

Sensors 2018, 18, 3695; doi:10.3390/s18113695 www.mdpi.com/journal/sensors

Article

A Lightweight Anonymous Client–Server

Authentication Scheme for the Internet of Things

Scenario: LAuth

Yuwen Chen *, José-Fernán Martínez, Pedro Castillejo and Lourdes López

Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y,

Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n,

28031 Madrid, Spain; jf.martinez@upm.es (J.-F.M.); pedro.castillejo@upm.es (P.C.);

lourdes.lopez@upm.es (L.L.)

* Correspondence: yuwen.chen@upm.es; Tel.: +34-913-365-526

Received: 2 October 2018; Accepted: 26 October 2018; Published: 30 October 2018

Abstract: The Internet of Things (IoT) connects different kinds of devices into a network, and

enables two-way communication between devices. A large amount of data are collected by these

devices and transmitted in this network, it is necessary to ensure secure communications between

these devices, to make it impossible for an adversary to undermine this communication. To ensure

secure communication, many authentication protocols have been proposed, in this study, a fully

anonymous authentication scheme for the Internet of things scenario has been proposed, it enables

the remote client to anonymously connect to the server and being serviced by the server. The

proposed scheme has been verified by AVISPA and BAN Logic, and the result shows that it is safe.

Besides, the simulation shows that the proposed scheme is more efficient in computation cost and

communication cost.

Keywords: mutual authentication; lightweight authentication; internet of things; elliptic curve

cryptography; user anonymity; IoT security and privacy

1. Introduction

The Internet of Things is a network that connects all kinds of sensors, actuators, and other

embedded devices. These devices can exchange data remotely via the network. A significant amount

of data are collected by these devices and transmitted in this network. Among these data, there are

many personal data, for example, blood pressure, pulse, and electrocardiogram, as well as home

environment data, home humidity, and home temperature, etc. People are reluctant to let any party

use the data without authorization. There is a need for an authentication scheme to make sure that

the data is only accessible to authorized members. Authentication schemes have been studied in the

past to solve this problem.

However, in some cases, mutual authentication is not sufficient for protecting the privacy of the

clients. In the healthcare environment, an adversary can eavesdrop the information flow and find out

which patient’s data is being transmitted. The client’s medical condition is revealed in this way. In

this study, a light weighted authentication and key establishment scheme was proposed, which

enables the remote client to be authenticated anonymously by the server. In the proposed scheme,

we only used some light weighted security operations: XOR operations, hash functions and a minimal

amount of asymmetric encryptions to fulfill perfect forward secrecy, as discussed in the previous

work, these operations are relatively light weighted ones, we will continue to discuss this problem in

Section 7.1. As energy consumption is of paramount importance in the context where energy are

provided by small batteries, there is a high demand for a lightweight authentication scheme [1,2]. For

Sensors 2018, 18, 3695 2 of 20

these two reasons, we come up with this authentication scheme. Our contributions are mainly three-

fold:

1. We propose a lightweight anonymous authentication for the Internet of things scenario; the

scheme achieves various security features: perfect forward privacy, user anonymity, resistance

to an offline dictionary attack, etc. In addition, to verify the security features of the proposed

scheme, the proposed scheme is also verified by AVISPA and the BAN Logic.

2. We specially design the password changing phase, making it more efficient compared to that in

the related works.

3. We simulate the proposed scheme and other related schemes using C++. The results show the

communication cost and the computation cost are reduced compared with related proposals.

In Section 2, we discussed the related works, in Section 3, we introduced the proposed scheme,

Sections 4 and 5 are security analyses using AVISPA and BAN logic, Section 6 is the formal security

analysis section. In Section 7, we compared the proposed scheme with related works. In Section 8, we

analyzed the security features. Section 9 is the conclusion part.

2. Related Work

Tu et al. proposed an authentication protocol based on a smart card; the protocol is a two-factor

authentication scheme based on an elliptic curve [3]. However, this scheme is found to be vulverable

to impersonation attacks; an attacker can impersonate as a legal server according to Farash [4].

Ibrahim et al. proposed secure anonymous mutual authentication for star two-tier wireless body area

networks [5]. Chaudhry et al. proposed a remote user authentication scheme using elliptic curve

cryptography that can withstand various attacks in the internet of things scenario, for example, smart

card lost attack, replay attack [6]. Kumari analyzed the scheme of Farash [7], and they found that

Farash’s scheme is vulnerable to various attacks, for example, impersonation attack, password

guessing attack and temporary session specific information reveal attack, etc.

Jing et al. proposed an authentication between user and server, which could protect well the

identity privacy of the user [8], however, their scheme requires extra storage capacity at the server

side. In the scheme of Xiong [9], only registered users can authenticate each other and build a shared

key, besides, this shared key is only known by the two registered users and the network manager

could not know this shared key. According to the public information transmitted between the two

users, an adversary is unable to learn this shared key. The scheme of Jing et al. is a scheme equipped

with elliptic curve cryptographic primitives. Their scheme achieves anonymity regardless of network

infrastructure. Their scheme enables the server to provide various services for a client more than once

with a negligible computational cost [10]. Idrissi proposed a security scheme for mobile agent based

on two techniques: anonymous authentication and intrusion detection [11]. In the work of Xiong et

al. [12], the anonymity is enabled, however the gateway has to store a lot of the identity and key pairs.

In some schemes, the gateway assigns a random number, and a unique key based on this number

to the clients. This number is used as an indicator of the key, the user encrypts his identity with this

key. Many other schemes use this way to protect the identity of the users, for example, the scheme in

the works of [13–18]. Biometrics are used in the scheme of Wu et al. [19], Odelu et al. [20], Wang et

al. [21] and Islam et al. [22]. Human beings’ biometrics are extracted as random strings by using the

fuzzy extractor.

The partial public key method is a popular method that has been used. He et al. proposed an

efficient identity-based privacy-preserving authentication scheme for vehicular ad hoc networks [23],

batch verification is used in this study. The concept of partial public key is also used in the scheme of

Islam et al. [24]. In their scheme, a user register at the server several times, in order to get more than

one authentication keys, then the user can use different keys for authentication to achieve anonymity.

The scheme of Porambage et al. [25] also used the partial public key concept. Tsai et al. proposed a

scheme for distributed mobile cloud computing services [26], the security strength of their scheme is

based on bilinear pairing and dynamic nonce generation. There are other schemes that based on the

elliptic curve security [27–29].

Sensors 2018, 18, 3695 3 of 20

3. The Proposed Scheme

3.1. Structure of the Scheme

There are two types of entities in the scheme: remote clients and the server, which is shown in

Figure 1.

1. A client is the one who wants to access the services provided by the server. A client first registers

at the server, after the registration, he can conduct a mutual authentication with the server, after

authentication, the two can build a shared key, the client can access to the server’s service using

this key.

2. A server is the one that provides different kinds of services to the client. A server is also

responsible for the registration and password modification for the client. Before the server

provides a service to a client, the server has to make sure if the client is a registered one or not.

