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Abstract: This paper presents the results of several studies concerning the effect of temperature on
digital cameras. Experiments were performed using three different camera models. The presented
results conclusively demonstrate that the typical camera design does not adequately take into account
the effect of temperature variation on the device’s performance. In this regard, a modified camera
design is proposed that exhibits a highly predictable behavior under varying ambient temperature
and facilitates thermal compensation. A novel temperature compensation method is also proposed.
This compensation model can be applied in almost every existing camera application, as it is
compatible with every camera calibration model. A two-dimensional (2D) and three-dimensional
(3D) application of the proposed compensation model is also described. The results of the application
of the proposed compensation approach are presented herein.
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1. Introduction

Digital cameras have a wide range of applications, including field detectors in three-dimensional
(3D) imaging. These indispensable devices are typically characterized by high-resolution images, ease
of integration and operation, high frame rate, a wide variety of available communication protocols,
and a compact design. In this paper, we will focus on the application of cameras as 3D-structured
light scanners [1]; but the proposed compensation method can also be easily applied to many other
imaging applications.

3D-structured light scanners are routinely used in many scientific and engineering disciplines,
including medicine [1–3] (e.g., gait analysis, skeletal spine curvature assessment, prosthetic mechanical
vibrations), industry [4] (e.g., quality control, reverse engineering, precision measurements for 3D
printing), or disaster management [5], in the archiving of cultural artifacts [6], and in many other
domains [1]. In almost all applications, 3D scanners are expected to acquire precise measurements,
with an error no greater than their declared uncertainty.

The appropriate level of precision is achieved through a careful calibration process that typically
consists of at least two steps: the camera calibration process and the phase calibration process [7].
Apart from 3D measurement systems that require recalibration before each set of measurements [8],
the employed measurement strategy often assumes that the camera is calibrated only once in
a laboratory environment [9–12], under stabilized environmental conditions (temperature, vibration,
humidity, etc.) and using specialized calibration artifacts. Once calibrated, camera-based 3D scanners
are capable of stable and accurate measurements, provided that the camera and projector parameters
and their relative positions remain constant. However, there is often a difference between the
environmental conditions during calibration and at the location where measurements are going
to be processed, e.g., measurements at archaeological excavations [13,14] or investigation scenes [4,5,9].
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The implicit assumption that a scanner that is calibrated under laboratory conditions can reliably
function in a completely different setting is often incorrect.

The effect of temperature on digital cameras and its adverse influence on captured images can also
be observed in other applications, not only in 3D-structured light scanners. Digital cameras are often
used in industrial applications to measure geometric features with high precision, up to 2 µm [15,16].
The temperature in the production hall can vary, and the temperature amplitude in a day–night cycle
can also be very high. Taking into account the differences in environmental conditions, temperature is
one of the most important factors that needs to be taken into account when considering the accuracy of
measurements performed with any camera-based system [5,9,12,13,17–21]. The solution of this issue
can be either software or hardware. The hardware solution is related to keeping the camera-lens system
in a stable ambient temperature, by enclosing it in some kind of thermal chamber. The disadvantages
of such an approach are as follows: the increased size of the camera lens system equipped with
a temperature control unit and the increased power consumption. The software solution is free from
these disadvantages.

Simulation of the effect of temperature on digital cameras and development of a valid temperature
compensation method have been described in several works. Smith and Cope in Ref. [12] described
the results of several studies on the effect of temperature on single lens reflex (SLR) camera. They
focused on the temperature impact on the camera calibration parameters, especially the principal
point position and the focal length. The results of their experiments show that the focal length can
change by up to 0.03 mm for a temperature increase ∆T equal to 30 ◦C. The principal point position
is also relatively strongly related to the temperature. Handel reported in Ref. [17–19] the outcome of
studies on camera warm-up phenomena and the effect of ambient temperature changes on camera
calibration. He has showed that the image drift can be up to several pixels even during the camera
warm up process [17]. Similar drift can be observed as the ambient temperature changes; even small
changes can cause significant changes in the captured frames [18,19]. Handel used a pinhole camera
model and camera calibration proposed by Zhang in Ref. [22]. He has also proposed a mathematical
model that can extend the camera calibration to include temperature compensation. His method for
compensation assumes that the camera-lens system can be treated as a rigid body and that the lens is
not affected by the temperature change. He also assumed that the values of the internal parameters
of the camera are constant. These assumptions are very strong and our studies (see Section 3) and
Refs. [20,23] show that in some cases they are not valid.

