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Abstract: Snapshot polarization imaging has gained interest in the last few decades. Recent
research and technology achievements defined the polarization Filter Array (PFA). It is dedicated
to division-of-focal plane polarimeters, which permits to analyze the direction of light electric field
oscillation. Its filters form a mosaicked pattern, in which each pixel only senses a fraction of the
total polarization states, so the other missing polarization states have to be interpolated. As for
Color or Spectral Filter Arrays (CFA or SFA), several dedicated demosaicking methods exist in the
PFA literature. Such methods are mainly based on spatial correlation disregarding inter-channel
correlation. We show that polarization channels are strongly correlated in images. We therefore
propose to extend some demosaicking methods from CFA/SFA to PFA, and compare them with those
that are PFA-oriented. Objective and subjective analysis show that the pseudo panchromatic image
difference method provides the best results and can be used as benchmark for PFA demosaicking.

Keywords: polarization filter array; micro-polarizer filter array; spatial interpolation; demosaicking;
demosaicing; polarization imaging; division-of-focal-plane polarimeter

1. Introduction

Polarization imaging is a way to analyze the particular direction of oscillation of the electric field
described by the light. In opposition with conventional color or multispectral imaging that sample
the spectral information, polarization imaging considers the electric field as a vector. Such a vector
field is contained in a plane perpendicular to the direction of propagation. As the wave travels, it can
oscillate in one particular direction (linear polarization), or in an ellipse (elliptic or circular polarization).
Values of polarization images depend on the polarization properties of both the light source and the
objects that compose the observed scene. The light can be partially polarized or unpolarized, resulting
from either a rapidly changing state of polarization, or an interference effect of polarization.

Several polarization imaging systems, called polarimeters, have been developed in the last past
few decades for recovering the polarization state of a lighted scene from few acquisitions. Such systems
combine a standard panchromatic imaging device with polarizing optics, e.g., polarization filter, liquid
crystal modulator, or prism. Reviews of recent polarimeters have been achieved in the literature [1,2].
The most simple optical setup consists in the rotation of a linear polarization filter at several polarization
angles in front of a camera. After a preliminary calibration step (radiometric and polarimetric),
the polarization states of the incoming irradiance that reaches the sensor can be estimated. However,
this setup is sequential and slow, since several image acquisitions at different filter orientations are
required to recover the polarization states of a single scene. To overcome this limitation, Polarization
Filter Array (PFA) imaging provides a way for snapshot acquisition that could be useful for many
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imaging applications. It is an extension of the so-called Color Filter Array (CFA) and Spectral Filter
Array (SFA) technologies that previously came on the market. We will briefly review the CFA and SFA
technologies and concepts, before to introduce the specificities of PFA.

The CFA technology [3] has quickly become the standard for one-shot color imaging.
The technology is lightweight, cheap, robust, and small enough to be embedded in imaging systems.
It is composed by a single silicon sensor fitted with a CFA, so that each sensor site senses only one
spectral band according to the CFA. A demosaicking procedure is therefore required to recover the
incomplete color samples per site. Such procedure uses reflectance properties of acquired images in
order to recover the missing color components at each pixel position. Properties of reflectance consist
in high spatial correlation in homogeneous areas that constitute an object, and spectral correlation
between different channels. The widely-used Bayer CFA for instance samples the green band at
half of sites, which makes it a prominent candidate to begin the demosaicking process using spatial
correlation. Spectral correlation is then generally assumed in order to estimate red and blue channels
using the well estimated green channel. The demosaicking algorithm has to be carefully selected since
color reconstruction quality is highly affected by its artifacts, such as blur, zipper effect, etc.

The last past few decades have seen the emergence of an extension of CFA with more than
three channels: The SFA technology [4–6]. Supplementary channels are generally required for
applications that need good color reproduction [7], illuminant estimation and spectral adaptation [8],
reflectance reconstruction [9], etc. SFA design considers a trade-off between spatial resolution for
spatial reconstruction in the demosaicking process, and spectral resolution for spectrum reconstruction.
Thus, some SFA demosaicking algorithms privilege spatial resolution by sampling a dominant channel
that represents half of pixels [10] (as for the Bayer CFA), while other privileges spectrum reconstruction
by maximizing the number of channels [11].

Polarization Filter Array (PFA) technology has been patented in 1995 [12], but most of
the practical implementations and technology advances were made from 2009 to nowadays.
Manufacturing processes are various and done by designing metal wire grid micro-structures [13–15],
liquid crystals [16,17], waveplate array of silica glass [18], or intrinsically polarization-sensitive
detectors [19,20]. Some of the most evolved PFA structures are presented as being bio-inspired,
and implement additional features, e.g., mixing spectral and polarization feature recovery [21],
high dynamic range [22], or motion detection [23].

The PFA is composed of pixel-size linear polarizers oriented at four different angles (0◦, 45◦, 90◦,
and 135◦ are the polarization orientations employed in most of the PFA cameras), superimposed on
a camera sensor chip, as shown in Figure 1. In front of the sensor, the PFA samples the polarization
direction by filtering the incoming irradiance according to polarizer angles. Therefore, each pixel
measures the intensity coming from only 1 of the 4 different polarizers. Some PFA cameras appear on
the market, like the Polarcam device from 4D Technology [24], and more recently, the IMX250MZR
polarization-dedicated sensor from SONY (Tokyo, Japan). Both PFA use the same filter arrangement
that is described in Figure 1. But the SONY sensor that comes in 2018 is particularly cheap, and holds
the polarization matrix bellow the lens array, which limits the cross-talk effect in adjacent pixels [6].
Moreover, as it was previously done for other computational imaging [25,26] and computer vision [27]
algorithms, Lapray et al. [2] have recently proposed an implementation of a real-time polarization
imaging pipeline using an FPGA.