Figure 1. The structure of the proposed scheme.

The proposed scheme is a mutual authentication scheme between the client and the server. The

scheme consists of three phases: registration phase of the client, mutual authentication and key

establishment phase and the phase for a client to change his password.

3.2. System Initialization

In the beginning, the server � generates and publicizes the parameters of an elliptic curve,

which is {�, �, �, �, �, ℎ}. After that, � generates its private key ����, and keeps it as a secret. The

symbols that will be used in this study are summarized in Table 1.

Table 1. Symbols used in this study.

Symbols Meaning

S The server

�� The ��� client

��� The ��� client’s identity

|| String connector, connecting two strings

⊕ XOR operation

P The generator of ECC

�� Timestamp

h The SHA-256 hash function

ℎ� A hash a string to a random number function

3.3. Registration Phase

All the clients have to register at the server, a client �� with identity ��� generates a registration

request message, and sends this request to the server �.

1. Client �� chooses a random number ��.

2. Client �� calculates a hash message ��� = ℎ(��||���||���).

3. Client �� sends {���, ���} to the server.

When the server � receives the message, server � generates the keys for client ��, after that, the

server � sends these keys to the client ��. Table 2 is a description of the process.

Sensors 2018, 18, 3695 4 of 20

1. Server � calculates a hash message �� = ℎ(���||����).

2. Server � calculates �� = �� ⊕ ���.

3. Server � chooses a random number ��.

4. Server � calculates a hash message �� = ℎ(��||����).

5. Server � calculates ℎ� = �� ⊕ ���.

6. Server � sends {��, ℎ�, ��} and other system parameters to the client ��.

Table 2. Registration phase.

Client Server

���, ��� master key ����

random number ��

��� = ℎ(��||���||���)

 {���, ���}

�� = ℎ(���||����)
�� = �� ⊕ ���

random number ��

 �� = ℎ(��||����)

 ℎ� = �� ⊕ ���

Stores {��, ℎ�, ��}
{��, ℎ�, ��}

3.4. Authentication Phase

If a client �� with identity ��� wants to ask a service from the server �, first, the two have to

authenticate each other and build a shared key. The client �� inserts the smart card into a card reader,

inputs his identity ���
� and password ���

�. The smart card (SC) prepares the following message and

sends it to the server �.

1. The client �� inserts its smart card into a card reader, inputs his identity ���
� and password

���
�.

2. SC computes: ���
� = ℎ(��||���

�||���
�).

3. SC uses ���
� to get �� = �� ⊕ ���

� and �� = ℎ� ⊕ ���
�.

4. SC gets the current timestamp �� and the random number ��.

5. SC gets a random number ��∈ [1, n − 1], and calculates �� = �� ∙ �.

6. SC gets the hash �� = ℎ(��||���
�||��||��||��).

7. SC computes �� = (���
�||��)⨁ ��.

8. Finally, SC sends {��, ��, ��, ��} to the server �.

When the server � receives the incoming message, it first checks the correctness of the message,

after the verification, the server will generate the shared key between himself and the client. Then the

server prepares the message for sending back to the client.

1. Server � checks the freshness of the �� , if �� is not fresh, server � abandons the incoming

message, the scheme ends here.

2. Server � calculates the key ℎ(��||����) based on ��.

3. Server � uses the key ℎ(��||����) to decrypt �� to get ���
�||��

� ,���
�||��

� = ℎ(��||����)⨁��.

4. Server � calculates ��
� = ℎ(���

�|| ����) based on the identity ���
�.

5. Server � checks if ��
� = ℎ(��||���

�||��||��
�||��), if they are equal, the server accepts the incoming

message, otherwise, the scheme terminates here.

6. Server � gets a random number �� ∈ [1, n − 1], and calculates �� = �� ∙ �.

7. Server � calculates the shared key �� = ℎ(�� ∙ ��||��).

8. Server � calculates a new random number ����� = ℎ1(��||�1).

9. Server � calculates a hash message ����� = ℎ(�����||����).

10. Server � calculates �� = ℎ(��||�����||�����||��
�||��).

11. Server � computes �� = (�����||��)⨁ℎ(��
�||��).

12. Server � sends {��, ��} to the client ��.

Sensors 2018, 18, 3695 5 of 20

When client �� gets the message{��, ��} , �� will do the following steps to authenticate the

incoming message, if the client verifies the message, he will build a shared key with the server.

1. Client �� computes the shared key as ��
� = ℎ(�� ∙ ��||��).

2. Client �� decrypts �� to get �����
� ||��

� = ��⨁ℎ(��||��).

3. Client �� computes the random number �����
� = ℎ�(��

�||��).

4. Client �� checks if ��
� = ℎ(��|| �����

� ||�����
� ||��||��

�), if they are equal, �� accepts the shared

key ��
�, and now client �� and the server � can communicate using the shared key �� = ��

�,

otherwise the scheme terminates here.

5. Client �� updates ℎ� = �����
� ⊕ ���

� and �� = �����
� .

Now the client �� and the server � have authenticated each other and built a shared key. The

Table 3 below depicts the whole process.

Table 3. Authentication phase.

Client Server

���, ��� Master Key ����

User: inserts SC into the terminal

User: input ���
� and ���

�

SC: ���
� = ℎ(��||���

�||���
�)

SC: �� = �� ⊕ ���
�

SC: �� = ℎ� ⊕ ���
�

SC: gets timestamp ��, ��

Random number ��, �� = �� ∙ �

SC: gets �� = ℎ(��||���
�||��||��||��)

SC: �� = (���
�||��)⨁��

{��, ��, ��, ��}

Checks the freshness of ��

���
�||��

� = ℎ(��||����)⨁��

 ��
� = ℎ(���

�|| ����)

 Check if ��
� = ℎ(��||���

�||��||��
�||��)

 Random number ��, �� = �� ∙ �

 �� = ℎ(�� ∙ ��||��)

 ����� = ℎ�(��||��)

 ����� = ℎ(�����||����)

 �� = ℎ(��||�����||�����||��
�||��)

 �� = (�����||��)⨁ℎ(��
�||��)

��
� = ℎ(�� ∙ ��||��)

�����
� ||��

� = ��⨁ℎ(��||��)

 { ��, ��}

�����

� = ℎ�(��
�||��)

Check if ��
� = ℎ(��||�����

� ||�����
� ||��||��

�)

ℎ� = �����
� ⊕ ���

�, �� = �����
�

Agree on the key �� = ��
�

3.5. Password Change Phase

When a client �� wants to change his password, he can send a request to the server �, this

request is sent in public channel. Table 4 is a description of this process.

1. The client �� inserts his smart card into a card reader, inputs his identity and password ���
� and

���
�.

2. SC computes: ���
� = ℎ(��||���

�||���
�).

3. SC uses ���
� to get �� = �� ⊕ ���

� and �� = ℎ� ⊕ ���
�.