In Ref. [20], Podbreznik and Potočnik present their own method for modeling the effect of
temperature on camera calibration. They also used a pin hole camera model and the calibration
method proposed by Zhang [22]. They assumed that changing temperature does not affect the intrinsic
camera parameters and that only translation of the camera needs to be taken into account when
considering the effect of temperature. This approach is also inaccurate in some cases.

One of the most insightful studies on the effect of temperature on cameras is described in
Ref. [23]. The authors presented an extensive report from their studies and proposed their own method
for temperature compensation that is devoid of the previously mentioned issues. However, our
studies have shown that it is not enough for only camera’s intrinsic and extrinsic parameters to be
compensated. Experiments have shown that the observed pixel drift, caused by camera warm-up
or changes in ambient temperature, is also dependent on the relationship between the camera-lens
system and the gravitational force. The calculated compensation model for one global position of
the camera becomes very inaccurate when the camera’s global position is changed; this is caused by
changes in deformations resulting from the gravitational force. Another observed phenomenon is the
hysteresis observed in deformations of the camera-lens system (see Section 3). Our studies, conducted
at the Institute of Micromechanics and Photonics, convinced us that to obtain a valid and reliable
temperature compensation model, some camera models require obligatory design modifications.
Another motivation is that there is no existing method for constructing a compensation model using
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a camera calibration method different from that of Zhang [22] and using anything other than a pin-hole
camera model.

In this paper, we present the outcome of research concerning the effect of temperature on camera
calibration. We describe the results of preliminary studies that justify the need for changes in the
camera design so that the camera behavior becomes more predictable and can be described using
a mathematical model. We demonstrate such a modified camera design. We also propose a software
temperature compensation method for digital cameras. These studies are the continuation of research
introduced in Ref. [9], where we described the effect of temperature on the calibration accuracy of
a 3D-structured light scanner and proposed a method for its compensation.

2. The Test Stand

We conducted the previous research (described in Ref. [9]) with access to a professional thermal
chamber. The chamber had a working volume of 4 × 3 × 3 m and supported control of temperature
within a range of −40 ◦C to 70 ◦C ± 0.5 ◦C with a forced air flow within a range of 0.5 m/s to
4 m/s ± 0.01 m/s and a relative humidity of 10% to 90% ± 2%. Access to this chamber was limited;
the operating cost is very high and we do not require such a large operating volume. Hence, we decided
to build our own thermal chamber. For this purpose, we used a freezer, in which we have installed
a heater unit that can be controlled by a PID regulator with two degrees of freedom (one for heating
and one for cooling so that we can control the inner temperature over a wide range). As a heater,
we have used an electric air heater (power: 2000 W) that is controlled by a pulse-width modulation
(PWM) controller.

The designed thermal chamber has inner dimensions of 1200 × 90 × 80 mm and can regulate
the temperature over a range of −10 ◦C to + 70 ◦C (Figure 1). It is equipped with an electronically
driven inspection flap that is normally closed, but can be opened remotely. This allows us to conduct
measurements with the camera calibration artifact placed outside the thermal chamber—the artifact
is not exposed to varying ambient temperature. The chamber is also equipped with a passive air
dehumidifier to prevent the condensation of water vapor.

The test stand is designed so that the tested camera and the calibration artifact are mounted on
one mono-block of granite (with a very low temperature expansion coefficient α = ~5.0 × 10−6 [K−1]).
One side of the granite slab is located inside the thermal chamber, while the other side is outside
the chamber. Using Edlén’s formula [24] and Snell’s law for the designed geometry of the test stand,
the maximal value of error caused by the changes in air refraction index (the refraction of light at the
interface between two media of different refractive index: air with different temperature) is calculated
to be no greater than 4 µm for a temperature difference of ∆T = 30 ◦C. The value of this error is
negligible compared with errors observed during experiments (the distance between two neighboring
pixels on the image plane is equal to 114 µm on the calibration artifact plane, and the calculated error
is the maximum near the borders of each captured frame).

This construction allows us to treat the camera support (also made from granite) and the
calibration artifact as a rigid body, where the effect of deflections caused by changes in temperature is
negligible. There are five temperature sensors that are used in the test stand: one is attached to the inner
part of the granite base, another to the outer part, one to the calibration artifact, one to measure the air
temperature near the camera, and one to measure the temperature inside the laboratory. We decided
not to mount any temperature sensor on the camera because it could disturb the camera deflection
process caused by thermal expansion/shrinking. To detect the camera temperature, we used the
internal temperature camera sensor (if available) and thermal imaging camera FLIR E40 [25].
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Figure 1. The designed thermal chamber and the test stand, demonstrating the experimental setup.