Demosaicking PFA images aims to retrieve the full resolution images that represent the four
polarization channels. Stokes imaging is a tool that uses these channels to represent in an efficient way
the linear and circular state of polarization of the incoming light. Thus, the final goal of demosaicking
is to minimize errors and artifacts in the reconstructed Stokes parameters and the derived descriptors.
The Degree Of Linear Polarization (DOLP) and the Angle Of Linear Polarization (AOLP) descriptors
are computed from the first three Stokes parameters of the Stokes vector S. In this work, we limit ourself
to the linear case, as the most of existing PFA are based only on linear polarizers (but some existing
tentatives add plasmonic quarter-wave retarders to retrieve the circular polarization component [28]).
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Let us consider the intensities of light measured I0, I45, I90, I135 after the light is filtered by linear
polarization filters (oriented at 0°, 45°, 90°, and 135°). In the literature, the choice of these 4 angles
forms an optimal system for polarization imaging in the presence of noise, as described in [29].
The mathematical formulations for Stokes parameters and descriptors are as follows:

S =


S0

S1

S2

0

 =


I0 + I90

I0 − I90

I45 − I135

0

 , (1)

DOLP =

√
S2

1 + S2
2

S0
, (2)

AOLP =
1
2

arctan
S2

S1
, (3)

Figure 1. Polarization Filter Array principle. A polarization filter array covers the pixel matrix of a
radiometric sensor. The array of polarimetric filters are located, either directly above the matrix of
pixels, or over the micro-lens array.

The total incoming irradiance is represented by S0, S1 is the horizontal/vertical polarization
difference, whereas S2 is the +45/−45° polarization difference. If we consider that channels Ik,
k ∈ {0, 45, 90, 135} are normalized intensity values comprised between 0 and 1, S1 and S2 have values
between −1 and +1. AOLP values are scaled in the range [0, 180°], whereas DOLP values are scaled
in the range [0, 1], and are often expressed in percentage of polarized light.

It is useful to note that a radiometric calibration is very important in case of polarimetric imaging,
even more than for color imaging, as the different channel errors are coupled, and thus it can invalidate
greatly the parameter estimation [1]. An example of a complete 2D Stokes processing starting from a
PFA image is given in Figure 2.

The purpose of this paper is to first study the correlation properties of polarization channels and
their similarities with those of spectral channels. Then to review some existing interpolation strategies
dedicated to filter array imaging, i.e., CFA, SFA, and PFA. Finally, we propose to evaluate objectively
the methods and those we have adapted to the PFA case, in the special context of PFA. A diagram of
the proposed analysis is shown in Figure 3. We organize the paper as follows. First, a data correlation
study across the polarization channels is presented in Section 2. Next, different CFA, SFA, and PFA
interpolation techniques are presented in Section 3. Results and discussion of the surveyed methods is
proposed in Section 4. The paper ends with several conclusions in Section 5.
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Figure 2. Polarization Filter Array (PFA) imaging overview. (a) Raw output image from the
4D Technology camera. (b–e) Downscaled polarization images (without spatial interpolation).
(f–h) Polarization descriptor images associated to downsampled images.
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Figure 3. Overview of the analysis which is done in this paper.

2. Polarimetric Channel Correlation Study

All demosaicking methods estimate missing values using spatial (intra-channel) (i) and/or
inter-channel (ii) correlation assumptions. (i) The spatial correlation assumes that; if a pixel p
and its neighborhood belong to the same homogeneous area, the value of p is strongly correlated
with the values in its neighborhood. Thus, assuming that a channel is composed of homogeneous
areas separated by edges, the value of a pixel can be estimated by using its neighbors within the
same homogeneous area. Spatial gradients are often used as indicators to determine whether two
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pixels belong to the same homogeneous area. Indeed, gradient considers the difference between
values of two spatially close pixels. We can therefore assume that these pixels belong to the same
homogeneous area if the gradient is low, and that they belong to different homogeneous area otherwise.
(ii) The inter-channel correlation (also called spectral correlation in CFA and SFA imaging) assumes
that the high frequencies (textures or edges) of the different channels are strongly correlated. If the
filter array contains a spatially dominant band, demosaicking generally estimates the associated
channel whose high frequencies can be faithfully reconstructed, then uses it as a guide to estimate
other channels. The faithfully reconstructed image can be used to guide the high frequency estimation
within the different channels [30].

Usual PFA demosaicking methods assume only spatial correlation, thus disregarding correlation
among polarization channels. In order to extend CFA and SFA demosaicking methods that also use
the inter-channel correlation to PFA images, we propose to compare the spatial and inter-channel
correlations in multispectral images with those of polarization images. For this purpose, we use the
database proposed in [31]. Images were acquired by the single-band near-infrared sensor from the
JAI AD080 GE camera, coupled with a linear polarizer from Thorlabs (LPNIRE100-B). A precision
motorized rotation stages (Agilis™ Piezo Motor Driven Rotation Stages) allowed to take the four
images at four orientation angles ([I0, I45, I90, I135]T). A registration procedure aligned the images [32]
pixel-to-pixel. The images were also calibrated with respect to the spatial deviation of the illuminant
and the non-linearities. There are ten multispectral images, each one being provided with four
different polarization angles k ∈ {0, 45, 90, 135}. Scenes imply different objects with materials like
fabrics, plastics, food, color checkers, glass, and metal. Conditions of acquisition are constant for all
scenes, i.e., constant illuminant source (tungsten halogen source) and location, constant field of view
and constant lens aperture. Multispectral recoverred images are composed of six spectral channels:
Five channels are associated with the visible domain, whereas one channel is associated with the
Near-InfraRed domain (NIR). The six spectral channels Cu are arranged so that their associated spectral
band wavelengths increase with respect to u ∈ {1, . . . , 6}.

