; (c) Global sparsity mixed Euclidean norm 

processing (d) Global sparsity mixed infinite norm processing. 

4.1.3. Noise Suppression Performance 

Figure 6 shows the results obtained by applying the traditional imaging approach and the 

proposed approach when there is noise in echo signal, where the noise is 5 dB complex white 

Gaussian noise. Add the complex white Gaussian noise with SNR ratio of −15 dB to 25 dB in the echo 

data, repeat Monte-Carlo simulation test for 100 times under every noise level, and calculate MSE 

estimated on the basis of height. 

In Figure 6, imaging results show that there is a considerable deviation in estimation of 

traditional processing approach on height of target scattering point. While by applying the imaging 

approach (global sparsity Euclidean norm) proposed in this paper, the height of target scattering 

point can be estimated more accurate. 
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(a) (b) 

Figure 6. Imaging results obtained by adopting traditional approach and proposed approach 

respectively under 5 dB Noise. (a) Traditional imaging processing; (b) imaging processing of 

proposed approach (mixed Euclidean norm); interferometric phase images (top layer); complex 

images of channel 1 and channel 2 (second and third layers); final 3-D imaging results (last layer). 

Figure 7 describes MSE estimated by heights of four compressed sensing approaches under 

different SNRs. Under low SNR, the performance estimated by the heights of the four approaches is 

low. With the increase of SNR, height estimation performance increases. However, the estimation 
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performance based on global sparsity in this paper is obviously superior to that obtained by the 

traditional processing approach. 

 

Figure 7. Comparison for imaging performance of four approaches under different SNRs. 

4.1.4. Performance of Sparsity Sampling Imaging 

Randomly select a certain quantity of data from echo data to carry out InISAR imaging for 

further investigating the influence of sparsity sampling on height estimation. Then, estimate the 

height information of the scattering point through interference processing. The SNR is fixed as 10 dB, 

and the pitch angle of antenna TR1 is fixed as 0.05°. Carry out Monte-Carlo simulation for 100 times 

to every sparsity sampling scheme, and calculate the MES estimated on the basis of height. 

Figure 8 shows that application of the traditional approach fails to perform effective imaging of 

target given 80% under-sampling rate. However, with the proposed approach, accurate imaging of 

target can be performed. Figure 9 shows that the height estimation performance of processing based 

on global sparsity is still superior to that of results obtained on the basis of independent processing 

under sparsity sampling condition. Even when the measurement quantity is low (10% of full data), 

the overall sparsity constraint can still ensure a better interferometric imaging performance. 

  

  

-15 -10 -5 0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SNR(dB)

M
S

E

 

 

Traditional method

Mixed euclidena norm

Mixed sum norm

Mixed infinity norm

Azimuth cell number

R
a

n
g

e 
ce

ll
 n

u
n

b
er

20 40 60 80 100

20

40

60

80

100

Azimuth cell number

R
a

n
g

e 
ce

ll
 n

u
n

b
er

20 40 60 80 100

20

40

60

80

100

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X(m)

Z
(m

)

 

 

Estimated value

Theoretical value

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X(m)

Z
(m

)

 

 

Estimated value

Theoretical value



Sensors 2018, 18, 3750 16 of 29 

 

 

  

  
(a) (b) 

Figure 8. Imaging results of traditional approach and proposed approach under 20% of effective data. 

(a) Traditional imaging processing; (b) imaging processing of proposed approach (mixed Euclidean 

norm); interferometric phase images (top layer); complex images of channel 1 and channel 2 (second 

and third layers); final 3-D imaging results (last layer). 

 

Figure 9. Comparison for imaging performance of four approaches under different sparsity samplings. 

4.1.5. Computational Complexity 

The running time of independent CS approach of traditional single-channel depends on step (2). 

Its computing cost is  O end sLt N PQ , wherein, the endt  is the times of algorithm iterative circulation, 

and the sN  is the signal sampling times. The proposed approach has higher calculation efficiency 

and is only added with  O endLt PQ  times of addition calculation compared to independent CS 
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approach of single-channel. The increased calculation times by applying the proposed approach can 

be nearly ignored in practical application. On the basis of the space storage efficiency, the approach 

proposed in the paper needs to occupy more memory space compared to that needed by applying 

the independent CS approach of single-channel, but it can be effectively released through parallelization. 

