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Abstract: Global registration is an important step in the three-dimensional reconstruction of
multi-view laser point clouds for moving objects, but the severe noise, density variation, and overlap
ratio between multi-view laser point clouds present significant challenges to global registration.
In this paper, a multi-view laser point cloud global registration method based on low-rank sparse
decomposition is proposed. Firstly, the spatial distribution features of point clouds were extracted
by spatial rasterization to realize loop-closure detection, and the corresponding weight matrix
was established according to the similarities of spatial distribution features. The accuracy of
adjacent registration transformation was evaluated, and the robustness of low-rank sparse matrix
decomposition was enhanced. Then, the objective function that satisfies the global optimization
condition was constructed, which prevented the solution space compression generated by the
column-orthogonal hypothesis of the matrix. The objective function was solved by the Augmented
Lagrange method, and the iterative termination condition was designed according to the prior
conditions of single-object global registration. The simulation analysis shows that the proposed
method was robust with a wide range of parameters, and the accuracy of loop-closure detection was
over 90%. When the pairwise registration error was below 0.1 rad, the proposed method performed
better than the three compared methods, and the global registration accuracy was better than 0.05
rad. Finally, the global registration results of real point cloud experiments further proved the validity
and stability of the proposed method.

Keywords: 3D reconstruction; global registration; loop-closure detection; low-rank sparse decomposition

1. Introduction

Flash laser three-dimensional imaging technology [1,2] can obtain an object’s three-dimensional
information by transmitting a single pulse, which is an effective means to realize three-dimensional
imaging of moving objects. With the advantages of a long imaging distance and freedom from
illumination effects, it has high military and civilian value. For example, in the application of
space-based non-cooperative object three-dimensional imaging, the object and the imaging system are
always in relative motion, and the positions of the two can change at any time. Due to the occlusion
of perspective, reconstructing the complete 3D model of the object requires collecting a variety of
different perspective point clouds in combination with the object’s motion, and unifying them to the
same coordinate system through point cloud registration. Multi-view point cloud registration can be
divided into two steps: Pairwise registration and global registration. Pairwise registration refers to
the registration between two point-clouds collected by adjacent perspectives, and there are currently
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many methods [3–5] for this purpose. Global registration refers to the optimization of the registration
accuracy from a global perspective based on the pairwise registration by eliminating the cumulative
registration error. Global registration is the key technology for multi-view point cloud registration,
and the registration result directly affects the performance of object reconstruction. However, the point
cloud obtained by flash laser three-dimensional imaging lacks texture information and has severe
outliers and noise, which cause great difficulties for global registration.

Global registration is a hot issue in the realm of point cloud processing, and a lot of research
has been done: Steven et al. [6] proposed a global registration method for multi-density point
clouds, which defined a kernel-based energy function that took all point clouds into account and
distributed the errors evenly over the pairwise registration by estimating the surface kernel density.
Simone et al. [7] globalized the Levenberg-Marquardt ICP (iterative closest point) method, unified
the global registration error to an objective function, and then used the Jacobian matrix to derive
the optimal solution. Kang et al. [8] used the corresponding points to realize global registration,
which was robust to resolution differences. Zhu et al. [9] designed an evaluation function as the
reconstruction accuracy criterion, roughly reconstructed an initial model, and then registered each
point cloud to the initial model in a sequence. As a result, the global registration error was reduced
by multiple iterations. Zhou et al. [10] established an objective function to minimize the distance
between each corresponding point in the global point cloud, and they centralized the adjacent point
cloud registration and global registration optimization in one step, which had high computational
efficiency. Dorit et al. [11] proposed a graph optimization method to minimize global registration
error, which has been widely used in simultaneous localization and mapping, but it required
calculating the corresponding points between point clouds. Jochen et al. [12] proposed the explicit
loop-closing technique, which separated the last scan of the closed-loop path from the previous scan
and reaggregated it with explicit registration, so that the errors were evenly distributed throughout
the registration process. However, it only had six degrees of freedom. Christian et al. [13] used the
similarities in the entropy of adjacent registrations to achieve loop-closure detection, and then used
graph optimization to achieve global registration. Based on Kinect Fusion [14], Li et al. [15] proposed a
loop-closure detection method based on a historical model set, which had good real-time accuracy.
Liu et al. [16] implemented loop-closure detection based on visual word bags, and they applied it
to measuring the relative attitude of non-cooperative space targets. Liu et al. [17] did not need to
specify loop-closure detection, but instead used two-way parametric registration to generate reversible
transformations for global registration. This method was robust to pairwise registration errors, but
sensitive to the outliers of pairwise registration. Arrigoni et al. [18] constructed block matrices and
implemented global registration with LRS (low-rank sparse decomposition), but it was assumed that
the submatrices were column-orthogonal to facilitate solving, which compressed the solution space
and affected the accuracy and robustness, so this method was greatly affected by the sparsity of the
registration matrix.