Let us first study the properties of multispectral images with respect to the polarization angle
of analysis. For this purpose we assess the spatial correlation within a given channel Cu using the
Pearson correlation coefficient (PCC) between the value Cu

p of each pixel p and that of its right neighbor
Cu

q at spatial distance 2. This coefficient is defined as [33]

PCC[Cu] =

∑
p

(
(Cu

p − µu)(Cu
q − µu)

)
√

∑
p
(Cu

p − µu)2
√

∑
p
(Cu

q − µu)2
, (4)

where µu is the mean value of channel Cu. We also assess the inter-channel correlation using the PCC
between any pair of spectral channels Cu and Cv, (u, v) ∈ {1, . . . , 6}2 as

PCC [Cu, Cv] =

∑
p

(
(Cu

p − µu)(Cv
p − µv)

)
√

∑
p
(Cu

p − µu)2
√

∑
p
(Cv

p − µv)2
. (5)

Note that in Equations (4) and (5), we select a centered area excluding the 16 pixels on the image
borders to avoid border effects, that are induced by the registration step used on raw images (described
in [31]). Moreover the choice of 16 border pixels is done to match with the experimental assessment
(see Section 4) of demosaicking methods presented in Section 3.

Table 1 is the spatial correlation within each spectral channel and the inter-channel correlation
between the six spectral channels according to each of the four polarization angles. Table 1 shows that
the spatial correlation is relatively high (0.9504 on average over all channels and polarization angles),
which validates the use of the spatial correlation assumption for both SFA and PFA demosaicking.
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According to Table 1a,d, the spatial correlation has the same behavior for the four polarization angles.
It also highlights that the channel C4 has low spatial correlation. We believe that it is due to the database
acquisition setup, which uses the dual-RGB method leading to unbalanced channel sensitivities. In this
configuration, the spectral sensitivity function associated with the channel C4 is lower than other
channels over the spectrum. Thus, all channels don’t share the same noise level, and poor information
recovery (especially for C4) could lead to low correlation values.

Regarding the spectral inter-channel correlation, the usual behavior is that close spectral channels
in term of wavelength band are more correlated than distant ones, and channels in the visible are weakly
correlated with the near-infrared channel [11]. Except the channel C4 that exhibit low correlation
values, this behavior is observed in Table 1. Indeed, PCC(C1, C2) > PCC(C1, C3) > PCC(C1, C5) >

PCC(C1, C6) for instance. Moreover the correlation between the NIR channel C6 and other channels
is low (ranges on average between 0.7953 and 0.8787), while the correlation between channels in
the visible domain reaches up to 0.9596 (correlation between C2 and C3). Table 1a,d show that the
inter-channel correlation depends on the polarization angle. Indeed, Table 1a has values close to
Table 1d, whereas Table 1b has values close to Table 1c. We can therefore expect that the polarization
channels at 0° are more correlated with those at 135° than those at 45° or 90°.

Table 1. Inter-channel correlation between the six spectral channels relatively to the polarization
angle of analysis. Last line of each subtable is the spatial correlation within each channel. Values are
averaged over the ten multispectral images from [31]. Last subtable (e) is the average over the
four polarization channels.

(a) 0°

C1 C2 C3 C4 C5 C6

C1 1.0000 0.8848 0.9100 0.7618 0.8571 0.8411

C2 0.8848 1.0000 0.9561 0.8956 0.8584 0.8495

C3 0.9100 0.9561 1.0000 0.9002 0.9454 0.8846

C4 0.7618 0.8956 0.9002 1.0000 0.8352 0.7962

C5 0.8571 0.8584 0.9454 0.8352 1.0000 0.8927

C6 0.8411 0.8495 0.8846 0.7962 0.8927 1.0000

Spa 0.9691 0.9413 0.9590 0.8770 0.9685 0.9644

(b) 45°

C1 C2 C3 C4 C5 C6

C1 1.0000 0.9333 0.9127 0.7949 0.8392 0.8181

C2 0.9333 1.0000 0.9620 0.8912 0.8679 0.8245

C3 0.9127 0.9620 1.0000 0.9150 0.9417 0.8528

C4 0.7949 0.8912 0.9150 1.0000 0.8734 0.7812

C5 0.8392 0.8679 0.9417 0.8734 1.0000 0.8664

C6 0.8181 0.8245 0.8528 0.7812 0.8664 1.0000

Spa 0.9720 0.9443 0.9624 0.8804 0.9719 0.9747

(c) 90°

C1 C2 C3 C4 C5 C6

C1 1.0000 0.9490 0.9133 0.8225 0.8327 0.8102

C2 0.9490 1.0000 0.9630 0.8960 0.8687 0.8229

C3 0.9133 0.9630 1.0000 0.9335 0.9413 0.8481

C4 0.8225 0.8960 0.9335 1.0000 0.9044 0.8024

C5 0.8327 0.8687 0.9413 0.9044 1.0000 0.8622

C6 0.8102 0.8229 0.8481 0.8024 0.8622 1.0000

Spa 0.9752 0.9550 0.9689 0.9059 0.9757 0.9765

(d) 135°

C1 C2 C3 C4 C5 C6

C1 1.0000 0.8961 0.9127 0.7788 0.8545 0.8422

C2 0.8961 1.0000 0.9573 0.8974 0.8629 0.8473

C3 0.9127 0.9573 1.0000 0.9077 0.9464 0.8827

C4 0.7788 0.8974 0.9077 1.0000 0.8501 0.8014

C5 0.8545 0.8629 0.9464 0.8501 1.0000 0.8936

C6 0.8422 0.8473 0.8827 0.8014 0.8936 1.0000

Spa 0.9687 0.9380 0.9575 0.8688 0.9676 0.9667

(e) Average

C1 C2 C3 C4 C5 C6

C1 1.0000 0.9158 0.9122 0.7895 0.8459 0.8279

C2 0.9158 1.0000 0.9596 0.8950 0.8645 0.8360

C3 0.9122 0.9596 1.0000 0.9141 0.9437 0.8670

C4 0.7895 0.8950 0.9141 1.0000 0.8658 0.7953

C5 0.8459 0.8645 0.9437 0.8658 1.0000 0.8787

C6 0.8279 0.8360 0.8670 0.7953 0.8787 1.0000

Spa 0.9712 0.9446 0.9620 0.8830 0.9709 0.9706
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Now, let us consider the polarization images composed of four polarization angles for a given
spectral band. The spatial and inter-channel correlations are assessed using the PCC applied
respectively to channels Ik, k ∈ {0, 45, 90, 135} (see Equation (4)), and to any pair of polarization
channels Ik and Il , (k, l) ∈ {0, 45, 90, 135}2 (see Equation (5)).

