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Abstract: This paper proposes a deep convolutional neural network (CNN) -based technique for
the detection of micro defects on metal screw surfaces. The defects we consider include surface
damage, surface dirt, and stripped screws. Images of metal screws with different types of defects
are collected using industrial cameras, which are then employed to train the designed deep CNN.
To enable efficient detection, we first locate screw surfaces in the pictures captured by the cameras, so
that the images of screw surfaces can be extracted, which are then input to the CNN-based defect
detector. Experiment results show that the proposed technique can achieve a detection accuracy of
98%; the average detection time per picture is 1.2 s. Comparisons with traditional machine vision
techniques, e.g., template matching-based techniques, demonstrate the superiority of the proposed
deep CNN-based one.
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1. Introduction

Due to imperfect manufacturing processes, various defects may occur in products, e.g., pinholes,
scratches, cracks, etc. [1–5]. It is important to develop efficient automatic defect detection techniques
for quality control of products, or for pinpointing faulty parts. This work focuses on surface defect
detection of metal screws. At present, most screw manufacturers carry out quality control through
sampling, and the screw samples are measured with a caliper or an optical amplifier. For screws
with full inspection requirements, a lot of manpower has to be used for manual inspection. It is
time-consuming and labor-intensive to manually inspect small-sized screws that are produced in large
quantities. Recently, in the field of surface defect detection, various detection techniques based on
image processing have been developed. Zhang [6] designed a product defect recognition system based
on machine vision, where an image acquisition module is used to obtain an image of the product, which
is processed to judge the degree of defect. This method requires high-quality images, and it is difficult
to detect micro defects. An image recognition system to detect screw internal thread was developed by
Chen [7] based on adaptive threshold segmentation and morphological opening calculation to achieve
screw identification. However, strong image interference may cause serious under-segmentation,
leading to poor detection accuracy. Yan [8] developed screw thread detection system-based on a CCD
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(Charge-Coupled Device) digital image correction technique, where maximum variance segmentation
and relative sample standard were used to achieve screw identification. However, large image
interference can lead to serious over-segmentation, resulting in failure of the inspection. Li et al. [9]
designed a vision inspection system to capture railway road images and extract defects from projected
contours. Feng et al. [10] developed an automatic defect detection method using probabilistic topic
models. Marino et al. [11] used a multilayer perceptual neural classifier to detect missing hex bolts.
Aytekin used a high-speed laser range finder, pixel information, and histogram similarity analysis
to achieve real-time railway fastener detection [12]. Prasanna et al. [13] classified crack images by
extracting the curve in the image and using SVM (support vector machine) with handcrafted feature
descriptors. Later, Prasanna et al. [14] combined AdaBoost with random forest method to improve the
classifier of Aytekin. In [15], based on the selection of the feature vector of defect images, BP neural
networks and SVM were used for pattern recognition, but this method is not robust in extracting
feature vectors, and the recognition accuracy is not high. Marco Leo et al. [16] proposed a system
for automatic monitoring of welding process in dry stainless steel kegs for food storage. Cropped
regions are processed by three different algorithmic procedures that perform the monitoring of welding
dimensions (spatial metrology), radiometric appearance (radiometric metrology), and local shape
analysis, in order to detect thin/thick penetrations, darker areas, and outgrowths respectively.

Traditional image recognition methods require high illumination conditions and have poor
adaptability. It is difficult to meet the recognition requirements with surface defect images collected
under different conditions. Furthermore, the traditional image detection methods mainly acquire
image features through intensive image preprocessing. However, screw surface defects can be very
small, resulting in features that are not clearly visible. It is difficult for traditional methods to accurately
identify screw surface defects.

In this work, a method for identifying micro defects of metal screw surfaces is developed based
on deep convolutional neural networks, and an optical platform for acquiring screw images is built.
Images of defected and defect-free screw surfaces are collected, which are used to train the designed
deep convolutional neural network (CNN). To enable efficient detection, we first locate screw surfaces
in the pictures captured by the cameras, so that the images of screw surfaces can be extracted, which
are then input to the CNN-based defect detector. The proposed method does not need to acquire the
features of the screw surface images in advance, and is robust to illumination changes. Comparisons
with traditional machine vision techniques, e.g., template matching-based techniques, demonstrate the
superiority of the proposed deep CNN-based one.