In general, the main goal of global registration is to construct the objective function and evaluation
criteria for connecting corresponding points or determining the relationship between points and
clouds, combined with closed-loop detection to establish constraints, and then to minimize the global
registration error. Influenced by factors, such as ranging accuracy, backscattering, and distance change,
the point clouds obtained by three-dimensional imaging using flash Lidar have severe noise and
outliers, and undersampling often occurs while the distance between the Lidar and object is too large
since the fix resolution of flash Lidar. These factors, especially outliers and undersampling, raise
difficulties in searching for corresponding points between multi-view point clouds. Therefore, it is
more suitable to use the transformation relationship between point clouds to achieve global registration.
The theoretical basis of the commonly used global registration objective function is mainly divided
into two types: Graph optimization and LRS. Graph optimization uses the relationship between
the corresponding points in the multi-view point clouds and averages the error of each pairwise
registration from the global perspective. LRS does not need to consider the corresponding points, and
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only relies on the pairwise registration relationship to separate the true pairwise registration from the
pairwise registration with errors. LRS is more suitable for global registration of multi-view laser point
clouds. However, LRS is rarely used in laser point cloud global registration, and there is still room for
improvement of loop-closure detection and robustness to the noise of laser three-dimensional imaging.

In this study, loop-closure detection was realized according to the spatial distribution
characteristics of the point cloud. Then, the corresponding weight matrix and transformation
relation matrix of the multi-view point cloud were established, and the global registration objective
function was constructed. The optimal solution of global registration was obtained by LRS, and
orthogonalization projection of the optimal solution, as well as the registration relationships between
the point clouds, were obtained. The following sections are arranged as follows: The second section
explains the proposed method in detail. In the third section, the design of the corresponding simulated
analyses is presented, the experiments are described, and the results are analyzed. In the fourth section,
the algorithm is summarized. In the fourth section, the proposed method is summarized and prospects
for areas that can be improved are discussed.

2. Study Method

In moving object multi-view point cloud global registration, pairwise registration relationships
between several point clouds are known, and the coordinates of any point cloud, Pi, (where i ∈ [1, n],
n is the total number of point clouds) are considered the reference coordinate system. Then, the
transformation relationship of other arbitrary point clouds, Pj, (where j ∈ [1, n]) to the reference
coordinates must be found, as shown in Figure 1. Global registration can be divided into four steps:
Pre-processing, loop-closure detection, post-preprocessing, and relation calculation. The green line in
Figure 1b means the corresponding loop-closure point clouds founded in loop-closure detection.

Figure 1. Global registration for single-object multi-view laser point cloud: (a) Pre-processing, pairwise
registration between the consecutive point clouds; (b) loop-closure detection, searching the point
clouds which may have several sets of transformation parameters; (c) post-preprocessing, pairwise
registration between the new pairwise point clouds; (d) relation calculation, getting the transformation
relationship between all point clouds and transforming them to the same coordinate system.
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The assumption of global registration is that any Pj can obtain a transformation matrix between
Pi and Pj directly or indirectly; that is, there are no isolated point clouds in the multi-view point cloud.
As shown in Figure 1, assuming that the change relationship of Pi to Pj is Mij, since there is a difference
in the viewing angle between the cloud points of each viewpoint, the area of overlap is affected. In
most cases, Pi cannot be directly registered with any other Pj; that is, only some Mij values are known.