4. SC gets the current timestamp �� and the random number �� .

5. SC gets the hash �� = ℎ(���
�||��||��||��).

6. SC computes �� = (���
�||��)⨁��.

7. Finally, SC sends {��, ��, ��} to the server �.

Sensors 2018, 18, 3695 6 of 20

When the server � receives the message, server � will verify if the message is from a legitimate

client, after that, the server � sends a replay to the client ��.

1. Server � checks the freshness of the �� , if �� is not fresh, server � abandons the incoming

message.

2. Server � calculates the key ℎ(��||����) based on ��.

3. Server � uses the key ℎ(��||����) to decrypt �� to get ���
�||��

� , ���
�||��

� = ℎ(��||����)⨁��.

4. Server � calculates ��
� = ℎ(���

�|| ����) based on the identity ���
�.

5. Server � checks if ��
� = ℎ(���

�||��||��
�||��), if they are equal, the server verifies the incoming

message, otherwise, the scheme terminates here.

6. Server � calculates �� = ℎ(���
�||��

�||��||��).

7. Server � sends {��} to the client ��.

When a client �� receives the replay message from the server �, the smart card checks the

correctness of this message, if it is from the server �, then the smart card will allow the client �� to

input his new password.

1. SC checks if �� = ℎ(���
�||��||��||��), if they are equal, then the client is allowed to change his

password.

2. �� computes �� = �� ⊕ ���
� using the stored �� and the old ���

�.

3. �� computes �� = ℎ� ⊕ ���
� using the stored ℎ� and the old ���

�

4. Client �� inputs the new password ���
∗.

5. �� updates ���
� to be ���

∗ = ℎ(��||���||���
∗).

6. �� uses this new ���
∗ to update the stored version of �� and ℎ� to get ��

� = �� ⊕ ���
∗, ℎ�

� =

�� ⊕ ���
∗.

Table 4. Password change phase.

Client Server

���, ��� Master Key ����

User: inserts SC into the terminal

User: input ���
� and ���

�

SC: ���
� = ℎ(��||���

�||���
�)

SC: �� = �� ⊕ ���
�

SC: �� = ℎ� ⊕ ���
�

SC: gets timestamp ��, ��

SC: gets �� = ℎ(���
�||��||��||��)

SC: �� = (���
�||��)⨁��

{��, ��, ��}

Check the freshness of T�

���
�||��

� = ℎ(��||����)⨁��

 ��
� = ℎ(���

�|| ����)

 Check if ��
� = ℎ(���

�||��||��
�||��)

 �� = ℎ(���
�||��

�||��||��).

Check if �� = ℎ(���
�||��||��||��)

�� = �� ⊕ ���
�

 { ��}

�� = ℎ� ⊕ ���

�

���
∗ = ℎ(��||���|| ���

∗)

��
� = �� ⊕ ���

∗

ℎ�
� = �� ⊕ ���

∗

4. Security Analysis by AVISPA

Automated Validation of Internet Security Protocols and Applications (AVISPA) is “a push-

button tool for the automated validation of Internet security-sensitive protocols and applications”

[30]. To test security features of the scheme in this study, we write the scheme in a role-based

language called High-Level Protocols Specification Language (HLPSL), which is used for describing

protocols and specifying their intended security features. The HLPSL code is listed in Appendix A.

Sensors 2018, 18, 3695 7 of 20

We run the security check by using the CL-based Model-Checker [31], and the checker of On-

the-Fly Model-Checker (OFMC) [32,33]. The simulation result shown in Table 5 demonstrates that

the proposed scheme is safe.

Table 5. Simulation results of AVISPA.

CL-AtSe back-end OFMC

SUMMARY % OFMC

SAFE % Version of 2006/02/13

DETAILS SUMMARY

BOUNDED_NUMBER_OF_SESSIONS SAFE

TYPED_MODEL DETAILS

PROTOCOL BOUNDED_NUMBER_OF_SESSIONS

/home/iotdev/avispa/avispa-

1.1/testsuite/results/light.if
PROTOCOL

 /home/iotdev/avispa/avispa-1.1/testsuite/results/light.if

GOAL GOAL

As Specified as_specified

 BACKEND

BACKEND OFMC

CL-AtSe COMMENTS

 STATISTICS

STATISTICS parseTime: 0.00s

 searchTime: 0.01s

Analysed: 1 states visitedNodes: 4 nodes

Reachable: 0 states depth: 2 plies

Translation: 0.00 s

Computation: 0.00 s

5. Security Analysis Using BAN Logic

We conducted a security analysis of the proposed scheme using Burrows-Abadi-Needham Logic

(BAN logic) [34]. By using BAN logic, we can determine whether the exchanged information is

trustworthy, secure against eavesdropping. For more information on the symbols and primary

postulates of BAN logic, please refer to our previous work [35].

5.1. The Premise and Proof Goals

Suppose there are two entities in the system: client �� and the server �. Before we start the

proof, we first translate the messages into an idealized form of BAN logic, the results are shown in

Table 6.

Table 6. The idealized form of the messages.

Message Flow Idealized Form

1 ��

→ � {��, ��, {��, ���, ��, ��}��

, ��}

2 �

→ �� {��, {�����, ��, �����, ��, ��}�(��||��)}

The goals in BAN Logic are described below. These goals can ensure �� and � to agree on a

shared key ��.

1. �� | ≡ ��

 ��
�� � 2. � | ≡ �

 ��
�� ��

5.2. Assumptions

We make some assumptions to help us to prove the protocol; assumptions are listed in Table 7.

First, we show the proof of assumption A1 and A3.

Sensors 2018, 18, 3695 8 of 20

1. According to the “#()-introduction” rule, client �� creates ��

�� | ≡ #(��) (1)

2. According to (1) and the “promotion #” rule:

�� | ≡ #(��) (2)

3. According to (2) and the “promotion #” rule:

�� | ≡ #(��, ��) (3)

4. According to (3) and the “elimination of multipart messages” rule:

�� | ≡ #(��) (4)

In this part, we show the proof of assumption A2 and A4. By checking the timestamp ��, the

server � can judge if �� is fresh or not, if �� is not fresh, the server � will abandon the message and

the scheme ends here. Thus, we only consider the situation that server � believes timestamp �� is

fresh, which is � | ≡ #(��).

5. According to the “promotion #” rule:

� | ≡ #(��, ��, ��, ��). (5)

6. According to (5) and the “elimination of multipart messages” rule:

� | ≡ #(��) (6)

After registration, both server � and the client �� believe that they have a shared key �� .

Translating into BAN Logic, we get assumptions A6: � | ≡ ��

 ��
�� � and �� | ≡ �

 ��
�� �� . We can get

assumptions A5: �� | ≡ �
 �(��||��)
�⎯⎯⎯⎯⎯� �� based on �� | ≡ �

 ��
�� �� . Assumption A7 says that client ��

believes server � has complete control over the data ��, assumption A8 says that server � believes

client �� has complete control over the data ��.

Table 7. Assumptions.