4.2. Experiments and Analysis of Backhoe 

The electromagnetic scattering echo data which is more closed to actual measurement is 

obtained by using high-frequency electromagnetic software and 3-D model of target. In this paper, 

Backhoe electromagnetic simulation data is adopted to verify the effectiveness of the proposed 

approach. In the experiment, select two groups of data with the adjacent pitch angle of 42° and 42.07° 

to divide the whole aperture into 17 sub-apertures. Specific parameters are shown in Table 3, and 

Figure 10 shows the CAD model of Backhoe. 

Table 3. Parameters of electromagnetic simulation system. 

Parameter Parameter Value 

Carrier frequency 10 GHz 

Bandwidth 6 GHz 

Sampling point number of frequency 512 

Azimuth accumulation angle 51° 

Sampling point number of direction 71 * 17 

Pitch angle 0.07° 

 

Figure 10. 3-D CAD model of Backhoe. 

Adopt traditional imaging approach and the proposed approach respectively to carry out 

InISAR imaging, and the 3-D distribution of target scattering points is shown in Figure 11. 
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(a) (b) 

Figure 11. InISAR imaging results of Backhoe with complete data. (a) Traditional imaging processing; 

(b) imaging processing of proposed approach (mixed Euclidean norm); complex images of channel 1 

and channel 2 (first and second layers); interferometric phase images (third layer); final 3-D imaging 

results (last layer). 

Randomly select 25% observed data from full data to generate the sparsity sampling data, and 

adopt traditional imaging approach and the proposed approach respectively to carry out InISAR 

imaging. The 3-D distribution of target scattering points is shown in Figure 12. Figures 11 and 12 

show that the reconstructed target information of traditional approach has a larger deviation. 

Regardless of complete data or insufficient data provided, the target can be imaged effectively. 

What’s more, with the decrease of data quantity, the imaging performance gets worse. On the 

contrary, by applying the proposed approach, 3-D target images with higher quality can be obtained. 

When the effective data is 25%, it can still maintain accuracy of height information in estimation. 
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(a) (b) 

Figure 12. InISAR imaging results of Backhoe with 25% data. (a) Traditional imaging processing;  

(b) imaging processing of proposed approach (mixed Euclidean norm); complex images of channels 1 and 

2 (first and second layers); interferometric phase images (third layer); final 3-D imaging results (last layer). 
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4.3. Actual Measurement Experiment in Anechoic Chamber 

In order to further verify the effectiveness of the proposed approach in terms of practical 

applications perspective, a near-field InISAR test platform in an anechoic chamber is established, and 

the test system is shown as Figure 13. The target is put on the low scattering foam bracket, under 

which there is a turntable. The two antennas are fixed with interval of 0.2 m, and achieve azimuth 

accumulation through the rotation of turntable. Test parameters are shown in Table 4. 

Objective to 
be measured

low- reflection foam 
bracket
H=4m

Computer

Cable trigger line

Transceiver

Scanner

Turntable control 
cabinet

Scanner 
control 
cabinet

 

Figure 13. Frame diagram for near-field InISAR imaging system in anechoic chamber. 

Table 4. Parameters of near-field InISAR test system. 

Parameter Parameter Value 

Carrier frequency 10 GHz 

Bandwidth 4 GHz 

Frequency step interval 40 MHz 

Azimuth accumulation angle 20° 

Azimuth sampling interval 0.2° 

Distance between antenna and target 0.02 m 

Baseline length 2 m 

The parameter calculation rules are as follows: 

(1) Antenna baseline 

Height information of the target is mainly calculated by phase difference of dual-antenna 

propagation path. In general, the interferometric phase difference is a periodic function for the period 

with 2 . In order to avoid fuzzy height, the interferometric phase difference shall meet the 

requirement of 2   , so that the baseline length meet the requirement of 0

2

R
d

H


 , wherein   

represents transmitting frequency, 0R  represents distance from the receiving/transmitting antenna 

to the target, and H  represents maximum height of the target. 
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(2) Sampling principle 

Range resolution in ISAR imaging is 
2

y

c

B
  , and azimuth resolution is 

2
x





 , wherein B  

represents signal bandwidth and   represents azimuth accumulation angle. In actual imaging, the 

range resolution is generally equal to the azimuth resolution. Concerning resolution requirements, 

the signal bandwidth and azimuth accumulation angle can be determined through 
2

y

c

B
   and 

2
x





 . 

Concerning range resolution requirements, the frequency sampling interval is 
02

c
f

R
  , also 

taken as step frequency interval. 

Concerning azimuth resolution requirements, the azimuth sampling interval is 
2D


  , 

wherein D  represents maximum size of the target. 