The unknown transformation relationship can also be obtained by continuous transformation of
the intermediate point clouds from Pi to Pj, but Mij generally has outliers and errors. Outliers can be
rejected by use of robust estimators, but the noise will become more severe as the number of point
clouds increases; a simple continuous transformation accumulates these outliers and errors. Global
registration is a solution to the accumulation of outliers and errors. With these known transformation
relations, combined with loop-closure detection, a global transformation relation matrix of point clouds
is constructed, and the transformation relationship between each point cloud is considered globally.
LRS decomposition of the transformation relation matrix obtains the estimated relationship, M̂ij, which
minimizes the global registration total error. Equation (1) shows the generalized global registration
objective function:

f (M̂ij) = min ∑
i,j∈[1,n]

∥∥M̂ij −Mij
∥∥ (1)

2.1. Point Cloud Spatial Distribution Feature Extraction and Loop-Closure Detection

Loop-closure detection refers to finding point clouds that can be registered with more than one
other dataset, yielding in different transformation parameters. Then, a new transformation parameter
can be obtained with the pairwise registration of the point cloud obtained by loop-closure detection.
The new transformation parameter forms a new constraint, which can effectively eliminate the error
caused cumulatively by the continuous pairwise registration. Therefore, loop-closure detection is a
necessary step in global registration. Moving object multi-view point clouds are in relative motion,
and positions change between the system and the object at the time of acquisition. The point cloud
of each viewpoint has severe laser noise, and there is a density difference between point clouds. It is
necessary to evaluate the similarity of each point cloud.

In this work, we constructed the spatial distributions for each point cloud, and the relationship
between each point cloud was extracted by spatial distribution features to achieve closed-loop detection.
As shown in Figure 2, the first point cloud, P1, in the multi-view point cloud was used as a reference,
and all the other point clouds were transformed by the known transformation, Mij, to the coordinate
system of P1. The minimum bounding box, Bmmb_all , which surrounded all point clouds, was extracted
and rasterized into nb × nb × nb grids, and the grids were numbered from 1 to nb × nb × nb. The
quantity of points where Pi falls in each grid was normalized, and the distribution histogram, hhist(i),
of Pi in space was obtained, where hhist(i) describes the spatial distribution characteristics of Pi. The
distribution features of each point cloud in the grid can be regarded as the probability distribution
characteristics of the point cloud in space. The points with similar spatial distribution features can
be considered acquired when the viewpoint is similar, and the distribution feature relations between
the point clouds are obtained. By correlating the distribution features, hhist(i), between the point
clouds and removing the point cloud adjacent to Pi, the point cloud with distribution features similar
to Pi is the point cloud collected again from a viewpoint similar to Pi, and loop-closure detection is
realized accordingly.
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Figure 2. Schematic diagram of point cloud spatial distribution feature extraction: (a) Spatial
rasterization, and (b) spatial distribution features of one point-cloud.

The point cloud distribution features obtained after spatial rasterization are not sensitive to point
cloud density changes, and they showed robust performance when there are outliers and noise. The
point clouds obtained by loop-closure detection were acquired from similar viewpoints; they have
a high overlap rate and can be pairwise-registered to form a new constraint. For the point clouds of
similar viewpoints, the similarity can be evaluated by their distribution features in space. The higher
the similarity of distribution characteristics, the greater the similarity of the viewpoint, and the more
accurate the pairwise registration. Equation (2) defines the similarity, Θij, between Pi and Pj:

Θij =
max(norm−1[hist(i)− hist(j)])

norm[hist(i)− hist(j)]
(2)

2.2. Transformation Relation Matrix and Weight Matrix

Assuming Pi+k is a point cloud from a viewpoint similar to Pi obtained in loop-closure detection,
then the transformation, Mi,i+k, from Pi to Pi+k forms a new constraint of the global registration.
Mi,i−j . . . Mi,i+j and Mi,i+k−j . . . Mi,i+k+j can be obtained by pairwise registration for Pi, in which j is
the maximum quantity of adjacent point clouds that can be registered. The value of j is determined by
the adjacent point cloud overlap rate and the pairwise registration method. The higher the overlapping
rate of adjacent point clouds, and the more robust the adjacent registration method, the larger the
value of j.

According to the known transformation relationship, Mij, between point clouds, the
transformation relation matrix, Tglobal , is constructed as shown in Equation (3):

Tglobal =


I4 M12 . . . M12

M12 I4 . . . M12

. . . . . . . . . . . .
M12 M12 . . . I4

 (3)

When Mij is unknown, Mij in Tglobal is an all-zero matrix. The more constraints obtained by
closed-loop detection, the denser the matrix, Tglobal , and the better the performance of the global
registration. Considering the existence of outliers in pairwise registration, combined with the known
condition that Mij and Mji are mutually reversible matrices, Mij and M−1

ji are considered to be correct
only when the difference between Mij and Mji is below a threshold. Otherwise, they are considered to
be inaccurate registrations, and all values in Mij and Mji are set to zero.