Table 2 is the average polarization correlation between the four channels of polarization images,
according to each of the six spectral bands. Results highlight that the spatial correlation is high and
does not depend on the considered spectral band (except for channel C4). Results also confirm that
channel I0 is highly correlated with channel I135 and channel I45 is highly correlated with channel I90.
In general terms, inter-channel correlation between polarization channels is higher than inter-channel
correlation between spectral channels (see Table 1). Indeed, if the incoming irradiance is not polarized,
the associated pixel has only the information of the total intensity divided by two, that is the same
from one channel to another.

Table 2. Inter-channel correlation between the four polarization channels according to the spectral
band. Last line of each subtable is the spatial correlation within each channel. Values are averaged over
the ten multispectral images from [31]. Last subtable is the average over the six spectral channels.

(a) C1

I0 I45 I90 I135

I0 1.0000 0.9227 0.8980 0.9763

I45 0.9227 1.0000 0.9699 0.9250

I90 0.8980 0.9699 1.0000 0.9126

I135 0.9763 0.9250 0.9126 1.0000

Spa 0.9691 0.9720 0.9752 0.9687

(b) C2

I0 I45 I90 I135

I0 1.0000 0.9262 0.8787 0.9372

I45 0.9262 1.0000 0.9470 0.8969

I90 0.8787 0.9470 1.0000 0.8974

I135 0.9372 0.8969 0.8974 1.0000

Spa 0.9413 0.9443 0.9550 0.9380

(c) C3

I0 I45 I90 I135

I0 1.0000 0.9077 0.8960 0.9486

I45 0.9077 1.0000 0.9486 0.8970

I90 0.8960 0.9486 1.0000 0.9024

I135 0.9486 0.8970 0.9024 1.0000

Spa 0.9590 0.9624 0.9689 0.9575

(d) C4

I0 I45 I90 I135

I0 1.0000 0.8787 0.8444 0.9317

I45 0.8787 1.0000 0.9286 0.8816

I90 0.8444 0.9286 1.0000 0.8688

I135 0.9317 0.8816 0.8688 1.0000

Spa 0.8770 0.8804 0.9059 0.8688

(e) C5

I0 I45 I90 I135

I0 1.0000 0.9074 0.8920 0.9444

I45 0.9074 1.0000 0.9524 0.8986

I90 0.8920 0.9524 1.0000 0.8955

I135 0.9444 0.8986 0.8955 1.0000

Spa 0.9685 0.9719 0.9757 0.9676

(f) C6

I0 I45 I90 I135

I0 1.0000 0.9049 0.8155 0.9107

I45 0.9049 1.0000 0.8965 0.8823

I90 0.8155 0.8965 1.0000 0.8674

I135 0.9107 0.8823 0.8674 1.0000

Spa 0.9644 0.9747 0.9765 0.9667

(g) Average

I0 I45 I90 I135

I0 1.0000 0.9079 0.8708 0.9415

I45 0.9079 1.0000 0.9405 0.8969

I90 0.8708 0.9405 1.0000 0.8907

I135 0.9415 0.8969 0.8907 1.0000

Spa 0.9465 0.9509 0.9595 0.9445

Since the inter-channel correlation is high in polarization images, we propose to apply SFA
demosaicking schemes based on inter-channel correlation assumption on PFA images. For this
purpose, we can choose the four polarization channels associated to any spectral band but not the
one associated to C4. Since dual-RGB method is not applied for the channel C6, we selected it for the
experimental assessment in Section 4.
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3. State-of-the-Art

3.1. Demosaicking Problem and Properties

A PFA camera provides a raw image Iraw with X×Y pixels, in which a single polarization angle
k ∈ {0, 45, 90, 135} is available at each pixel p according to the PFA arrangement. Let S be the set of all
pixels (with a cardinal of |S| = X×Y) and Sk be the pixel subset where the PFA samples the angle k,
such that S =

⋃
k∈{0,45,90,135} Sk. A PFA can be defined as a function PFA: S → {0, 45, 90, 135} that

associates to each pixel p its polarization angle. Therefore the pixel subset where the PFA samples the
polarization angle k can be defined as Sk = {p ∈ S, PFA(p) = k}. The raw image Iraw can then be seen
as a sampled version of the fully-defined reference image I = {Ik}k∈{0,45,90,135} (that is unavailable in
practice) according to the PFA:

∀p ∈ S, Iraw
p = IPFA(p)

p . (6)

The raw image can also be seen as the direct sum of four sparse channels Ĩk, k ∈ {0, 45, 90, 135}
that contains the available values at pixel positions in Sk and zero elsewhere:

Ĩk = Iraw �mk , (7)

where � denotes the element-wise product and mk is a binary mask defined at each pixel p as:

mk
p =

{
1 if PFA(p) = k, i.e., p ∈ Sk,

0 otherwise.
(8)

Demosaicking is performed on each sparse channel Ĩk to obtain an estimated image Î = { Îk}K
k=1

with four fully-defined channels, among which three are estimated at each pixel p. For illustration
purpose, Figure 4 shows the demosaicking problem formulation for a PFA raw image.
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Figure 4. General mosaicking/demosaicking testing framework used in this work.
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In the following, we review the demosaicking methods dedicated to PFA. We also review those
dedicated to CFA/SFA that can be used or adapted to our considered PFA. All these methods were
either re-coded, adapted to PFA, or kindly provided by authors (online or in private). See Table 3 for
an overview of all methods.

Table 3. Summary of the color, spectral, and polarization filter array (CFA/SFA/PFA) interpolation
methods. R, A and P abbreviations mean that the algorithms were Re-coded, Adapted, or Provided by
the authors of the original work.