To detect the image drift, we used the a calibration artifact: a 9 × 6 matrix of black circle markers
(the first marker is located on the bottom left) printed on a matte white foil stuck to a glass plate.
This artifact was previously validated on a coordinate measurement machine (CMM) equipped with
a Carl Zeiss Viscan Optical Header (Figure 2) so that the precise coordinates of the center of every
marker were determined.

(a) (b) (c)

Figure 2. The calibration artifact. (a) The validation process of the calibration artifact. (b) The RAW
image from the Carl Zeiss Viscan Optical Header representing the magnitude of one of the markers,
where the size of the measurement field is 4.8 × 6 mm and resolution is 6 µm. (c) The calibration image
captured by the tested camera, 6 × 9 circle markers with a diameter of 8 mm and nominal distances
along the X and Y axes of 30 mm.

The calibration artifact was attached to a rotary-linear table (linear table Standa 8MT160-300,
with a 300-mm travel range and resolution up to 0.31 µm [26], rotary table Standa 8MR151 with
resolution up to 0.6 arcmin [27]). This setup allows for conducting automatic camera calibration and
subsequent 3D validation of our compensation model. The camera was controlled by a PC computer.
If the camera supported an internal temperature sensor, each captured frame also had the temperature
information (as a separate file saved with the frame). To obtain the coordinates of the center of every
marker, we implemented a sub-pixel algorithm in MATLAB, that is resistant to thermal noise and can
provide valid results for a wide variety of ambient lighting and marker sizes [4,7,28].



Sensors 2018, 18, 3685 5 of 16

3. Preliminary Studies

3.1. Warm-Up Effect

The first experiment performed involved an observation of the camera warm-up process.
For this experiment, we used three different camera models, which included a CCD Pointgrey
Grasshopper2 camera with a 5.0 MP sensor size (GS2-GE-50S5M-C) [29] with a small lens from
Fujinon HF25SA-1B [30]; a CMOS Basler asA2500 [31] with a C125-1218-5M lens [31]; and a CCD
IDS UI-6280SE-M-GL Rev 3 IDSCamera with a high-quality Tamron M23FM12 lens [32]. We fixed
each camera and lens assembly to a granite support and initiated frame capture immediately after
the camera was switched on. The internal temperature of the thermal chamber was the same as the
ambient room temperature (24 ◦C), which remained constant throughout the experiment. The flap was
left open to allow for continuous frame capture, and the time interval between frames was set to 500 ms,
with the shutter set to 100 ms. We captured ~3600 frames and logged the sensor temperature for each
frame (only for the PtGrey camera; the Basler and IDS camera models do not support an internal
temperature sensor). The coordinates of each dot marker center were then extracted from each frame,
and this information was used to monitor the image drift. Simultaneously, the surface temperature of
the test camera was measured using the thermal imaging camera (we defined three measuring points
on the lens, the camera housing near the sensor, and the back of the camera). The experiment was
repeated with the camera rotated along its lens axis by 20◦ (after the camera cooled down). The results
of this experiment are presented in Figures 3–5.

(a) (b)

Figure 3. The warm-up effect of the tested camera. (a) The distribution of temperature on the surface
of the tested camera (PointGrey Grasshopper2) and lens (Fujinon HF25SA1B) observed with a thermal
imaging camera. (b) The temperature measured by the camera sensor as a function of time.

Based on the preliminary experimental results, we can conclude that the camera and lens cannot be
treat as a rigid body. The only source of heat during the experiment was the camera. The temperature
of the camera body increased by ~20 ◦C, while the temperature of lens increased by ~16 ◦C (Figure 3)
A mean drift of 0.3 pixels for the horizontal and 1.1 pixels for the vertical image coordinates was
observed. This drift is caused by the warm-up effect and is also dependent on the camera’s spatial
positioning. When the camera is oriented in space (a real-world equivalent scenario, is the tilting of
a 3D SL scanner to acquire images of an inaccessible feature), the trajectories of the observed drift
are affected. This phenomenon was observed in every tested camera model (see Figures 4 and 5).
We therefore conclude that the orientation of the camera is an important factor when considering the
effect of drift, in addition to and separate from the warm-up effect.
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(a) (b)

(c) (d)

Figure 4. The observed image drift for normal (a) and rotated (b) camera (Pointgrey Grasshopper 2)
positions. The background image is the first captured frame. Colored dots (blue for reference
temperature—the coolest) represent the next location of calculated marker centers. Each subsequent
coordinate was multiplied by a factor of ×100 for better visualization. Graphs (c,d) represent the
temperature drift, in normal (c) and rotated (d) camera positions, for marker no. 54.