The weight matrix, Wweight, is the same size as Tglobal , and the purpose of constructing Wweight is
to make the objective function only work on valid values in Tglobal , which can reduce the effect of the
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sparsity caused by element deletion in Tglobal on global registration. Equation (4) shows the value of
element wij in Wweight:

wij =

{
Θij , tij 6= 0
0 , tij = 0

(4)

2.3. Objective Function Construction

Outliers and errors are inevitable in pairwise registrations, and the transformation relationships
in Tglobal are not always accurate. Tglobal can be decomposed into the following equation:

Tglobal = T̂global + Nnoise (5)

where T̂global is the estimated value matrix of the accurate registration, and it is also the expected target
in global registration; Nnoise is the noise matrix, i.e., the outliers and errors of registration existing in
Tglobal . The element in Tglobal is only partially known, and Tglobal is a sparse matrix; the block element,
Mij, in Tglobal is a rigid body transformation with a rank of 4, thus, the rank of Tglobal is also 4, so
Tglobal is a sparse low-rank matrix. The purpose of global registration is to complement the missing
elements in Tglobal under the constraints of known noisy observations. From the perspective of matrix
analysis—that is, when the rank of the target matrix is known—the unknown matrix information
is complemented by the known rank constraint and the limited known matrix elements. This is a
low-rank sparse matrix completion problem, as shown in Figure 3.

Figure 3. Schematic diagram of global registration based on LRS decomposition.

The pairwise registration of adjacent point clouds in the preprocessing usually does not cause
errors because their overlap is enough; but it cannot guarantee that the point cloud obtained by closed
loop detection are all completely correct, as there may be false results in the loop-closure detections and
the pairwise registration between them may be wrong, resulting in the outliers in Tglobal . Considering
that the L1 norm is more robust than L2 norm when there are missing values and outliers, we used the
L1 norm to evaluate the difference between Tglobal and T̂global . To solve this, T̂global is usually bilinearly
decomposed into two matrices, U and V. Equation (6) shows the objective function and constraints.

argmin
T̂global

‖Wweight � (Tglobal − T̂global)‖1

T̂global = UVT

rank(T̂global) = 4

(6)
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where rank(T̂global) is the rank of T̂global .
However, the minimization of Equation (6) is a non-convex discontinuous problem. It is necessary

to introduce a relaxation term to normalize it, and the introduction of the relaxation term cannot have
a great impact on the value of the original objective function. We used the matrix completion method
in [19] to normalize the objective function, as shown in Equation (7).

argmin
U,V

[‖Wweight � (Tglobal −UV)‖1 +
λ

2
(‖U‖2

F + ‖V‖
2
F)] (7)

where λ is the weight parameter of the relaxation term, which is used to control the relationship
between the observed value and the estimated value. When λ is small, the obtained estimated value,
T̂global , describes the observed value more accurately, but its prediction effect is not good and it
over-optimizes; when λ is large, the obtained estimated value, T̂global , is inaccurately described for
the observed value, and it is under-optimized. The empirical value of λ is generally λ ∈ [1e−1, 1e−7].
The constructed objective function has no orthogonality constraints on U and V, which exceeds the
limit of six degrees of freedom, so it does not compress the solution space. Compared with existing
methods, the proposed method is more in line with the actual situation of single-object multi-view
global registration, and it has the advantage of robustness.

2.4. LRS Decomposition by Augmented Lagrange Method

Equation (7) is equivalent to Equation (8), which we solved using the Augmented
Lagrange method.

argmin
T̂global ,U,V

‖Wweight � (Tglobal − T̂global)‖1 +
λ

2
(‖U‖2

F + ‖V‖
2
F) (8)

The Augmented Lagrange method adds a penalty term based on the Lagrange method to obtain
the solution. The corresponding Augmented Lagrange function of Equation (8) is Equation (9).

f (T̂global , U, V) = ‖Wweight � (Tglobal − T̂global)‖1 +
λ
2 (‖U‖

2
F + ‖V‖

2
F)

+
〈

L, T̂global −UV
〉
+ µ

2 ‖T̂global −UV‖2
F

(9)

where L is a Lagrange multiplier matrix for the iterative solution; µ is a penalty factor; and 〈A, B〉 is
defined as a trace of ATB. The minimization of f (T̂global , U, V) generally uses the Gauss–Seidel method
to iteratively solve T̂global , U, and V. The solution of Equation (9) is decomposed into three minimization
subproblems; that is, each iteration is divided into three steps that are mutually constrained. For
example, the mth iteration is as follows:

(0) Parameter: {
µm = ρµm−1

Lm = Lm−1 + µm−1(T̂global −UV)
(10)

where ρ is a constant parameter used to adjust the convergence speed. The larger the value of
ρ, the closer the value of T̂global to UV, which speeds up the convergence of the algorithm, but it
simultaneously affects the accuracy of the algorithm to a certain extent. In this paper, ρ = 1.05 and
µ0 = 1× 10−6, and all elements in L0 are 1× 10−12.