Number Assumptions Number Assumptions

A1 �� | ≡ #(��) A2 � | ≡ #(��)

A3 �� | ≡ #(��) A4 � | ≡ #(��)

A5 �� ≡ �
 �(��||��)
�⎯⎯⎯⎯⎯� �� A6 � ≡ ��

 ��
�� �

A7 �� | ≡ � ⟾ �� A8 � | ≡ �� ⟾ ��

5.3. The Proof of the Proposed Scheme

In this section, we start the proof. According to the message {��, ��, {��, ���, ��, ��}��
, ��}, which

the client �� sends to server �, we can get the followings:

7. According to the message {��, ��, {��, ���, ��, ��}��
, ��}:

� ⨞ {��, ��, {��, ���, ��, ��}��
, ��} (7)

8. According to (7) and “ ‘,’-elimination” rule:

� ⨞ {��, ���, ��, ��}��
 (8)

9. According to (8), A6 and “|∼ introduction” rule:

� |≡ ��|~ {��, ���, ��, ��} (9)

10. According to (9) and “ ‘,’-elimination” rule:

� |≡ ��|~ �� (10)

11. According to A4, (10), and “|∼elimination” rule:

Sensors 2018, 18, 3695 9 of 20

� |≡ ��| ≡ �� (11)

12. According to A8, (11), and “jurisdiction or control” rule:

� | ≡ �� (12)

13. As �� is randomly created by �, according to “#()- introduction” rule:

� | ≡ #(��) (13)

14. According to (13), A2, A4, and “#()- promotion” rule:

� | ≡ #(��) (14)

15. According to (11), (14), and “
 �
�� introduction” rule:

� | ≡ �
 ��
�⎯� �� (15)

Now we have proved the second goal, we will begin to prove the first goal by analyzing the

message server � sends to client ��: {��, {�����, ��, �����, ��, ��}�(��||��)}.

16. According to the message {��, {�����, ��, �����, ��, ��}�(��||��)}:

�� ⨞ {��, {�����, ��, �����, ��, ��}�(��||��)} (16)

17. According to (16) and “ ‘,’-elimination” rule:

�� ⨞ {�����, ��, �����, ��, ��}�(��||��) (17)

18. According to (17), A5 and “|∼ introduction” rule:

�� |≡ �|~ {�����, ��, �����, ��, ��} (18)

19. According to (18) and “ ‘,’-elimination” rule:

�� |≡ �|~ �� (19)

20. According to A3, (19), and “|∼elimination” rule:

�� |≡ �| ≡ �� (20)

21. According to A7, (20), and “jurisdiction or control” rule:

�� | ≡ �� (21)

22. As �� is randomly created by ��, according to “#()- introduction” rule:

�� | ≡ #(��) (22)

23. According to (22), A1, A3, and “#()- promotion” rule:

�� | ≡ #(��) (23)

24. According to (20), (23), and “
 �
�� introduction” rule:

�� | ≡ ��
 ��
�⎯� � (24)

Now, we have proved the two goals of the scheme. We can say that the proposed scheme is

secure under BAN logic.

6. Formal Security Analysis

Suppose �� is a cyclic additive group of prime order �, � is the generator of ��, the Elliptic

Curve Computational Diffie–Hellman (ECCDH) problem is thought to be a computational hardness.

The security of the shared key of the proposed scheme is based on the computational hardness of the

ECCDH problem.

Sensors 2018, 18, 3695 10 of 20

Definition 1. ECCDH problem. For any �, �, � ∈ ��
∗, given an instance < ��, �� >, it is computationally

intractable to compute �� = ���.

Theorem 1. The proposed scheme achieves shared key security if and only if the ECCDH problem is unable to

be solved in polynomial time.

We define the shared key security as that an adversary is unable to get the shared key between

the client �� and server � based on the messages transferred publicly between them.

Proof.

(⇒) Suppose there is an efficient algorithm �� which could break the ECCDH problem in

probabilistic polynomial time. The adversary is able to get the messages publicly sent between the

client �� and the server �: {��, ��, ��, ��}, and { ��, ��}. Suppose � ∙ � = �� = �� ∙ � and ∙ � = �� =

�� ∙ � , adversary �ℐ is able to get the �� = �� ∙ �� ∙ � by using efficient algorithm �� , the adversary

is able to break the security of the shared key and get the shared key ℎ(�� ∙ �� ∙ � ||��).

(⇐) Suppose there is an efficient algorithm ��� which could get the shared key between client

�� and server �, as the hash operation is secure, the adversary has to get the shared key by calculating

�� ∙ �� ∙ �. This means given �� = �� ∙ � and �� = �� ∙ �, an adversary ��� is able to get �� ∙ �� ∙ � .

For the ECCDH problem, suppose � ∙ � = �� = �� ∙ � and � ∙ � = �� = �� ∙ �, the adversary is able to

get � ∙ � = � ∙ � ∙ � = �� ∙ �� ∙ �. This apparently contradicts the hardness of the ECCDH problem. □

Theorem 2. The proposed scheme achieves perfect forward privacy if and only if the ECCDH problem is unable

to solve in polynomial time.

Proof.

The proof of perfect forward privacy is similar to Theorem 1. Even if the private key of the client

is leaked to the adversary. What the adversary get is the same public information {��, ��, ��, ��} and

{ ��, ��}. Thus it is unable to get the past session key, neither. □

7. Comparison

In this section, we compared our scheme with related works in computation cost, computation

at the registration phase and the authentication phase. The schemes are implemented in C++, the

running codes have been upload to a public repository in the github.com [36]. The MIRACL C/C++

Library is used in this study [37], the library can be accessed at github.com [38]. The experiment is

conducted in Visual Studio C++ 2017 on a 64-bits Windows 7 operating system, 3.5 GHz processor, 8

GB memory. The hash function is SHA-256, the symmetric encryption/decryption function is AES in

MR_PCFB1 form, the 256-bit long key for symmetric encryption/decryption function is generated by

SHA-256 hash operation. The Koblitz curve secp256k1 which is recommended by NIST is used in this

study [39]. The parameters of this curve are listed in Appendix B. The code is compiled in x86 form,

this simulation does not take into account the transmission of the data.

7.1. Computational Performance Analysis

First, we compared the computation costs of these schemes in the form of operation per phase,

TH, TMUL, TADD, TE/D are used for the computation cost for SHA-256 operation, element multiplication

operation of �� , element addition operation of �� , and AES symmetric encryption/decryption

operation. The results are listed at Table 8. As shown in the table, we can find that in all conditions,

the computation cost of the proposed scheme is the minimal, as TMUL > TH and TE/D > TH. Thus, the

proposed scheme has an advantage in the computation cost and energy consumption compared to

related works. To test the analysis of the computation cost, we also simulated the schemes in the

aforementioned environment respectively.

Table 8. Computation costs in the form of operation per phase.