(a) (b)

(c) (d)

Figure 5. The image drift observed for normal (a,c) and rotated (b,d) camera positions. The background
image is the first captured frame. Colored dots (blue for reference temperature—the coolest) represent
the next locations of calculated marker centers. Each next coordinate was multiplied ×100 times for
better visualization. Figures (a,b) present image drift for the IDS camera; (c,d) are the image drift for
the Basler camera.

3.2. Tests in Thermal Chamber

Additional tests were conducted that focused on describing the behavior of the camera-lens system
under changing ambient temperature. The setup was the same as in the previous experiment, except
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that the ambient temperature was systematically changed. The camera (Pointgrey Grasshopper 2 [29])
was turned on for ca. 45 min, and the experiment was initiated once thermal equilibrium was achieved.
One frame was captured at a time for each preset temperature inside the thermal chamber. The time
interval between each measurement was approximately 45 min. This ensured that the camera was
allowed to reach thermal equilibrium after each new temperature setting. The flap was closed during
the experiment, except during frame capture. The starting ambient temperature (24 ◦C) was used as
the reference temperature. Two measurement cycles were performed, as the ambient temperature was
increased and subsequently decreased. The calculated image drift is presented in Figure 6.

Figure 6. The image drift (multiplied ×100) observed during changes in the ambient temperature and
the temperature measured by the internal camera sensor.

The results indicate that the image drift caused by the camera’s (Pointgrey Grasshopper 2.0 [29])
deflections, during the increase and decrease in the ambient temperature, is heterogeneous.
The observed marker coordinates did not reach their final values relative to the reference temperature;
hence, hysteresis was observed. We repeated the experiment several times to attempt to characterize
the hysteresis, but the behavior was unpredictable. This response is likely due to relaxation of thermal
tensions that accumulated in various regions of the camera and lens. A similar lack of repeatability
was observed for the other camera models. As in the first experiment, the observed image drift was
unpredictable, making it difficult to fit a valid compensation model to this data.

4. Camera Modifications

Our preliminary studies indicate that the behavior of a camera that is exposed to varying
temperature is quite complex. In addition to changes to the internal camera parameters, deflections of
the camera body and lens are also observed. This situation is further complicated by the fact that the
system’s response is irregular and the observed hysteresis is unpredictable (Figure 6). To effectively
address these problems, the original camera was reassembled and modified. The modifications took
into account our conclusion that the crucial sources of concern were the lens C-mount and the support
of the sensor that was directly connected to the camera housing.

We therefore removed the entire camera housing, fixed the camera sensor housing between two
small granite columns, and detached the lens from the camera body. The lens was instead positioned
on two granite prisms and supported using an elastic mounting kit. This ensured that the camera
sensor had only two degrees of freedom-translation along the vertical sensor axis, and rotation around
the horizontal sensor axis. There were no direct mechanical connections between the camera and the
lens. The camera modifications are illustrated in Figure 7.

We decided to modify only the Pointgrey Grasshopper 2.0 [29] camera model, as it was the only
one equipped with an internal temperature sensor.
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(a) (b)

Figure 7. The original and modified camera unit. (a) The original camera unit. (b) A photo of
the modified camera. The lens is positioned on two granite prisms while the sensor is supported
between two granite columns and can only translate along the vertical sensor axis and rotate around
the horizontal sensor axis.

5. Experiment with Modified Camera Unit

The behavior of the modified camera unit was tested in a thermal chamber. After positioning the
unit in the chamber, the ambient temperature was slowly increased. The experiment was organized as
shown in Figure 8.

Figure 8. Workflow for the experiment with the modified camera unit. The temperature was increasing
gradually, starting from the reference temperature. The aim was to observe the presence of any
hysteresis associated with the camera’s thermal drift.
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The results of these experiments are presented in Figure 9. We observed more predictable behavior
of the camera during cooling and warming, and the hysteresis effect was not evident. Other tests
(warming up in normal and rotated camera positions) were performed, and the results indicated that
the orientation of the camera did not affect the observed image drift.