Method Abbr. Year Code

PFA-oriented

Bilinear with 5 different kernels [34] B1−5 2009 R
Linear system [35] LS 2009 R
Adaptive [36] A 2011 R
Cubic [37] CB 2011 R
Cubic-Spline [37] CBSP 2011 R
Intensity Correlation among Polarization Channels [38] ICPC 2016 P

CFA-oriented

Residual Interpolation [39] RI 2013 A
Adaptive Residual Interpolation [40] ARI 2015 A

SFA-oriented

Binary-Three Edge Sensing [41] BTES 2006 R
Spectral Difference [42] SD 2006 R
Vector median [43] VM 2013 P
Discrete Wavelet Transform [44] DWT 2013 P
Multi Local Directional Interpolation [45] MLDI 2015 R
Pseudo-Panchromatic Image Difference [11] PPID 2017 A
Pseudo-Panchromatic Image based Discrete Wavelet Transform [11] PPIDWT 2017 A

3.2. PFA Demosaicking

Among PFA demosaicking methods, we exclude the learning-based methods [46], since they
require well-adapted dictionaries, and methods that exploit multiple sampling of the raw data [47].
We also exclude the gradient-based method [48], since a SFA method has a very close behavior (BTES).

3.2.1. Bilinear with 5 Different Kernels (B)

Bilinear interpolation dedicated to PFA was firstly investigated by Ratliff et al. [34]. They employ
three different bilinear and two weighted bilinear kernels (see Figure 5). Bilinear interpolation is
one of the most commonly used technique due to its low computational complexity. It is based
on space-invariant linear filtering. Two kinds of bilinear interpolations exist. One uses a linear
combination of neighboring pixel values using equal weights. Another employs non-equal weights in
accordance to the Euclidean distance between the interpolated pixel location and centers of neighboring
pixels. The subtractive nature of the Stokes vector processing results in strong edge artifacts in
the reconstructed images. Based on this assumption, authors define the term of Instantaneous
Field-Of-View (IFOV), which is the local deviation between an ideal full-resolution polarimeter and
the interpolated PFA pixel responses at each position. They evaluate the interpolation performance
of the methods using synthetic data, in the frequency domain of the reconstructed Stokes images.
As evaluation metrics, they computed the modulation and intermodulation transfer functions in the
descriptor images, along with the DOLP Mean Squared Error (MSE). It is found that the larger the size
of the kernels becomes, the more DOLP artifacts are reduced, at the cost of loosing the high spatial
frequency features. They found that the 12-pixel neighborhood kernel (B4 in the Figure 5) gives the
best performance in term of IFOV removal. For algorithm implementations, we used the same weights
as the original paper for the two weighted bilinear kernels.
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Figure 5. The five demosaicking kernels of the five bilinear methods B1−5 from the work by
Ratliff et al. [34]. It refers to the neighborhood used for interpolation. (a–c) Are simple bilinear
kernels, whereas (d,e) are weighted bilinear kernels.

3.2.2. Linear System (LS)

Tyo et al. [35], in 2009, elaborates a new method to reconstruct the first three Stokes parameters
directly from the mosaicked image, without estimating Î. The four polarization images Î0, Î45, Î90,
and Î135 are thus not available with this method. The philosophy starts from the analysis of a raw
PFA image in the frequency domain. By doing the discrete 2D Fourier transform, they define the
spatial low-pass and high-pass filters. They assume that S0, S1, and S2 are spatially band limited
in the frequency domain. The centering baseband of the Fourier transform represents S0, whereas
the horizontal and vertical sidebands represent S1 + S2 and S1 − S2 respectively. They could then
reconstruct S1 and S2 after applying the filters in the Fourier domain, and by doing the inverse Fourier
transform of images.

3.2.3. Adaptive (A)

An extension of the bilinear interpolation was proposed by Ratliff et al. [36]. In this work,
the principle is inspired by Ramanath et al. [49]. The loss of high frequency features in bilinear
interpolation techniques is compensated by local computation using a 3× 3 filtering. First, S0 is
approximated using not only I0 and I90, but the four available neighboring intensities, as it is suggested
in the literature [50]. A 2× 2 low-pass filtering of the raw PFA image is performed with the kernel
as follows:

hS0 =
1
2
·
[

1 1
1 1

]
. (9)

Then, intensity similarity masks and Euclidian distance masks are computed, in such a way
that the weights are higher for pixels that have similar intensity values within a close neighborhood.
These local interpolation weights are computed at each position in the image, and avoid interpolation
across edges, and thus preserve high frequency contents. Results show that IFOV artifacts and
false edges are minimized in the DOLP image, while high spatial frequencies are preserved. Only a
subjective evaluation of their algorithm is performed in the article. The parameter ρi in the paper was
selected to be equal to 0.3 in our implementation.

3.2.4. CuBic (CB) and Cubic-SPline (CBSP)

An article was published by Gao et al. [37] to compare bilinear, weighted bilinear, cubic,
and cubic-spline. In our work, the cubic and bicubic interpolation methods have been
implemented using built-in functions from Matlab software (The MathWorks, Inc., Natick, MA,
USA). Cubic interpolation uses the third order polynomial fitting to interpolate an area delimited
by four corners, and uses three directional derivatives (horizontally, vertically and diagonally) as
input. The cubic-spline method is a sequence of an horizontal interpolation and a vertical interpolation.
Polynomial fitting (third order) is also used to reconstruct missing values from adjacent pixels, but with
the additional constraint that the first and second derivative at the interpolation points are continuous.
A modulation transfer function study is done to investigate on how the high spatial frequencies are
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preserved. A visual and objective evaluation (using MSE) are done on real data. Main results show that
the cubic-spline methods performed the best in terms of visual artifacts removal and MSE. It appears
that bilinear and weighted bilinear give the worst results.