Sensors 2018, 18, 3695 11 of 20

Reference
Registration

Phase

Authentication

Phase

Password Change

Phase

Tu et al. [Error! Bookmark not

defined.]
2TH + 1TMUL 10TH + 7TMUL + 1TADD 6TH + 1TMUL + 4TE/D

Chaudhry et al. [Error! Bookmark not

defined.]
5TH + 1TMUL 14TH + 6TMUL + 1TADD ---

Wu et al. [Error! Bookmark not

defined.]
4TH 12TH + 4TMUL + 4TE/D 9TH + 1TMUL + 2TE/D

Our scheme 3TH 14TH + 4TMUL 9TH

First, we run the registration phase of different schemes 5, 10, 15, 20 and 25 times separately. The

computation times are shown in Figure 2. The horizontal axis represents the number of runs of the

experiment, the vertical axis represents the time required for the experiment to run, and the unit is

milliseconds. The computation cost of Wu et al. [Error! Bookmark not defined.] and that of the

proposed scheme are relatively smaller, while the scheme of Chaudhry et al. [Error! Bookmark not

defined.], and that of Tu et al. [Error! Bookmark not defined.] cost more computation time. This is

mainly because the proposed scheme and the scheme of Wu et al. [Error! Bookmark not defined.]

only need lightweight operations, SHA-256 hash operations and XOR operation, while for the scheme

of Chaudhry et al. [Error! Bookmark not defined.], and that of Tu et al. [Error! Bookmark not

defined.], symmetric encryption/decryption operations are required, these operations cost more

computation time.

Figure 2. The computation cost of registration phase.

Second, we run the authentication and key establishment phase of different schemes 5, 10, 15, 20

and 25 times separately. The computation costs are shown in Figure 3. The horizontal axis represents

the number of running the experiment, the vertical axis stands for the number of milliseconds to

accomplish the experiment. The computation cost of Wu et al. [Error! Bookmark not defined.] and

that of the proposed scheme are relatively smaller, while the scheme of Chaudhry et al. [Error!

Bookmark not defined.], and the scheme of Tu et al. [Error! Bookmark not defined.] cost more

computation time. The computation cost of the proposed scheme is the minimal.

0

50

100

150

200

250

0 5 10 15 20 25 30

co
m

p
u

ta
ti

o
n

 t
im

e(
m

s)

Computation cost of the registration phase

Tu et al. [3] Chaudhry et al. [6] Wu et al. [19] Our

Sensors 2018, 18, 3695 12 of 20

Figure 3. The computation cost of authentication phase.

Third, we run the password change phase 5, 10, 15, 20 and 25 times separately. The computation

costs are shown in Figure 4. In this figure, the horizontal axis indicates the number of times the

experiment was run; the vertical axis indicates the number of milliseconds to accomplish the

experiment. The computation cost of the proposed is the minimal, the computation cost of Wu et al.

[Error! Bookmark not defined.], and that of Tu et al. [Error! Bookmark not defined.] are much

higher, this is because in the proposed scheme only SHA-256 hash operations and XOR operation are

needed, while in the scheme of Wu et al. [Error! Bookmark not defined.], and in the scheme of Tu et

al. [Error! Bookmark not defined.], symmetric encryption/decryption, and elliptic curve operation

are needed, these operations cost more computation time.

Figure 4. The computation cost of password change phase.

7.2. Communication Performance Analysis

In this part, we compared all the schemes in communication cost. We use the same criteria as

that in the study of Jing et al. [Error! Bookmark not defined.], the identity costs 2 bytes. The general

hash operation in this study is SHA-256, the result of a hash operation is set to be 32 bytes. In this

study, the random number is set to be 4 bytes, the timestamp is set to be 4 bytes. The element of the

�� of the Koblitz curve secp256k1 is 64 bytes. The order |�| of �� is 32 bytes long.

At the registration phase, the client sends {���, ���} to the server, ��� is a result of hash, it is

32 bytes long. The length of this message is 2 + 32 = 34 byte. The server sends {��, ℎ�, ��}, �� is 32 byte

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30

co
m

p
u

ta
ti

o
n

 t
im

e(
m

s)

Computation cost of the Authentication phase

Tu et al. [3] Chaudhry et al. [6] Wu et al. [19] Our

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

co
m

p
u

ta
tt

io
n

 t
im

e(
m

s)

Computation cost of the password change phase

Tu et al. [3] Chaudhry et al. [6] Wu et al. [19] Our

Sensors 2018, 18, 3695 13 of 20

long, ℎ� is also 32 byte long. �� is 4 bytes a random number. The length of this message is 32 + 32 +

4 = 68 byte long. In the registration phase, the communication cost is 34 + 68 = 102 byte.

At the authentication phase, the client has to send {��, ��, ��, ��} to the server, �� is a random

number of be 4 bytes, �� is an element of �� , it is 64 bytes long, �� = (���
�||��)⨁�� , ���

� is an

identity, it is 2 bytes long, �� is the result of an hash operation, it is 32 bytes long, the length of ��

is 32 + 2 = 34 byte. �� is a 4 bytes long timestamp. The length of this message is 4 + 64 + 34 + 4 = 106.

The server has to send {��, ��} back to the client, �� is an element of ��, it is 64 bytes long. �� =

(�����||��)⨁ℎ(��
�||��), ����� and �� are the results of hash, they are both 32 bytes long, the length

of �� is 32 + 32 = 64 byte. The length of this message is 64 + 64 = 128 byte long. The communication

cost of is 106 + 128 = 234 byte.

At the password change phase, the client has to send {��, ��, ��} to the server, �� is a random

number of be 4 bytes, �� = (���
�||��)⨁��, ���

� is an identity, it is 2 bytes long, �� is the result of an

hash operation, it is 32 bytes long, the length of �� is 32 + 2 = 34 byte. �� is a 4 bytes long timestamp.

The length of this message is 4 + 34 + 4 = 42. The server has to send {��} back to the client, �� is the

result of hash, it is 32 bytes long, the length of this message is 32 byte long. The communication cost

of this phase is 42 + 32 = 74 byte.

The communication costs of other schemes are computed in the same way, note that, in the

scheme of Tu et al. [Error! Bookmark not defined.], to change a client’s password, the client and the

server has to build a shared key in advance, thus, the communication cost of the password change

phase is calculated as the communication cost of the authentication phase and the messages sent

during the password change process. The scheme of Chaudhry et al. [Error! Bookmark not defined.]

does not have a password change phase; we did not calculate their scheme’s communication cost.

The result is shown in Table 9.

Table 9. Communication costs of different schemes.

Reference
Registration

Phase

Authentication

Phase

Password Change

Phase

Tu et al. [Error! Bookmark not

defined.]
98 byte 230 byte 456 byte

Chaudhry et al. [Error! Bookmark not

defined.]
130 byte 226 byte ---

Wu et al. [Error! Bookmark not

defined.]
102 byte 238 byte 138 byte

Our scheme 102 byte 234 byte 74 byte

8. Security Feature Analyses

In this section, we analyzed the security features of different schemes. At the end of this section,

we concluded the results into a table.