The final experiment involved grabbing frames in the extended range of the ambient temperature
(from 10 ◦C to 52 ◦C) to validate the compensation model.

Figure 9. Observed image drift (multiplied ×100) during changes in the ambient temperature; and the
measured temperature of the internal camera sensor of the modified camera unit. The hysteresis in the
image drift is no longer observed.

6. Compensation

6.1. The Compensation Model

In most 3D scanning applications that require camera calibration, a pinhole camera model and
Zhang’s method for determining intrinsic and extrinsic values [22] or a real camera model [7] is used.
The use of a pinhole camera model is justified because of its wide implementation (e.g., OpenCV camera
calibration algorithm [33], MATLAB Camera Calibration [34]) and reliable results [35]. For more precise
applications, a real camera model [7] may be implemented, as this facilitates lower measurement errors
(e.g., a low value of the maximal permissible error EMPE) [36]) for a 3D-structured light scanner [4,5].
In addressing the thermal issues associated with the camera, we attempted to develop a compensation
model that could be applied to a wide range of camera models and calibration approaches. As such,
a new approach was proposed that utilizes 2D images. Such a model is valid not only for the plane
with the calibration artifact, but also for the entire field of view of the camera (see Figure 10).

The independent variables utilized in the compensation model include the set of calculated
marker center coordinates Iunc and Junc for various ambient temperatures of the camera coordinate
system. The dependent variables are the calculated centers of the dot markers Ire f and Jre f for the
reference temperature. The output functions are an n-th degree polynomial Pn, which describes the
image drift caused by the varying ambient temperature. We used a polynomial fit to determine the
coefficients associated with the model [37].

Icompensated = Pn(Iuncompensated, Juncompensated, T)
Jcompensated = Pn(Iuncompensated, Juncompensated, T)
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Figure 10. The deviations ∆I0 and ∆J0 caused by temperature drift ∆T will cause a change in ∆Id, ∆Jd
for every position d of the calibration artifact. The compensation proposed for 2D images is valid for
the entire field of view of the camera.

6.2. Thermal Compensation

The best fitting results were observed using a fourth-degree polynomial. Figure 11b shows
the results when applying compensation to a series of frames that were grabbed over a range of
temperature values (not the same temperatures used for building the model). The histogram of the
deviation result is presented in Figure 11c. We determined that the values for the RMS error for the
I and J coordinates, before and after compensation, were δIunc = 0.191 px, δJunc = 0.576 px and
δIcom = 0.100 px, δJcom = 0.090 px, respectively, as indicated in Figure 11c.

As long as the proposed compensation method is prepared on 2D images and the compensation
model is based on only one calibration artifact position, we do not need to calculate camera calibration
error (e.g., reprojection error). To represent the compensation results in metric units, we recalculated
each dot marker center coordinate from pixels to millimeters (this can be performed because the real
dimensions of the calibration artifact are known; see Section 2 and Figure 2). For each grabbed frame at
each temperature, the deviations between each marker coordinates and the same marker coordinates at
the reference temperature were calculated. Then, for each grabbed frame, the RMS error was estimated.
In Figure 12, the RMS error as a function of temperature is presented.
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(a) (b)

(c)

Figure 11. Compensation results. (a) Calculated thermal drift (multiplied ×100) for the marker centers
used to prepare the compensation model. (b) Result of compensation and (c) histogram of deviation of
coordinates, before and after compensation (fourth-degree polynomial).

Figure 12. The RMS error calculated for marker center deviations before and after compensation.

The final test involved performing a camera calibration at a reference temperature and determining
whether or not the proposed mathematical model could effectively compensate for the effect of
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temperature. Using precise linear and rotary tables [26,27], we positioned a calibration artifact in
34 different positions and collected data for calibration as shown in Figure 13. A real camera model
and the camera calibration method described in Ref. [7] were utilized. To evaluate the quality of the
compensation model, an additional four frames were grabbed at 12 different temperatures. For each
temperature, we positioned the calibration artifact at four different validation positions V0 to V3
by shifting and rotating the artifact, as shown in Figure 14, using a previously documented linear
and rotary table [26,27]. We were careful to verify the repeatability of the artifact’s position for each
temperature. The camera calibration performed at the reference temperature was used to calculate the
exact transformation between each artifact positions V0 to V3, for each temperature. A comparison of
the transformations obtained before and after compensation facilitated an evaluation of the efficacy of
the proposed compensation model.