3.2.5. Intensity Correlation among Polarization Channels (ICPC)

Another method by Zhang et al. [38] takes advantage of the correlations in PFA to enhance the
spatial resolution of images. Spatial and polarization correlations between channels are investigated in
a close pixel neighborhood, directly in the raw PFA image. Edges can not be accurately distinguished
if the incoming light is polarized at some degree. Thus, in their work, edge orientations are estimated
using the intensity correlation. They start by computing correlation errors from the assumption
that edges have poor correlation within the pixel neighborhood. The correlation error magnitude
reflects the presence of a homogeneous zone, or of a horizontal, vertical, or diagonal edge. For the
interpolation in itself, a diagonal interpolation is firstly done by applying a bicubic-spline interpolation.
Then, horizontal and vertical interpolation are performed by bicubic-spline interpolations, according
to the correlation errors previously computed. Evaluation of their method is done by constructing a
set of four ground truth polarization images using a linear polarizer rotated at four different angles.
They found that their method performs better visual results, and has better RMSE compared to bilinear,
bicubic, bicubic-spline, and gradient-based methods.

3.3. CFA Demosaicking

Bayer CFA has a dominant green band that represents half of pixels, and is used as a guide
containing the high spatial frequencies. Therefore, CFA demosaicking methods generally estimate the
green channel first in order to use the spectral correlation by considering that green channel is strongly
correlated with blue and red channels. Here, we extend residual interpolation methods [39,40] from
the CFA to the PFA pattern by considering the intensity image S0 as a guide instead of the estimated
green channel.

3.3.1. Residual Interpolation (RI)

Kiku et al. [39] propose a demosaicking scheme based on the residual interpolation. Their method
requires a well estimated guide image, i.e., the estimated green channel that is dominant in the Bayer
CFA raw image. Since there is no dominant band in our considered PFA, we adapt their method by
using the intensity image S0 as a guide. It is well estimated from a simple 2× 2 bilinear kernel (see
Equation (9)). Each channel Îk is then recovered by following these successive steps:

1. It computes a tentative estimated channel Ǐk by applying the guided filter [51] and the guide
image to the sparse channel Ĩk. Note that such process modifies the raw values in the tentative
estimated channel Ǐk.

2. It computes the residuals defined by a difference between Ĩk and tentatively estimated channel Ǐk

at pixels in Sk.
3. It performs a bilinear interpolation of the residuals by using B3 filter.
4. The finally estimated channel Îk is given by the summation of the tentative estimated channel Ǐk

and the interpolated residuals.

3.3.2. Adaptive Residual Interpolation (ARI)

Monno et al. [40] improve the RI by applying a Laplacian filter on Ĩk and the guide before using
the guided filter. The parameters for RI and ARI implementations are h = 5, v = 5, and ε = 0.

3.4. Spectral Demosaicking Methods for a 2× 2 Pattern

Among SFA demosaicking methods, we exclude learning-based methods since they require
fully-defined images [30,52,53], and methods that assume sparsity of the raw data [54–56].
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3.4.1. Binary-Three Edge Sensing (BTES)

In our knowledge, BTES interpolation [41] is the first SFA demosaicking method applicable on
PFA raw images. This method improves the bilinear interpolation by considering weights inversely
proportional to the directional gradient. It follows two steps, in which only a subset of pixels are
estimated as shown in Figure 6. In a first step, a quarter of pixels are estimated using their four closest
neighbors weighted with respect to the diagonal gradients. In a second step, the rest of the pixels
( card(S)

2 ) are estimated using their four closest neighbors weighted with respect to horizontal (for an
horizontal neighbor) or vertical (for a vertical neighbor) gradients.

(a) Step 1 (b) Step 2

Figure 6. Neighborhood used for weight computation in any channel according to the step of
binary-three edge sensing (BTES) algorithm. Pixels in black are known or previously estimated,
whereas pixels in gray are the estimated pixels. Pixels in white are unknown and not estimated at the
current step.

As bilinear interpolation, this method is only based on spatial correlation since there is no
dominant channel. Other SFA demosaicking methods also consider the inter-channel correlation to
estimate the missing channels.

3.4.2. Spectral Difference (SD)

Brauers and Aach [42] estimate missing values of a channel using the inter-channel correlation.
They consider the available value in the raw image at the missing position, i.e., a pixel p of a channel
Ik is estimated using the information of channel IPFA(p) as follows:

1. It computes the sparse difference channel ∆̃k,PFA(p) between channel Ik and the channel ÎPFA(p)
B3

estimated by bilinear interpolation (using filter B3) at pixels in Sk.

2. It estimates the fully-defined difference channel ∆̂k,PFA(p)
B3

by bilinear interpolation.

3. The value of Îk
p is given by the sum between the difference channel ∆̂k,PFA(p)

B3
and the available

value at p in the raw image.

Mizutani et al. [57] further improve this method using an additional assumption: Spectrally close
channels are more correlated than distant ones. Since this assumption is not validated for polarization
images, we cannot use it in this context.

3.4.3. Vector Median (VM)

Wang et al. [43] consider that each pixel of an image as a vector with four dimensions. For each
pixel p, the method defines many pseudo-pixels by column vectors ([I0

p, I45
p , I90

p , I135
p ]T in our case)

according to the mosaic, and it affects the median pseudo-pixel to p. The pseudo-pixels at p represents
all the possible combinations of the four channels in a 5× 5 neighborhood around p. The four values
of a pseudo-pixel are taken from spatially connected pixels. To preserve value discontinuities and
color artifacts, authors also propose a post-processing in a 3D-spheric space.
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3.4.4. Discrete Wavelet Transform (DWT)

Wang et al. [44] extend the DWT-based CFA demosaicking to SFA demosaicking. By considering
an image as low-frequency (homogeneous areas) and high-frequency contents (edges), This approach
assumes two things: The low-frequency content is well estimated by bilinear interpolation, and the
high-frequency contents have to be determined more accurately and have to be the same in different
channels. The algorithm first estimates a fully-defined multispectral image ÎB3 by bilinear interpolation,
then applies five successive steps to each channel Îk

B3
as follows:

1. It decomposes Îk
B3

into K Down-Sampled (DS) images, so that each DS image is composed of
pixels in Sl , l ∈ {0, 45, 90, 135}. Note that one DS image is only composed of raw values.