8.1. Client Anonymity

Regarding client anonymity, in the proposed scheme, the identity of the user is encrypted by a

shared key between the client and the server, the adversary is unable to find out the real identity of

the client. In the scheme of Tu et al. [Error! Bookmark not defined.], the identity of the user is

transmitted transparently; the adversaries can get the identity easily. In the scheme of Chaudhry et

al. [Error! Bookmark not defined.] and Wu et al. [Error! Bookmark not defined.], the identity is

encrypted, too.

8.2. Perfect Forward Privacy

Perfect forward privacy means that even when an adversary gets the private key of the client or

the server, it is unable to recover the past session key based on this private key and the publicly

transmitted messages. As we have proved in Section 5, the proposed scheme gains perfect forward

privacy.

Sensors 2018, 18, 3695 14 of 20

Meanwhile, the scheme of Chaudhry et al. [Error! Bookmark not defined.] cannot ensure perfect

forward privacy, if the adversary gets the private key ��� and the session related messages

�����, �����, ��� and ���, ��� . The adversary is able to compute the past session key in the

following manner:

���
� = ��� ∙ ���

����� = ���
� ⊕ �����

�����
� = ��(��� ⊕ ����) ∙ �

���
� = ��� ⊕ ���

�

�� = ��(��� ⊕ �����
� ⊕ ���

� ⊕ �����
�)

8.3. Reply Attack

In the proposed scheme, there is a timestamp �� in the message {��, ��, ��, ��} , and the

timestamp �� is also concealed in the hash message �� = ℎ(��||���
�||��||��||��). If an adversary sends

a former message to the server, the server will abandon this message after checking the timestamp.

However, if the adversary replaces the timestamp �� with a new one, the server can still find it out

by checking the hash message �� = ℎ(��||���
�||��||��||��). Thus, an adversary is unable to launch a

replay attack. For the scheme of Chaudhry et al. [Error! Bookmark not defined.], if an adversary

sends a former message to the server, the server is unable to judge if the message is a previous one

or not, therefore, their scheme is subjected to replay attack.

8.4. Offline Dictionary Attack

In the proposed scheme, if the adversary gets the message in the smartcard {��, ℎ�, ��, ��}. The

adversary could conduct an offline dictionary attack in the following steps:

1. The adversary insert the smart card into a card reader, inputs a random identity and password

pair ���
� and ���

�.

2. SC computes: ���
� = ℎ(��||���

�||���
�).

3. SC uses ���
� to get �� = �� ⊕ ���

� and �� = ℎ� ⊕ ���
�.

4. SC gets the current timestamp ��, and gets ��.

5. SC gets a random number ��∈ [1, n − 1], and calculates �� = �� ∙ �.

6. SC gets the hash �� = ℎ(��||���
�||��||��||��).

7. SC computes �� = (���
�||��)⨁��.

8. Finally, SC sends {��, ��, ��, ��} to the server �.

9. If the server sends back a replay message, the identity and password pair is correct, otherwise,

go to step 1.

Now, ����� is used as the number of times an adversary can send a message to the server � in

a time period, the server will set a limit on �����, if the ����� exceeds this preset limit, The server will

no longer process the incoming messages from this adversary, the adversary cannot continuing the

dictionary attack in this time period. The |���|,|�����| are used as the dictionary size of the identity

and the password. Thus the probability ���� that adversary correctly guesses the identity and

password pair correctly is:

���� =
�����

|���| ∗ |�����|

Set |���|,|�����| to be large enough, the ���� will be a small value, the aforementioned analysis

is based on the authentication phase, the attack on the password changing phase is the same.

Meanwhile, in the scheme of Chaudhry et al. [Error! Bookmark not defined.], the adversary

could conduct an offline dictionary attack in the following steps:

Sensors 2018, 18, 3695 15 of 20

1. The adversary inserts the smart card into a card reader, inputs a random identity and

password pair ���
� and ���

�.

2. The adversary waits for the computation of the smart card.

3. If the smart card sends out a message, the identity and password pair is correct, otherwise,

goes to step 1.

As there is not a limit, the adversary can try as many times as he wants, thus the adversary will

finally get the correct identity and password pair. This also means our scheme can withstand the

smart card lost attack, when the smart card is lost, the adversary cannot launch an offline dictionary

attack to get the private key of the client.

8.5. Impersonation Attack

In the scheme of Tu et al. [Error! Bookmark not defined.], an adversary can impersonate the

server. Given the message a user sends to the server, {��������, �, �}, an adversary can forge the

following message, the user is unable to find out if this message is coming from an adversary or the

server:

Generate random numnber �, � ∈ ��

� = � ∙ �, � = � ∙ �

�� = ℎ�(�||�||��������)

���ℎ� = ℎ�(�||�||�||��)

However, in the proposed scheme, if an adversary wants to impersonate the server, it has to get

��
� = ℎ(���

�|| ����), the probablity that an adversary correctly guesses ��
� is���

= 1 (|���| ∗ |�����
|)⁄ ,

where ������
� means the dictionary size of the server’s private key.

8.6. Secret Information Leakage Problem

In the scheme of Tu et al. [Error! Bookmark not defined.], if an adversary accidentally get the

session ephemeral information � . The adversary is able to get the secret information

ℎ(��������||�) ∙ � in the following manner:

ℎ(��������||�) ∙ � = ��� ∙ ��

With this secret information, the adversary can impersonate a legitimate client. However, in the

proposed scheme, even the session ephemeral information is leaked, the adversary is unable to get

the client’s secret information.

Finally, we get Table 10, we find that the proposed scheme has more security features than the

schemes in the related works.

Table 10. Security features comparison.

Security Feature

Tu et al. [Error!

Bookmark not

defined.]

Chaudhry et al. [Error!

Bookmark not defined.]

Wu et al. [Error!

Bookmark not

defined.]

Our

Scheme

Client anonymity × √ √ √

Client being

tracked
× √ √ √

Reply attack × × × √

Impersonation

attack
× √ √ √

Offline dictionary

attack
√ × √ √

Smart card lost

attack
√ × √ √

Changing

password
√ × √ √

Sensors 2018, 18, 3695 16 of 20

Secret information

leakage problem
× √ √ √

Perfect forward

privacy
√ × √ √

9. Conclusions

In this study, an authentication and key establishment scheme between remote clients and a

server is proposed. The proposed scheme has been verified by AVISPA and BAN Logic, the

verification results show that the proposed scheme can withstand various attacks. The proposed

scheme has been simulated in C++, by comparison, it shows clearly that the proposed scheme is more

efficient compared to the related works regarding the computation cost and the communication cost.

Besides, the proposed has more security features compared to the related works. Our work is part of

the LifeWear project, in which we focus on the safety of data transmission and identity privacy

problem.

Author Contributions: Conceptualization, J.-F.M.; Methodology, Y.C; Validation, Y.C.; Formal Analysis, Y.C.;

Investigation, Y.C., P.C. and L.L.; Resources, J.-F.M.; Data Curation, Y.C.; Writing—Original Draft Preparation,

Y.C.; Writing—Review & Editing P.C. and L.L.; Visualization, Y.C.; Supervision, J.-F.M. and L.L.; Project

Administration, J.-F.M.; Funding Acquisition, J.-F.M.