Figure 13. Positions of the calibration artifact used for camera calibration. A real camera model was
used, and the calibration method is described in Ref. [7].

Figure 14. Positions of calibration artifact V0–V3 used for validation of the proposed thermal compensation model.

7. Results

The results obtained using the compensation model are presented in Figure 15 and Table 1.
The presented graphs illustrate the average deviation (absolute values) of translation along the X, Y,
and Z axes, for artifact positions from V0 to V3 (we present only the translation because the effect of
temperature on rotation was negligible). These values were calculated using the actual temperature,
relative to the calculated position for the reference temperature, both before and after compensation.
In Table 1, the calculated and averaged values of this deviation are presented. Results are presented
for only two different temperatures, as additional data would not present any new information.
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The average translation deviation during the investigated temperature range, before and after
compensation, was calculated as follows:

• along the X axis: before compensation 0.0177 mm, after compensation 0.0124 mm,
• along the Y axis: before compensation 0.1343 mm, after compensation 0.0254 mm,
• along the Z axis: before compensation 0.1420 mm, after compensation 0.0287 mm.

Figure 15. Average deviation of translations of artifact position, calculated for 11 different temperature
values, relative to the artifact position calculated at the reference temperature along the X, Y, and Z axes,
before (blue color) and after (orange color) compensation.

Table 1. Translation deviation for calibration artifact positions V0–V3 before and after compensation.

Translation Deviation [mm]

Temp. Pos.
Before Compensation After Compensation

X Y Z X Y Z

55.55

V0 0.0171 0.0289 0.1174 0.0093 −0.0034 0.0354
V1 −0.0093 0.0193 0.2016 −0.0139 −0.0081 0.0341
V2 0.0000 0.0537 0.0174 −0.0041 0.0312 −0.0761
V3 0.0157 0.0341 0.0481 0.0092 0.0150 −0.0244

aver (abs) 0.0105 0.0340 0.0961 0.0091 0.0144 0.0425

67.05

V0 −0.0366 −0.1943 0.1911 0.0026 −0.0058 −0.0156
V1 −0.0129 −0.2312 0.3267 0.0327 −0.0121 0.1198
V2 −0.0352 −0.2235 0.2352 0.0228 0.0592 0.0187
V3 −0.0344 −0.2015 0.1775 0.0234 0.0873 −0.0455

aver (abs) 0.0298 0.2126 0.2326 0.0204 0.0411 0.0499
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8. Discussion and Conclusions

The results presented in Figure 15 and Table 1 demonstrate that the temperature drifts along
the Y and Z axes are dominant. This phenomenon is related to the manner in which the camera
modifications were performed, given that the camera sensor was fixed between two granite columns.
This significantly limited the range of movement of the camera sensor resulting from variations in the
ambient temperature. The most likely directions of movement were translation along the sensor’s
vertical axis and rotation along its horizontal axis. We believe that this is the reason why the drift
along the Y axis is significantly greater than that along the X axis. The calculated artifact deviation of
position for the Z axis is most likely caused by a combination of effects, including the translation of the
sensor along its vertical axis, rotation along its horizontal axis, and stretching/shrinking along the
sensor’s horizontal axis. The stretching and shrinking was the result of geometrical imperfections of
the granite columns.

It is important to note that the proposed compensation model significantly reduced the calculated
artifact transformation deviation. The 2D compensation results shown in Figure 15 and Table 1 indicate
that the proposed method can improve camera calibration and can also be used for 3D measurements.
Improvements of 29%, 81% and 80% were observed along the X, Y, and Z directions, respectively.
To better understand the compensation result, we can consider an object placed in front of a camera,
at a distance of 1 m. The camera-lens system is selected such that 1 pixel is equal to 0.1 mm. When the
temperature increases by +5 ◦C, the calculated object positions will be affected by thermal error with
a value of approximately 0.09 mm. However, when the ambient temperature is increased by +20 ◦C,
the induced thermal error can be as high as 0.34 mm. When the compensation model was applied,
the calculated errors were no greater than 0.05 mm in both cases.