(1) With fixed T̂global and V, solve U.
Then, Equation (9) can be expressed as a function of U, as shown in Equation (11).

f (U) ∝
λ

2
‖U‖2

F +
〈

L, T̂global −UV
〉
+

µ

2
‖T̂global −UV‖2

F (11)
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When the derivative of Equation (11) on U is 0, ζ(U) takes the minimum value, and U is as shown
in Equation (12).

U = (µT̂global + L)V(µVTV + λI4) (12)

(2) With fixed T̂global and U, solve V.
Next, Equation (9) can be expressed as a function of V, as shown in Equation (13).

f (V) ∝
λ

2
‖V‖2

F +
〈

L, T̂global −UV
〉
+

µ

2
‖T̂global −UV‖2

F (13)

When the derivative of Equation (11) on V is 0, ζ(U) takes the minimum value, and V is as shown
in Equation (14).

V = (µT̂global + L)TU(µUTU + λI4)
−1

(14)

(3) With fixed U and V, solve T̂global .
Then, Equation (9) can be made equivalent to Equation (15).

min
Z
‖Wweight � (Tglobal − T̂global)‖1 +

µ

2
‖T̂global −UV + µ−1L‖2

F (15)

Equation (15) can be solved by an element-by-element shrink operation [20]. Then, Equation (16)
shows the equation for T̂global .

T̂global = Wweight � (Tglobal − Sµ−1(Tglobal −UV− µ−1L)) + Wweight � (UV− µ−1L) (16)

where Wweight is the complement of Wweight. The contraction operator, Sε(x), is as shown in
Equation (17).

Sε(x) =


x− ε , x > ε

x + ε , x < −ε

0 ,−ε ≤ x ≤ ε

(17)

When the difference between T̂global and UV is sufficiently small, the iteration is terminated, and
the registration relationship matrix, T̂global , can be obtained. Considering that the diagonal block
matrix, Mii, of the matrix, UV, is a transformation relationship between the point cloud and itself, in
the ideal case, all of the Mii values should be equivalent to I4. The final iteration termination condition
is as shown in Equation (18).{

‖T̂global −UV‖F/‖Wweight � Tglobal‖F
≤ ethreshold_iteration

|tr(UV− I4n)| ≤ 4n · ethreshold_optimal
(18)

where tr(UV− I4n) is the trace of UV− I4n, and ethreshold_iteration and ethreshold_optimal are determined
by the accuracy of the pairwise registration. In this paper, ethreshold_iteration = 1 × 10−9 and
ethreshold_optimal = 1× 10−8, which can serve as a reference.

2.5. Block Matrix Orthogonalization

In the ideal case, where there are no influences, such as outliers and errors, each of the 4 × 4 block
matrices, M̂ij, in the matrix, T̂global , obtained in Section 2.4 is a registration matrix of Pi to Pi+j. However,
considering the noise caused by outliers and errors, M̂ij obtained by low-rank sparse decomposition
generally does not satisfy the orthogonal constraints required for rigid body transformation, and it
needs to be projected into orthogonal space.

The first step is to normalize M̂ij, assuming that the element in M̂ij is m̂ij. Equation (19) shows the
normalization of M̂ij.

M̂ij = M̂ij/m̂4,4 (19)
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Then, the 0th, 1st, and 3rd row elements of the 4th column are set to 0 to satisfy the constraint of
the rigid body transformation, as shown in Equation (20).

ˆ
mij =


0 , 1 ≤ i ≤ 3 and j = 4
ˆ

mij , i = 4
r̂ij , 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3

(20)

where r̂ij is an element in the 3 × 3 matrix, R̂ij, which is defined in Equation (21).

R̂ij = UM̂33
QVT

M̂33
(21)

where Q is a 3 × 3 diagonal matrix, and the diagonal elements are 1, 1, and
∣∣∣UM̂33

VT
M̂33

∣∣∣, respectively.
Equation (22) shows the definition of UM̂33

and VM̂33
.