Funding: This research was funded by Spanish Ministry of Industry, Energy and Tourism, grant number TSI-

010400-2010-100 and the Chinese Scholarship Council (CSC) grant number 201507040027.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The role of the client.

role sender(Ui,Sj: agent,

 Di,Ei: symmetric_key,

 H : hash_func,

 P : text,

 SND_US,RCV_US : channel (dy))

 SND_US,RCV_US : channel (dy))

played_by Ui

def=

 local State: nat, K1,T1,A1,IDi,Ki,M1,M2,SK,B2 ,Einew: text

 const user_server_sk,user_id:protocol_id

 init State := 0

 transition

 1. State = 0 /\ RCV_US(start)=|>

 State':= 2 /\ Ki1' := new()

 /\ T1':= new()

 /\ A1':= exp(P,K1')

 /\ M1':= xor(Ei,(A1'.IDi))

 /\ M2':= H(A1',IDi,Ki,Di,T1)

 /\ SND_US(Ki.M1'.M2'.T1)

 2. State = 2 /\ RCV_US(B2'.

 xor(

 (Einew'.

 H(H(exp(B2',K1).T1).T1).

 H(B2'.

Sensors 2018, 18, 3695 17 of 20

 Einew'.

 H(H(exp(B2',K1).T1).T1).

 Di.

 H(exp(B2',K1).T1))),

 H(Di,T1)

)

)=|>

 State':= 4 /\ SK':= H(exp(B2',K1).T1)

 /\ Ei':= Einew'

 /\ Ki':= H(H(exp(B2',K1).T1).T1)

 /\ secret(IDi,user_id,{Sj,Ui})

 /\ witness(Ui,Sj,user_server_sk,SK')

 /\ request(Ui,Sj,user_server_sk,SK')

end role

The role of the server.

role server(Ui,Sj: agent,

 Di,Ei :symmetric_key,

 Xgwn :symmetric_key,

 H : hash_func,

 P : text,

 SND_US,RCV_US: channel(dy))

played_by Sj

 def=

 local State: nat,A1,T1,Ki,IDi,SK,K2,B2,Kinew,Einew,M3,M4: text

 const user_server_sk,user_id:protocol_id

 init State := 1

 transition

 1. State = 1 RCV_US(Ki'.

 xor(H(Ki'.Xgwn),(A1'.IDi')).

 H(A1',IDi',Ki',Di',T1').

 T1'

) =|>

 State' := 3 /\ K2' := new()

 /\ B2' := exp(P,K2')

 /\ SK' := exp(A1',K2')

 /\ Kinew' := H(SK',T1')

 /\ Einew':= H(Kinew',Xgwn)

 /\ M3' := H(B2',Einew',Kinew',Di',SK')

 /\ M4' := xor((Einew'.Kinew'.M3'),H(Di',T1'))

 /\ SND_US(B2,M4')

 /\ secret(IDi,user_id,{Sj,Ui})

 /\ witness(Sj,Ui, user_server_sk,SK')

 /\ request(Sj,Ui, user_server_sk,SK')

end role

The role of the session.

role session(Ui, Sj : agent,

 Di,Ei, Xgwn : symmetric_key,

Sensors 2018, 18, 3695 18 of 20

 H : hash_func,

 P : text)

def=

 local SU,RU,SS,RS:channel(dy)

 composition

 user (Ui,Sj, Di,Ei, H,P, SU,RU)

 /\ server (Ui,Sj, Di,Ei,Xgwn, H,P, SS,RS)

end role

The role of the environment.

role environment()

def=

 const ui,sj : agent,

 di,xgwn,dii,ei: symmetric_key,

 user_server_sk,user_id:protocol_id,

 h : hash_func,

 p : text

 intruder_knowledge={ui, sj, dii,eii,xgwni, h,p}

 composition

 session(ui,sj, di,ei,xgwn, h,p)

 /\ session(i,sj, dii,eii,xgwn, h,p)

 /\ session(ui, i, di,ei,xgwni, h,p)

end role

The role of the goals.

goal

 % Confidentiality (G12)

 secrecy_of user_server_sk,user_id

 % Message authentication (G2)

 authentication_on user_server_sk

end goal

Appendix B

The parameters of the Koblitz curve secp256k1 by NIST are listed in this part. The curve is

defined as �: y� = x� + �� + � over ��. The bit length of p is 256 bit.

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

a = 0

b = 7

�� = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B

�� = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

h = 01

Reference

Sensors 2018, 18, 3695 19 of 20

1. Almenares, F.; Arias, P.; Marin, A.; Diaz-Sanchez, D.; Sanchez, R. Overhead of using secure wireless

communications in mobile computing. IEEE Trans. Consum. Electron. 2013, 59, 335–342.

2. Potlapally, N.R.; Ravi, S.; Raghunathan, A.; Jha, N.K. A study of the energy consumption characteristics of

cryptographic algorithms and security protocols. IEEE Trans. Mob. Comput. 2006, 5, 128–143.

3. Tu, H.; Kumar, N.; Chilamkurti, N.; Rho, S. An improved authentication protocol for session initiation

protocol using smart card. Peer-to-Peer Netw. Appl. 2015, 8, 903–910.

4. Farash, M.S. Security analysis and enhancements of an improved authentication for session initiation

protocol with provable security. Peer-to-Peer Netw. Appl. 2016, 9, 82–91.

5. Ibrahim, M.H.; Kumari, S.; Das, A.K.; Wazid, M.; Odelu, V. Secure anonymous mutual authentication for

star two-tier wireless body area networks. Comput. Methods Programs Biomed. 2016, 135, 37–50.

6. Chaudhry, S.A.; Naqvi, H.; Mahmood, K.; Ahmad, H.F.; Khan, M.K. An Improved Remote User

Authentication Scheme Using Elliptic Curve Cryptography. Wirel. Pers. Commun. 2017, 96, 5355–5373.

7. Kumari, S.; Chaudhry, S.A.; Wu, F.; Li, X.; Farash, M.S.; Khan, M.K. An improved smart card based

authentication scheme for session initiation protocol. Peer-to-Peer Netw. Appl. 2017, 10, 92–105.

8. Liu, J.; Zhang, L.; Sun, R. 1-RAAP: An Efficient 1-Round Anonymous Authentication Protocol for Wireless

Body Area Networks. Sensors 2016, 16, 728.

9. Xiong, H. Cost-Effective Scalable and Anonymous Certificateless Remote Authentication Protocol. IEEE

Trans. Inf. Forensics Secur. 2014, 9, 2327–2339.

10. Liu, J.; Zhang, Z.; Chen, X.; Kwak, K.S. Certificateless Remote Anonymous Authentication Schemes for

WirelessBody Area Networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 332–342.