It is clear from previously published results that the impact of temperature on camera calibration
is a very complex issue. In particular, the response of a standard camera unit that is exposed to varying
ambient temperature is unpredictable. There is a need for modification of the camera unit design
to address this problem. A new design should improve the device’s stability and repeatability and
significantly minimize temperature-induced drift in acquired images. We have proposed a method
for performing such modifications. Our results indicate that the images acquired from the modified
camera are much more repeatable when the camera is exposed to varying ambient temperatures, and
in general, it is possible to perform thermal compensation. Our camera design is only a prototype,
built for laboratory experiments. It is difficult to imagine the use of such a camera unit in a real
measurement device. In a real application, more appropriate materials like invar [38,39], Cer-Vit [40,41],
or zerodur [41] should be considered.

Our approach to thermal compensation is based on the acquisition of 2D images; however,
we have shown that the method is valid for 3D space. Previous compensation methods [19,20,23]
are position dependent and are therefore ineffective if the camera’s position changes during or
after the calibration process. In our approach, the final result is valid for every camera orientation.
Thus, the presented compensation method is a significant improvement over many of the contemporary
camera calibration techniques.
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9. Adamczyk, M.; Kamiński, M.; Sitnik, R.; Bogan, A.; Karaszewski, M. Effect of temperature on calibration
quality of structured-light three-dimensional scanners. Appl. Opt. 2014, 53, 5154. [CrossRef] [PubMed]

10. Lichti, D.; Skaloud, J.; Schaer, P. On the calibration strategy of medium format cameras for direct
georeferencing. In Proceedings of the International Calibration and Orientation Workshop EuroCOW,
Castelldefels, Spain, 30 January–1 February 2008; pp. 1–9.

11. Shortis, M.; Robson, S.; Beyer, H. Principal point behaviour and calibration parameter models for Kodak
DCS cameras. Photogramm. Rec. 1998, 16, 165–186. [CrossRef]

12. Smith, M.J.; Cope, E. The Effect of Temperature Variation on Single Lens Reflex Digital Camera Calibration
Parameters. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 554–559.

13. McPherron, S.; Gernat, T.; Hublin, J.J. Structured light scanning for high-resolution documentation of in situ
archaeological finds. J. Archaeol. Sci. 2009, 36, 19–24. [CrossRef]

14. Roman, C.; Inglis, G.; Rutter, J. Application of structured light imaging for high resolution mapping of
underwater archaeological sites. In Proceedings of the OCEANS10 IEEE SYDNEY, Sydney, Australia,
24–27 May 2010; pp. 1–9.

15. Cai, Z.; Qin, H.; Liu, S.; Han, J. An Economical High Precision Machine Vision System and Its Performance
Test Using Ceramic Substrate. In Recent Developments in Mechatronics and Intelligent Robotics; Deng, K., Yu, Z.,
Patnaik, S., Wang, J., Eds.; Springer International Publishing: Heidelberg, Germany, 2018; pp. 985–993.

16. Lenty, B.; Kwiek, P.; Sioma, A. Quality control automation of electric cables using machine vision.
In Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High-Energy
Physics Experiments 2018, Wilga, Poland, 26 May–4 June 2018; Volume 10808.

17. Handel, H. Analyzing the influences of camera warm-up effects on image acquisition. In Computer Vision—
ACCV 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 258–268.

18. Handel, H. Analyzing the influence of camera temperature on the image acquisition process. In Proceedings
of the Three-Dimensional Image Capture and Applications 2008, San Jose, CA, USA, 27–31 January 2008;
Volume 6805, pp. 1–8.

19. Handel, H. Compensation of thermal errors in vision based measurement systems using a system
identification approach. In Proceedings of the 2008 9th International Conference on Signal Processing,
Beijing, China, 26–29 October 2008; pp. 1329–1333.

http://dx.doi.org/10.1016/j.optlaseng.2009.09.001
http://dx.doi.org/10.1117/1.JBO.18.5.056014
http://www.ncbi.nlm.nih.gov/pubmed/23722453
http://dx.doi.org/10.1117/1.JBO.17.5.056015
http://www.ncbi.nlm.nih.gov/pubmed/22612138
http://dx.doi.org/10.2478/v10178-010-0011-y
http://dx.doi.org/10.1111/1556-4029.13382
http://dx.doi.org/10.1117/12.2020447
http://dx.doi.org/10.1364/AO.53.005154
http://www.ncbi.nlm.nih.gov/pubmed/25320924
http://dx.doi.org/10.1111/0031-868X.00119
http://dx.doi.org/10.1016/j.jas.2008.06.028


Sensors 2018, 18, 3685 16 of 16
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