[UM̂33
, SM̂33

, VM̂33
] = svd

 m̂11 m̂12 m̂13

m̂21 m̂22 m̂23

m̂31 m̂32 m̂33

 (22)

The obtained 4× 4 block matrix, M̂ij, in T̂global is the registration matrix of Pi to Pj. The registration
matrix of any Pi to Pj under the global optimization condition can be obtained, and the global
registration is completed.

3. Experiments and Analysis

The experiments were divided into a simulation point cloud analysis and a real point cloud
test. In Sections 3.1 and 3.2, the simulation point clouds were used to control the variables to
analyze the performance of the proposed method. In Section 3.3, the real point clouds were used to
comprehensively test the proposed method’s practical performance. The simulation point clouds were
simulated by an array plane 3D camera based on the time-of-flight (TOF), as described in [21]. During
the process of generating a simulated point cloud with continuous adjacent angles of view, there was a
relative position transformation between the object and the system to simulate the motion of the object.
The ratio of the maximum and minimum distance between the system and the object in adjacent point
clouds was 2:1, and the angle differences between adjacent point clouds was fixed at 20◦. Outliers and
Gaussian noise were added to simulate laser three-dimensional imaging noise. The quantity of outliers
was 0.25 times the quantity of points in each point cloud; the mean of the Gaussian noise was 0, and
the variance was 0.01 times the length of the minimum bounding box diagonal. Noise and outliers
were added primarily to analyze the robustness of the loop-closure detection, and we assumed that
the pairwise registrations between continuous point clouds in the preprocessing were achievable. Six
models were selected as objects: Bunny [22], Armadillo [23], and Dragon [24] from Stanford; MRO
(Mars reconnaissance orbiter), Skylab, and Voyager from NASA (National Aeronautics and Space
Administration) [25]. Bunny, Armadillo, and Dragon had rich structural information, while space
targets, MRO, Skylab, and Voyager, had relatively simple structural information, such as numerous
repetitions and similar structures. Figure 4 shows the rendered point clouds based on shading; the first
row is the front view of the point clouds of the six objects, and the second row was the corresponding
point cloud after adding the outliers and Gaussian noise to the point cloud of the first line, which is
also the simulation point cloud used in our simulation analysis.
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Figure 4. The point clouds with added Gaussian noise and outliers: The point clouds in the first row
are the original point clouds, the second row are the first row with added outliers and noise.

3.1. Loop-Closure Detection Accuracy Analysis

The point cloud distribution feature histogram is related to the quantity of grids. At the same time,
the pairwise registration error of the point cloud also affects the point cloud distribution feature, which
directly affects the loop-closure detection accuracy. To test the robustness of the proposed loop-closure
detection method, the correlation between the loop-closure detection accuracy, the quantity of grids,
and the error of pairwise registration was analyzed.

Figure 5 shows the weight matrix under three different adjacent registration errors. In the
simulation, the object rotated 20◦ continuously around the fixed axis. Therefore, under ideal conditions,
the point cloud of the ith view should form a closed loop with the point cloud of the i± 17th view.
Figure 5 shows that when the pairwise registration error was 0.01 rad, the cumulative error was
relatively small. The proposed method could complete loop-closure detection, and the similarity of the
point cloud obtained by loop-closure detection was relatively high, so the weight of the transformation
relationship was also relatively high. When the pairwise registration errors were 0.05 rad and 0.1 rad,
the cumulative error became severe as the pairwise registration error increased, and the point cloud
weights obtained by loop-closure detection decreased. There were four detection errors at 0.1 rad.

 
Figure 5. The weight matrixes under three different pairwise registration errors.

Figure 6a shows the relationship between the loop-closure detection accuracy and the pairwise
registration error. When the pairwise registration error was below 0.055 rad, the loop-closure detection
accuracy of the six point-clouds was over 90%. However, as the registration error increased further,
the accuracy began to decline. Because of the repetition or similar structures of the three space targets,
the accuracy was more susceptible to the adjacent registration error. This shows that the proposed
loop-closure detection method has certain requirements for the registration error of adjacent frames,
one of them being that it should not be too large.



Sensors 2018, 18, 3729 11 of 17

Figure 6. Relationship between detection accuracy and related factors. (a) The relation between
detection accuracy and the pairwise registration error; (b) the relation between detection accuracy and
the quantity of grids.