2. It decomposes each DS image into spatial frequency sub-bands by DWT using Haar wavelet D2.
3. It replaces the spatial high-frequency sub-bands of all estimated DS images by those of the

corresponding DS images of the mid-spectrum channel, assuming this is the sharpest one. In PFA
images, there is no mid-spectrum channel, we therefore propose to use arbitrarily the Î90

b3
channel.

4. DS images are transformed by inverse DWT.
5. It recomposes the full-resolution channel Îk from the four transformed DS images.

3.4.5. Multi-Local Directional Interpolation (MLDI)

Shinoda et al. [45] combine BTES and SD approaches into the MLDI method that follows the
two steps of BTES. Each pixel is estimated using the difference planes, as in SD scheme. Moreover,
instead of simply estimating the fully-defined difference planes by bilinear interpolation, the authors
use directional gradients (following the step in BTES scheme), which improves the estimation.
Shinoda et al. [45] also propose a post-processing that updates each estimated channel by taking
into account the previous estimated values.

3.4.6. Pseudo-Panchromatic Image Difference (PPID)

The Pseudo-Panchromatic Image (PPI) is defined in each pixel as the average of all channels.
By assuming that PPI values of neighboring pixels are strongly correlated, Mihoubi et al. [11] estimate
the PPI from the PFA image by applying an averaging filter M proposed in [58]. Such filter estimates
the PPI as the average value of all channels in a given neighborhood of each pixel. For this purpose,
it takes all channels into account, while being as small as possible to avoid estimation errors. For our
considered PFA arrangement, the filter M is adapted as:

M =
1
16
·

1 2 1
2 4 2
1 2 1

 . (10)

In the case of strong spectral correlation (≥ 0.9), authors propose to restore the edges of the
estimated PPI using directional gradients. However, the condition is not validated for PFA images. The
estimated PPI is thereafter used in a PPI difference scheme that estimates each channel k as follows:

1. It computes the sparse difference channel ∆̃k,PPI between channel Ik and the PPI at pixels in Sk.
2. It estimates the fully-defined difference channel ∆̂k,PPI by weighted bilinear interpolation in

which the weights are inversely proportional to the gradients computed from the raw image.
3. The finally estimated channel Îk is the sum between the estimated PPI and the difference plane.

3.4.7. Pseudo-Panchromatic Image based Discrete Wavelet Transform (PPIDWT)

The PPI has similar information to the mid-spectrum channel, and it is better estimated.
Mihoubi et al. [11] therefore propose to replace the spatial high-frequency sub-bands by those of the
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PPI instead of I90
b3

channel in the DWT scheme.

4. Performance Evaluation of Demosaicking Algorithms

4.1. Experimental Setup

PFA image simulation is employed to assess the interpolation strategies. As for the correlation
study in Section 2, the polarimetric images from the database of Lapray et al. [31] was used
as references.

All methods of Table 3 were either re-coded (R), adapted to PFA (A), or provided by authors in
Matlab/ImageJ language software (P). They are further integrated into the framework presented in
Figure 4 in order to assess and compare the performances of demosaicking. Stokes descriptors are
then computed for both reference and estimated images, according to Equations (1)–(3). To avoid
precision errors during image conversions, all considered images and processing are using 32-bit float
data representation.

We consider the Peak Signal-to-Noise Ratio (PSNR) as quality metric. Between each couple of
reference (R) and estimated (E) channel/descriptor, the PSNR is computed as follows:

PSNR(R, E) = 10 log10

( (
maxp R

)2

MSE(R, E)

)
, (11)

where MSE(R, E) denotes the mean squared error between R and E. Because maxp R can differ from a
channel (or a descriptor) to another, Equation (11) takes into account this actual maximal level rather
than the theoretical one to avoid misleading PSNR values. In PSNR computation, as for the previous
correlation study, we exclude the 16 pixels in each of the four borders of the image to avoid inherent
border effect related to either registration or demosaicking processing.

4.2. Results and Discussion

Table 4 displays the PSNR values provided by the demosaicking methods on average over the
ten database scenes. Results show that among bilinear filters, B3 provides the best results for I0,
I45, I90, I135, S0, S1, and DOLP, while B4 slightly exceeds it for S2 and AOLP. Among PFA-oriented
methods, CB and CBSP generally provide the best results. Our proposition to adapt RI and ARI
CFA demosaicking methods to the PFA case (with S0 as guide) provides better results than classical
PFA-oriented methods. We remark that RI and ARI are very close together in the PSNR results. RI also
provides the best results among all tested methods regarding S2 parameter and DOLP descriptor.

For PFA methods, it is important to note that the output interpolated pixel is shifted by half pixel
when using bilinear kernels B1, B4, and B5, compared to other bilinear kernels B2, B3. The output pixel
is either aligned to the original interpolated pixel position center, or in the pixel boundaries. We did not
correct for this misalignment because applying an image translation by half pixel needs an additional
cubic or linear interpolation. So such a registration process cannot be used as a pre-processing for an
acceptable comparison methodology over the bilinear demosaicking methods. Thus, the results for B1,
B4, and B5 should be interpreted with care.

For tested SFA-oriented methods, the use of spectral correlation generally provides better
performance than simple bilinear interpolations. Moreover, methods based on gradient computation
(BTES, MLDI, and PPID) exhibit the best demosaicking performances. By considering the PPI as a
guide for demosaicking, PPID shows the best demosaicking performances among all methods for all
polarization channels, also for S0, S1 parameters and AOLP descriptors.

To visually compare the results provided by demosaicking methods on S0, AOLP, and DOLP
descriptors, we select a zoomed area from the “macbeth_enhancement” scene of the database. Among
demosaicking methods, we show the results of the most intuitive method (bilinear interpolation using
B3 filter), and the pseudo panchromatic image difference (PPID) that globally provides the best PSNR
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results. Figure 7 shows that there is no significant difference regarding the S0 parameter, except that
the two highlight dots are more apparent in PPID demosaicked image. Computing AOLP and DOLP
parameter from a bilinearly interpolated image generates many artifacts that are fairly reduced using
PPID demosaicking method.