2. Method

2.1. System Description

Figure 1 shows the optical experimental platform system for acquiring screw images. We use an
industrial camera RS-A2300-GC50 (manufactured by China Microview, Beijing, China) with a CMOS
resolution of 1600 × 1200 pixels and a 16 mm (M0814-MP2) lens. The distance between the camera
and the object h is about 200 mm. The light source controller controls the brightness of the DOME
light source. The large opening angle of the DOME light source is helpful for uneven surface imaging,
and multiple reflections through the inner wall of the hemisphere can completely eliminate shadows,
which is helpful for metal or mirror surface inspection. The captured image is a 24-bit image of size
1600 × 1200 pixels in BMP format. The length of a pixel in the image is approximately 0.0765 mm
(i.e., 122.35 mm/1600 pixels = 0.0765 mm/pixel).
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Figure 1. Experimental system for image acquisition. (a) Detection system, (b) System
structure diagram.

2.2. Data Preparation

The metal screws used in this study are GB819 cross countersunk head screw M3s with a diameter
of 5.2 mm. The types of surface defects considered in this work include dirt on surface, surface damage,
and stripped screws. An example of the image captured by the detection system is shown in Figure 2a.
The contours of the screws are obtained through image contour query, and the region of interest is
selected to obtain the screw images shown in Figure 2b where the sample size is 96 × 96, which is
captured under different illuminations. The training sample set consists of 230 defect-free screws,
287 stripped screws, 205 surface-damaged screws, and 256 surface dirty screws. A large number of
extended samples are generated through translation and distortion. The expanded sample set has a
total of 3000 samples. Different lighting conditions are achieved by adjusting the light source controller.
Figure 3 shows the effect of adjusting the light intensity, rotation, and distortion of the same screw
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image. Some randomly-selected defect-free samples are shown in Figure 4, and some samples of
defective screws are shown in Figures 5–7.Sensors 2018, 18, x FOR PEER REVIEW  4 of 14 
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Figure 7. Surface dirty screws.

2.3. Neural Network Structure

In this work, we propose the use of convolutional neural networks (CNN) to design the detection
method. The essence of CNN is to use the huge data to filter the image multiple times through and
reduce the dimension by downsampling. In addition, the nonlinear fitting of the activation function is
used to obtain more abstract and deeper essential features of the target, so as to realize the recognition
of the target and solve the important problem of manual design features in the past. Therefore, a deep
learning model based on convolutional neural network is suitable for image processing and other
related machine learning problems.

The metal screw surface defect detection method in this paper is developed based on the
traditional LeNet-5 [17]. The architecture of the network is shown in Figure 8. The first layer is
the input layer with size 32 × 32 × 3 (i.e., the length and width of the images are 32, and the number
of color channels is 3). The input data pass through the architecture and are generalized with spatial
size reduction to 4 × 4 × 64 at Pool 3; the output of the layer is then fed into the rectified linear unit
(ReLU) layer. Finally, the softmax layer outputs the probabilities of the four cases: defect-free screw,
dirty screw, damaged screw, and stripped screw. A dropout layer is located after each layer of Fc1, Fc2,
and Fc3. In order to keep the dimension unchanged after convolution, zero padding is used to get
better results in the final feature search without affecting the operation speed.
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2.4. Detection Method

To efficiently detect the defects on screw surfaces, the first step is to locate the screw surfaces in
the images (as shown in Figure 9) captured by the industrial camera. Then, the screw surface images
are extracted, which are fed to the trained deep CNN for defect detection. The screw surface defect
detection method is summarized as follows:

1. Use the optical platform to collect the object image, which may contain multiple screw surfaces,
as shown in Figure 9.

2. Carry out gray-scale processing, which turns the three-channel color images into single-channel
gray-level image;

3. The gray image of screw is binarized, i.e., 0–255 gray image is converted into 0 (black) or 255
(white) image, as shown in Figure 10;

4. Through image contour query [18], get the contours of the screw surfaces, as shown in Figure 11;
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5. Obtain the positions, heights and widths of the screw surfaces in the image based on their
contours. Take the screw in Figure 12 as an example. In Figure 12a, points A, B, C, and D
are the leftmost, uppermost, lowermost, and rightmost points of the screw respectively. Then,
the position (x, y), the height h, and the width w of the screw are obtained, i.e., x = x1, y = y1,
h = |y2 − y3|, w = |x4 − x1| as shown in Figure 12b;

6. Based on the position, height, and width of each screw surface, extract the color images of the
screw surface from the original image captured in Step 1. The size of the image is adjusted to
32 × 32, and the image is then input to the trained CNN for defect detection;

7. The screw positions obtained in Step 5 are marked on the original image, and the defect types are
also indicated with different color borders. Figure 13 shows an example.
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Figure 13. Detection results.