Figure 6b shows the relationship between the quantity of grids and the loop-closure detection
accuracy. When the quantity of grids was too small, the loop-closure detection accuracy was
correspondingly low because it could not express the detailed distribution feature of each point
cloud. When the quantity of grids was too large, the loop-closure detection accuracy also decreased
because it expressed the point cloud distribution feature with too much detail. When the quantity of
grids was between 53 and 123, the loop-closure detection accuracy of the six point-clouds reached more
than 90%, which indicates that the proposed loop-closure detection method can achieve good results
within a wide range of the quantity of grids. Figure 6 also shows that MRO, Skylab, and Voyager were
more sensitive to changes in the quantity of grids, which is due to the fact that there were more repeats
or similar structures in the three space targets. When the quantity of grids was not appropriate, the
impact was more obvious.

3.2. Simulation Point Cloud Analysis

With the same simulation point cloud as in Section 3.1, the proposed method was used in its
entirety to analyze the relationship between global registration, pairwise registration outliers, and
errors. The incremental registration, the LUM [11] in the PCL (Point Cloud Library) library [26], and
the LRS-based RegL1 algorithm in [18] were selected as the methods to compare with the proposed
method. Considering that the loop-closure detection method was not given in [13], the proposed
loop-closure detection method described in this paper was used with the RegL1 method, but the
assignment of elements in the weight matrix still adopted the method in [18]. Additionally, both of the
four kinds of global registration method were based on the same pairwise registration method and the
same termination in the consecutive point clouds pairwise registration to minimize the influence of
the pairwise registration result.

3.2.1. Global Registration Accuracy of a Single Object

When the pairwise registration error was 0.01 rad, 37 consecutive point clouds of a single object
were globally registered by the four different methods, and Figure 7 shows the global registration errors
of the respective viewpoints. Figure 7 also shows that, with the increase of the point cloud index, the
incremental registration method formed an obvious cumulative registration error, and LUM averaged
the cumulative error to a certain extent. RegL1 and the proposed method had better performances.
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Figure 7. The relation between registration error and the index of view. (a) Registration error in rotation;
(b) registration error in translation.

3.2.2. Relationship between Global Registration and Pairwise Registration Outliers

When there were errors during loop-closure detection, the detected false neighboring point cloud
overlap rate was low. A low overlap rate might lead to a wrong pairwise registration, which might
result in an outlier in Tglobal . The proposed loop-closure detection method had an accuracy of over 90%
under most parameter conditions. Therefore, the performance of the proposed method with 1–10%
outliers was tested. We replaced the correct transformation matrix, Mij, of the random position with
the corresponding proportion of a 4 × 4 unit matrix, and Figure 8 shows the experimental results.
When the percentage of outliers was 1–10%, the performance of the proposed method was relatively
robust, the global registration error was lower than 0.005 rad, and the overall performance was better
than RegL1.

Figure 8. The relation between registration error and the percentage of outliers.

3.2.3. Relationship between Global Registration and Pairwise Registration Errors

The results of global registration were also affected by pairwise registration errors. Figure 9
shows the performance of the four methods with different pairwise registration errors. The global
registration error represented by the curve in Figure 9 was the average of the registration errors of all
point clouds after global registration with the current pairwise registration error. Figure 9 also shows
that the incremental registration method tended to increase the error as the pairwise registration error
increased. When the pairwise registration error reached a certain level, the incremental registration
error tended to be stable. LUM averaged the error caused by pairwise registration to a certain extent,
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but the overall performance was not optimal. RegL1 and the proposed method had better performances
on Bunny, Armadillo, and Dragon, but the performance of the proposed method was more robust.
RegL1 and the proposed method had some serious global registration errors with MRO, Skylab, and
Voyager. This is because when the pairwise registration error increased, the probability of the error
during loop-closure detection increased, which led to more outliers and errors in Tglobal at the same
time. The three space-point clouds were more severely affected due to their simple structures, which
resulted in a more rigorous test for the stability of the global registration method. However, RegL1
had a larger number of severe global registration errors than the proposed method in general, which
we presume to be caused by the compression of the solution space by RegL1. The proposed method
was more robust due to the more reasonable objective function and the corresponding weight matrix.
When the pairwise registration error was 0.01–0.1 rad, the global registration error of the proposed
method was less than 0.05 rad in most cases.

Figure 9. The relation between registration error and the pairwise registration error: (a) Bunny,
(b) Armadillo, (c) Dragon, (d) MRO, (e) Skylab, and (f) Voyager.