Table 4. Demosaicking peak signal-to-noise ratio (PSNR) results, which are averaged over all scenes of
the testing database. The descriptors are computed using Equations (1)–(3). The best result for each
channel or descriptor is highlighted as bold.

I0 I45 I90 I135 S0 S1 S2 DOLP AOLP

PFA-oriented

B1 34.88 36.74 36.88 35.87 38.59 36.86 34.99 24.63 17.15
B2 37.18 39.44 39.54 38.56 40.77 39.53 37.96 27.11 18.35
B3 40.81 44.81 44.99 43.97 44.82 43.87 43.58 31.72 20.66
B4 36.87 39.08 39.25 38.19 38.51 43.65 43.80 31.41 20.88
B5 36.36 38.40 38.56 37.51 38.27 41.62 40.67 29.51 19.45
LS x x x x 42.10 41.66 40.20 25.74 18.03
A 40.58 44.75 44.87 43.60 44.61 43.61 43.25 31.69 20.67

CB 41.57 46.59 46.73 45.97 45.94 44.73 45.24 32.66 21.28
CBSP 41.64 47.04 47.15 46.58 46.12 44.82 45.69 32.57 21.28
ICPC 40.98 45.99 46.23 44.95 45.20 44.31 44.68 32.21 20.95

CFA-oriented (Adapted)

RI 42.16 47.06 47.56 47.11 46.17 45.81 46.94 33.77 21.69
ARI 41.77 46.93 47.39 46.93 45.78 45.52 46.74 33.51 21.60

SFA-oriented

BTES 40.85 45.46 45.82 44.30 44.65 44.60 44.88 32.67 21.33
SD 42.20 43.33 42.81 45.58 45.19 44.14 44.18 26.86 20.69
VM 37.81 39.85 40.05 39.08 40.85 40.70 39.22 28.41 18.77

DWT 40.25 41.02 40.57 41.79 43.08 42.09 41.62 19.85 20.34
MLDI 42.23 44.54 43.93 45.27 45.75 44.53 45.17 30.89 21.50
PPID 42.60 48.34 48.00 47.66 47.02 45.85 46.92 33.16 22.02

PPIDWT 40.62 44.60 43.77 43.45 44.97 43.01 42.61 28.72 20.65

Generally speaking, we found that demosaicking that are dedicated to PFA don’t necessary
give better PSNR result. Thus, it was not obvious that considering color and spectral demosaicking
techniques applied to PFA arrangement could be beneficial. The results highlights that this can benefit
the pre-processing of PFA.

However, we can express some reservations about the results obtained. First, we limited our study
on a relatively small database. Other polarization database in the literature [59] furbish only the Stokes
parameters and polarization descriptors, but no fully-defined reference image I = {Ik}k∈{0,45,90,135} are
available. Natural scene samples could also be beneficial for a complementary algorithm classification.
Secondly, the database used in this work was made with the same experimental conditions, i.e.,
constant angle/plan of incidence and a unique non-polarized illuminant. We think that supplementary
tests of the best identified algorithms in an extended database containing a better statistical distribution
of data could be valuable. Thirdly, the noise associated with reference images is not quantified, and is
slightly different from a PFA acquisition system. We thus disregarded recent denoising-demosaicking
algorithms that estimate sensor noise to improve the accuracy of demosaicking [60–63].

The arrangement of the filter array investigated consists in a 2 × 2 square periodic basic
pattern with no dominant band. Our goal was to stay general and to apply the evaluation on a
well-used pattern. But some other tentatives of designing extended pattern have been proposed in the
literature [64], for a better spatial distribution of linear polarization filters. An extensive evaluation of
best demosaicking algorithms on different arrangements would be considered in a future work.
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We found that the acquisition setup may induces correlation between some polarized channels
that could be exploited for demosaicking. Since these properties are data-dependent, we have chosen
to not use them in our study, despite that they are used in few SFA demosaicking methods.

We remarked that some algorithms need more computation time than others, without necessary
giving better results. No computational complexity consideration has been reported in this work.
We think that there is a lake of information about these aspects in the original articles. Moreover,
Matlab or ImageJ can not provide a consistent evaluation of the complexity of the selected algorithms,
e.g., for their potential ability to be parallelized in a hardware acceleration for real-time computing.
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Figure 7. Zoom in of the “macbeth_enhancement” scene from the database of Lapray et al. [31].
(a–c) Images resulting S0, angle of linear polarization (AOLP), and degree of linear polarization
(DOLP) processed using the full-resolution reference. (d–f) The bilinearely interpolation [34] (B3).
(g–i) The pseudo-panchromatic image difference (PPID) interpolation [11].

5. Conclusions

By considering the inter-channel correlation, CFA and SFA schemes aim to improve the spatial
reconstruction of channels from the information of other channels. Experiments on the only available
polarization image database have shown that such methods provides better results in term of PSNR
than PFA-oriented methods. More particularly, we proposed to adapt two CFA demosaicking
algorithms based on residual interpolation to the PFA case, and showed that they provide better
results than classical PFA-oriented methods. Moreover, the SFA PPID method provides the overall best
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results, and largely reduces visual artifacts in the reconstructed polarization descriptors in comparison
with bilinear method.

Correlation study has shown that the spectral band considered in the acquisition of polarization
channels has no influence on the correlation between polarization channels. The correlation results
from this study could be an input and provide assumptions for the design of new demosaicking
algorithms applied on cameras that mix spectral and polarization filters.

All algorithms were tested on a small database of images. As future work, we hope that an
extensive database of polarization and spectral images will be available soon in the research community.
Thus, further evaluations on more various materials and image statistics would validate more deeply
our conclusions. Furthermore, we believe that a real-time pipelined implementation of the PPID
method using GPU or FPGA needs to be investigated, that would be a valuable tool for machine
vision applications.
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