11. Idrissi, H. Anonymous ECC-Authentication and Intrusion Detection Based on Execution Tracing for

Mobile Agent Security. Wirel. Pers. Commun. 2017, 94, 1799–1824.

12. Xiong, L.; Peng, D.; Peng, T.; Liang, H.; Liu, Z. A Lightweight Anonymous Authentication Protocol with

Perfect Forward Secrecy for Wireless Sensor Networks. Sensors 2017, 17, 2681.

13. Li, X.; Ibrahim, M.H.; Kumari, S.; Sangaiah, A.K.; Gupta, V.; Choo, K.-K.R. Anonymous mutual

authentication and key agreement scheme for wearable sensors in wireless body area networks. Comput.

Netw. 2017, 129, 429–443.

14. Kumari, S.; Khan, M.K. Cryptanalysis and improvement of “a robust smart-card-based remote user

password authentication scheme”. Int. J. Commun. Syst. 2014, 27, 3939–3955.

15. Jiang, Q.; Ma, J.; Li, G.; Yang, L. An Efficient Ticket Based Authentication Protocol with Unlinkability for

Wireless Access Networks. Wirel. Pers. Commun. 2014, 77, 1489–1506.

16. Li, X.; Niu, J.; Kumari, S.; Liao, J.; Liang, W.; Khan, M.K. A new authentication protocol for healthcare

applications using wireless medical sensor networks with user anonymity. Secur. Commun. Netw. 2015, 15,

2643–2655.

17. Wu, F.; Xu, L.; Kumari, S.; Li, X. A new and secure authentication scheme for wireless sensor networks with

formal proof. Peer-to-Peer Netw. Appl. 2017, 10, 16–30.

18. Das, A.K. A secure and robust temporal credential-based three-factor user authentication scheme for

wireless sensor networks. Peer-to-Peer Netw. Appl. 2016, 9, 223–244.

19. Wu, F.; Xu, L.; Kumari, S.; Li, X. A novel and provably secure biometrics-based three-factor remote

authentication scheme for mobile client–server networks. Comput. Electr. Eng. 2015, 45, 274–285.

20. Odelu, V.; Das, A.K.; Goswami, A. An efficient biometric-based privacy-preserving three-party

authentication with key agreement protocol using smart cards. Secur. Commun. Netw. 2015, 8, 4136–4156.

21. Wang, C.; Xu, G.; Sun, J. An Enhanced Three-Factor User Authentication Scheme Using Elliptic Curve

Cryptosystem for Wireless Sensor Networks. Sensors 2017, 17, 2946.

22. Islam, S.H. Provably secure dynamic identity-based three-factor password authentication scheme using

extended chaotic maps. Nonlinear Dyn. 2014, 78, 2261–2276.

23. He, D.; Zeadally, S.; Xu, B.; Huang, X. An Efficient Identity-Based Conditional Privacy-Preserving

Authentication Scheme for Vehicular Ad Hoc Networks. IEEE Trans. Inf. Forensics Secur. 2015, 10, 2681–

2691.

24. Islam, S.H.; Khan, M.K. Provably secure and pairing-free identity-based handover authentication protocol

for wireless mobile networks. Int. J. Commun. Syst. 2016, 29, 2442–2456.

25. Porambage, P.; Schmitt, C.; Kumar, P.; Gurtov, A.; Ylianttila, M. PAuthKey: A Pervasive Authentication

Protocol and Key Establishment Scheme for Wireless Sensor Networks in Distributed IoT Applications. Int.

J. Distrib. Sens. Netw. 2014, 2014, e357430.

Sensors 2018, 18, 3695 20 of 20

26. Tsai, J.L.; Lo, N.W. A Privacy-Aware Authentication Scheme for Distributed Mobile Cloud Computing

Services. IEEE Syst. J. 2015, 9, 805–815.

27. Mishra, D.; Das, A.K.; Mukhopadhyay, S. A secure and efficient ECC-based user anonymity-preserving

session initiation authentication protocol using smart card. Peer-to-Peer Netw. Appl. 2016, 9, 171–192.

28. Li, X.; Peng, J.; Kumari, S.; Wu, F.; Karuppiah, M.; Choo, K.K. An enhanced 1-round authentication protocol

for wireless body area networks with user anonymity. Comput. Electr. Eng. 2017,

doi:10.1016/j.compeleceng.2017.02.011.

29. Nam, J.; Choo, K.K.; Han, S.; Kim, M.; Paik, J.; Won, D. Efficient and anonymous two-factor user

authentication in wireless sensor networks: Achieving user anonymity with lightweight sensor

computation. PLoS ONE 2015, 10, e0116709.

30. Armando, A.; Basin, D.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuéllar, J.; Drielsma, P.H.; Héam, P.C.;

Kouchnarenko, O.; Mantovani, J.; et al. The AVISPA Tool for the Automated Validation of Internet Security

Protocols and Applications. In Proceedings of the International Conference on Computer Aided

Verification, Edinburgh, UK, 6–10 July 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 281–285.

Available online: http://link.springer.com/chapter/10.1007/11513988_27 (accessed on 29 October 2018).

31. Turuani, M. The CL-Atse Protocol Analyser. In Lecture Notes in Computer Science, Proceedings of the 17th

International Conference on Rewriting Techniques and Applications, RTA, Seattle, WA, USA, 12–14 August 2006;

Pfenning, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2006.

32. Basin, D.; Mödersheim, S.; Vigano, L. Constraint Differentiation: A New Reduction Technique for

Constraint-Based Analysis of Security Protocols. In Proceedings of the CCS’03, Washington, DC, USA, 27–

30 October 2003; Atluri, V., Liu, P., Eds.; ACM Press: New York, NY, USA, 2003; pp. 335–344. Available

online: http://www.avispa-project.org (accessed on 29 October 2018).

33. Basin, D.; Mödersheim, S.; Vigano, L. OFMC: A Symbolic Model-Checker for Security Protocols. Int. J. Inf.

Secur. 2005, 4, 181–208.

34. Burrows, M.; Abadi, M.; Needham, R.M. A Logic of Authentication. Proc. R. Soc. Lond. A Math. Phys. Eng.

Sci. 1989, 426, 233–271, doi:10.1098/rspa.1989.0125.

35. Chen, Y.; Martínez, J.F.; Castillejo, P.; López, L. A Privacy Protection User Authentication and Key

Agreement Scheme Tailored for the Internet of Things Environment: PriAuth. Wirel. Commun. Mob. Comput.

2017, 2017, 5290579, doi:10.1155/2017/5290579.

36. Available online: https://github.com/SevenBruce/lAuth (accessed on 28 September 2018).

37. Available online: https://libraries.docs.miracl.com/miracl-user-manual/about (accessed on 1 March 2018).

38. Available online: https://github.com/miracl/MIRACL (accessed on 28 September 2018).

39. Available online: https://csrc.nist.gov/csrc/media/publications/fips/186/3/archive/2009-06-

25/documents/fips_186-3.pdf (accessed on 3 April 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