3. Experiments

Determining appropriate hyperparameters (e.g., learning rate and regularization parameters) is
cumbersome, and there is no accurate guidance for optimizing those parameters. Therefore, these
parameters are obtained through trial and error, guided by checking the verification set error [19].
In order to demonstrate the superiority of the CNN proposed in this paper, it is compared with the
traditional LeNet-5. The computer used in the experiment is an ASUS notebook ROG GX501VIK7700
with the configuration shown in Table 1. The CNN trained the model with tensorflow and Google’s
machine learning architecture.

Table 1. Computer configuration.

CPU Model Intel Core i7 7700HQ

Core/thread number Four core/eight threads
Memory capacity 16 GB

Hard drive capacity 1 TB
Graphics chip NVIDIA GeForce GTX 1080 Max-Q
Video memory 8 GB

Firstly, we used the traditional method to detect the screw defects. Figure 14 is the original
image of the object to be detected (the yellow numbers are post-marked to ease the description of the
screw surfaces.). There are five screws in the image: Screws 1 and 5 are defect-free screws, 2 is a dirty
screw, 3 is a surface-damaged screw, and 4 is a striped screw. We selected an image of a defect-free
screw as a template, and used various template-matching methods for defect detection, including the
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normalized correlation matching method [20], normalized correlation coefficient matching method [21],
correlation coefficient matching method [22], normalized square difference matching method [23],
square difference matching method [24], and correlation matching method [25]. The results are shown
in Figure 15. It can be seen that the template matching method cannot accurately detect the two
defect-free screws.
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In order to further verify the superiority of the proposed model, the proposed CNN was compared
with the traditional LeNet-5. The same screw data set is used to train the two networks. Experiments
showed that the accuracy and loss tend to be stable after 1000 iterations. Figure 16 shows the accuracy
of the traditional LeNet-5 and the proposed deep CNN with 1000 iterations. It can be seen that
the accuracy of the proposed DCNN is much higher than the traditional LeNet-5 at the beginning
of the training, and the accuracy of the training was close to 100% with 550 iterations, and about
100% accuracy was achieved with 800 iterations. Figure 17 shows the minimum training loss of the
traditional LeNet-5 and the proposed DCNN with 1000 iterations. It can be seen from the figure
that the loss rate of the proposed DCNN decreases rapidly, which is slightly better than that of the
LeNet-5. When the number of iterations is about 550, the loss rate is close to 0. Figure 18 shows the
detection results of the traditional LeNet-5 and the proposed DCNN, where the traditional LeNet-5
has a detection error.
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Figure 18. The test results of two models. (a) The test results of LeNet-5; (b) The test results of the
proposed DCNN.

To better examine the detect performance of the two networks, the same verification set is used to
test the accuracy of the two methods, and 1000 different types of images are selected as the test set.
The results are shown in Table 2.

Table 2. Recognition rate of different categories of samples in the test set.

Total Number of
Images

Correct
Detection

Error
Detection Accuracy

LeNet-5 1000 958 42 95.8%
The proposed DCNN 1000 984 16 98.4%

A comparison of different CNNs is shown in Table 3.

Table 3. The comparison of different CNN.

Time Accuracy

YOLO Faster Low
R-CNN Low Low

Faster-RCNN Fast High
SSD Low Higher

The proposed DCNN Faster Higher

4. Conclusions

In this work, we have developed a deep CNN-based method to detect micro defects of metal
screw surfaces. Experimental results demonstrated the superiority of the proposed method, compared
to the traditional template matching methods and the LeNet-5-based method. It has been shown that
the proposed method can achieve a detection accuracy of 98%. The proposed method may also be
used in other industrial production inspection applications, such as bottle cap defect detection, mobile
phone screen defect detection, etc.
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