(3) Distance from antenna and target 

This paper focuses on near-field imaging, in principle, distance from the antenna to the target is 

represented as: 
2

0

4D
R


 , wherein D  represents maximum size of the target and   represents 

length of incident electromagnetic wave. 

In addition, scanning in vertical direction does not exist because the two antennas are located 

fixedly, the beam center is fixed and only the target rotates in InISAR. As mentioned in Section 4.3, 

In the experiment, the range sampling interval and azimuth sampling interval are 

'   ( 1, 2, , )f n f n N      and '   ( 1, 2, , )m m M       respectively. 

The test is adopted with stepped frequency signal, which features easy achievement of 

wideband and low requirements for hardware system. In order to make easier application of CS in 

the test, this paper adopts the deterministic sparsity observation approach based on Cat sequence for 

distance-oriented compressed sampling. The following shows the steps of Cat mapping to produce 

random sequence and construct observation matrix: 

(1) Produce chaos sequence according to Cat mapping equation, and the mapping is defined as: 

 1

1

1
  mod  1

1

n n

n n

x xa

y yb ab





    
        

, (32) 

where,  mod  1  represents the integer whose real number is casted out, namely  mod  1 -x x x    . nx  

sequence is selected to construct the needed deterministic random sequence. 

(2) For using the chaos sequence construction Φr  in stable area, cast out the g  value in front 

of the sequence. It means to select 1gx   as the starting point of the sampling. Meanwhile, sample the 

produced sequence with the interval of d  for ensuring the mutual independence of elements in 

chaos sequence: 

,   0,1,2, , 1k g kdz x k N    (33) 

After obtaining the output sequence kz  of Formula (33), directly divide the kz  into /N N U   

with equal interval. Select the corresponding position of maximum value in various intervals, and 

assign 1 to corresponding position of Φr , and others a zero: 
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1, ,0, ,0 0 0

Φ

0 0 0, ,0, ,1

U

r

U

 
 
   
 
  

  

   

  

, (34) 

where, each row has a  0,1  random sequence with length of U , and value 1 is at the position of 

the maximum value in the corresponding interval of the chaos sequence produced in  1,2, ,U , 

and others are zero. 

In practical applications, adopt parallelization to transmit N  random single frequency signal, 

and its data rate is /N T . Its achievement process is shown in Figure 14. 

B

Demodulation

CS Reconstruction 
algorithm

Data rate

'/N T

T

f

t

~1f

2f

'Nf
0f

( )s tParallel signal 
frequency signal

1/T

1f

2f

'Nf

1/sf T

 

Figure 14. Range compressed sampling process of stepped frequency signal. 

  

0.04m

0.04m

0.04m

0.02m

0.02m

 
(a) (b) (c) 

Figure 15. Target model of five metal balls. (a) Scanning frame and probe; (b) optical picture of five 

balls; (c) distribution of target spatial position. 

Figure 15 is the optical pictures of the measurement system and target distribution. Figures 16 

and 17 show imaging results by applying the two approaches provided with complete data and 

compressed sampling data. It can be found that by applying the traditional approach, target height 

information cannot be estimated completely because of incomplete correspondence of scattering 

point position, especially that the effective height information of target cannot be extracted if the 

compressed sampling proportion is large. Comparatively, by adopting the proposed approach, the 

height information of target can be estimated accurately given full data and compressed  

sampling data. 



Sensors 2018, 18, 3750 23 of 29 

 

  

  

  

  
(a) (b) 

Figure 16. InISAR imaging results of five metal balls with complete data. (a) Traditional imaging 

processing; (b) imaging process of proposed approach (mixed Euclidean norm); complex images of 

channels 1 and 2 (first and second layers); interferometric phase images (third layer); final  

3-D imaging results (last layer). 
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(a) (b) 

Figure 17. InISAR imaging results of five metal balls with 20% data. (a) Traditional imaging 

processing; (b) imaging processing of proposed approach (mixed Euclidean norm); complex images 

of channel 1 and channel 2 (first and second layers); interferometric phase images (third layer); final 

3-D imaging results (last layer). 
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From Tables 5 and 6, it can be found that by applying the traditional approach, position 

consistency of all scattering points in images of different channels cannot be ensured. If the 

compression rate is high, the consistency is more obvious. However, by applying the proposed 

approach, reconstruction is performed through multi-channel joint sparsity, so as to ensure that the 

scattering points are at the same pixel of the images from different channels, which is more favorable 

for extraction of target height information. 

Table 5. Target position information provided with complete data. 