Table 1 shows the global registration results of each method applied to six kinds of point clouds
when the pairwise registration error was 0.03 rad. We chose the point clouds at 0◦ and 360◦ because,
in the ideal condition, they were completely overlapping, and the Euclidean distance between the
corresponding points should be equal to 0. We filtered out the outliers in the point clouds, calculated
the distance between the corresponding points after registration, and tinted them according to the
distance value. The corresponding residuals are below the results. The four global registration methods
could optimize the pairwise registration results to a certain extent, but in the case of severe noise and
outliers in these point clouds, the LUM had difficulty in finding corresponding points. The LRS-based
RegL1 and our method were relatively robust, and our method performs best overall.
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Table 1. The registration result with different methods on simulated point clouds.

Bunny Armadillo Dragon MRO Skylab Voyager

Increment
ICP

0.0376 0.0288 0.0169 0.0250 0.0517 0.0136

LUM

0.0139 0.0140 0.0126 0.0196 0.0368 0.0215

RegL1

0.0101 0.0112 0.0108 0.0152 0.0170 0.0132

Ours

0.0098 0.0112 0.0108 0.0149 0.0128 0.0130

3.3. Experimental Test and Result

The proposed method was further tested with a real point cloud. The point clouds were obtained
by an array plane 3D imaging device based on the TOF principle. The models were diffuse reflection
space models, such as the Apollo, Skylab, and Tian-gong models. The models were placed on a rotary
table with a controllable rotation angle, the object was rotated after each acquisition, and the rotation
angle was fixed at 20◦. A total of 37 point-clouds were acquired, which is consistent with the simulation
point cloud parameter settings. The point clouds with an odd index were twice the imaging distance of
the adjacent point clouds with an even index. Thirty-seven point-clouds of an object were transformed
in the same coordinate system, since the global registration relationship between real point clouds is
not exactly clear, the point clouds after transformation were sliced at the same position. Table 2 shows
the global registration results and the slice results of the four methods.

Table 2 shows that there were serious outliers and noise in the three real point clouds, and the
four methods were affected to different degrees. There were certain differences between the global
registration results of the real point clouds and the simulated point cloud. The reason for these
differences is that the outliers and noise affected the results of the pairwise registration, which in turn
affected the results of the global registration. In this case, Table 1 shows that LUM did not obtain
the optimal solution for Apollo and Skylab, but the results for Tian-gong were good. RegL1 failed
to register with Skylab, but the results for Apollo and Tian-gong were good. The proposed method
obtained fine edges of the three kinds of point clouds, and the contour information of the object was
clear, which shows the robustness of the proposed method when applied to a real point cloud.
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Table 2. The registration result with different methods on real point clouds.

Apollo Skylab Tian-Gong

Increment ICP
LUM

RegL1

The Proposed Method

4. Conclusions

In this paper, a multi-view laser point cloud global registration method based on low-rank sparse
decomposition was proposed. The spatial distribution features of each point cloud were extracted by
spatial rasterization, and loop-closure detection of multi-view point clouds was realized according to
the similarity of spatial distribution features. According to the similarity of point clouds obtained by
loop-closure detection, the corresponding weight matrix was designed, which enhanced the robustness
of the global registration to sparseness and errors in the transformation relation matrix. The objective
function that satisfied the global optimization condition was constructed. In the regularization process,
the compression solution space problem caused by the column-orthogonal hypothesis of the matrix
was avoided, which made the solution more realistic and more robust. The objective function was
solved by the Augmented Lagrange method, and the iterative termination condition was designed
by considering the iterative error and the a priori condition of global registration. The simulation
analysis proved that the proposed loop-closure detection method was robust with a wide range of
preset parameters, and the accuracy of loop-closure detection was over 90%. When there were outliers
in the pairwise registration, the performance of the proposed method was better than that of RegL1.
When the pairwise registration error was below 0.1 rad, the proposed method performed better than
the three other methods, and the global registration accuracy was 0.05 rad. Finally, further experiments
were carried out with real point clouds. The validity and robustness of the proposed method were
further proved by the global registration results and slice results.

In general, the proposed method is robust with a wide range of preset parameters, and is less
affected by density changes and noise. These advantages make it suitable for global registration of
moving object multi-view laser point clouds, and it has a relatively high application value. However,
there are some shortcomings in the proposed method. For example, for the three kinds of space
target point clouds with repeated structures, the accuracy of the proposed method declined to some
extent, which indicates that the loop-closure detection method has certain requirements for the object
structure. At the same time, the proposed method has certain requirements for the error of pairwise
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registration. The proposed method can also be used by multiple iterations to further improve the
global registration accuracy.
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