Approach Channel Ball 1 Ball 2 Ball 3 Ball 4 Ball 5 

Initial 

Traditional 

approach 

-- (−0.20, −0.20) (0.20, −0.20) (0.00, 0.00) (−0.20, 0.20) (0.20, 0.20) 

1 (−0.22, −0.19) (0.18, −0.18) (−0.05, 0.02) (−0.22, 0.19) (0.22, 0.22) 

2 (−0.21, −0.18) (0.18, −0.19) (−0.03, 0.02) (−0.22, 0.18) (0.23, 0.23) 

Proposed 

approach 

1 (−0.20, −0.20) (0.19, −0.19) (−0.01, 0.01) (−0.20, 0.19) (0.21, 0.21) 

2 (−0.20, −0.20) (0.19, −0.19) (−0.01, 0.01) (−0.20, 0.19) (0.21, 0.21) 

Table 6. Target position information provided with compressed sampling data. 

Approach Channel Ball 1 Ball 2 Ball 3 Ball 4 Ball 5 

Initial 

Traditional 

approach  

-- (−0.20, −0.20) (0.20, −0.20) (0.00, 0.00) (−0.20, 0.20) (0.20, 0.20) 

1 (−0.20, −0.20) (0.19, −0.19) (−0.04, 0.01) (−0.22, 0.19) (−0.14, 0.20) 

2 (−0.21, −0.20) (0.18, −0.19) (−0.04, 0.00) (−0.20, 0.17) (Null, Null) 

Proposed 

approach  

1 (−0.20, −0.20) (0.19, −0.19) (−0.01, 0.01) (−0.20, 0.19) (0.20, 0.21) 

2 (−0.20, −0.20) (0.19, −0.19) (−0.01, 0.01) (−0.20, 0.19) (0.20, 0.21) 

One of the practical applications of the proposed approach is security check. Here we conduct 

detecting and imaging on closed chamber in the anechoic chamber. The chamber is used to simulate 

luggage carrier, which is placed with one knife, two bottles of water (one is full and the other is  

half-full) and two bottles of Coco-cola. The test parameters are consistent with parameters as shown 

in Table 4. With 10% echo data adopted, Figure 18 shows the test system and target scene and 

distribution of targets within the box. The imaging results are as shown in Figure 19. 

Transceiver

VNA

Closed 
chamber

 

Coca-cola

Water

Knife

 
(a) (b) 

Figure 18. Imaging test for closed chamber. (a) Imaging system and target scene; (b) distribution of targets. 
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water
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of water

Full bottle of water

Coca-Cola

 
(a) (b) 

Figure 19. InISAR imaging results of anechoic chamber target with complete data. (a) Traditional 

imaging processing; (b) imaging processing of proposed approach (mixed Euclidean norm); complex 

images of channels 1 and 2 (first and second layers); interferometric phase images (third layer); final 

3-D imaging results (last layer). 
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It can be seen from Figure 20 that in the case of only 20% echo data applied, effective imaging 

on the targets is unable to be achieved with the traditional imaging approach. Through adoption of 

the proposed imaging approach, clear target images are available, provided with the shapes and 

location information of the knife, full bottle of water, half bottle of water and bottles of Coco-cola in 

the chamber. 
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Figure 20. InISAR imaging results of anechoic chamber target with 20% data. (a) Traditional imaging 

processing; (b) imaging processing of proposed approach (mixed Euclidean norm); complex images 

of channels 1 and 2 (first and second layers); interferometric phase images (third layer); final 3-D 

imaging results (last layer). 

5. Conclusions 

Focusing on the near-field ISAR imaging, this paper puts forward an interferometric near-field 

3-D imaging approach for joint sparsity reconstruction. Since scattering characteristics of targets in 

different channels are effectively made use of in joint sparsity, the imaging results feature a 

combination of interferometric processing and sparsity optimization. In addition to acquisition of 

near-field high-resolution 3-D images with less observation echoes applied, it can also accurately 

reflect the position information of scattering points. Moreover, it can effectively solve the problem 

that the accuracy of target scattering azimuth is not high in different directions by adopting sub-

aperture synthesis. As verified by tests, target 3-D views with higher quality can be obtained by 

applying the imaging approach as proposed in this paper, so as to provide reliable judgment basis 

for target identification and other applications. Since this paper adopts an OMP-based reconstruction 

approach, the calculation complexity is not high. Also, it requires more research on rapid InISAR 

near-field 3-D imaging approach in combination with the traditional near-field imaging approach for 

future study. 
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