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Abstract: Land degradation is a widespread environmental issue and an important factor in limiting
sustainability. In this study, we aimed to improve the accuracy of monitoring human-induced
land degradation by using phenological signal detection and residual trend analysis (RESTREND).
We proposed an improved model for assessing land degradation named phenology-based RESTREND
(P-RESTREND). This method quantifies the influence of precipitation on normalized difference
vegetation index (NDVI) variation by using the bivariate linear regression between NDVI and
precipitation in pre-growing season and growing season. The performances of RESTREND and
P-RESTREND for discriminating land degradation caused by climate and human activities were
compared based on vegetation-precipitation relationship. The test area is in Western Songnen Plain,
Northeast China. It is a typical region with a large area of degraded drylands. The MODIS 8-day
composite reflectance product and daily precipitation data during 2000–2015 were used. Our results
showed that P-RESTREND was more effective in distinguishing different drivers of land degradation
than the RESTREND. Degraded areas in the Songnen grasslands can be effectively detected by
P-RESTREND. Therefore, this modified model can be regarded as a practical method for assessing
human-induced land degradation.
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1. Introduction

Land degradation can be recognized as a continuing loss of ecosystem service due to loss of soil
fertility, loss of vegetation cover and productivity, soil erosion, change in plant species, and other
processes of environmental evolution [1]. The United Nations Convention to Combat Desertification
(UNCCD) identified that land degradation has become one of the most pressing environmental
problems in many countries [2]. The rate and extent of land degradation has both reached an
astonishing level [3]. Many studies have indicated that human activities are the key drivers of
land degradation [4,5]. For example, urbanization is one of the most widespread anthropogenic
causes of land degradation in recent years [6,7]. Rapid changes in land use and land cover as well
as the increased ecosystematic degradation were caused by the increasing rate of urbanization and
increasing population in developing cities [8]. Considerable attention is currently being directed
towards monitoring changes in the present state of degradation [9]. Such studies are important because
the spatial characteristics of land degradation are useful for understanding the various impacts of
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human activities on the ecological condition. On the other hand, the health of human society is
also influenced by land degradation. For example, approximately 2 billion people live in degraded
regions [10]. Meanwhile, the low productivity in these regions shows the terrible impacts in politics
and economics [11]. A target termed “zero net land degradation” was proposed by the UN Conference
on Sustainable Development, and accurate quantification of land degradation has been designated as
a high priority.

Assessing dryland degradation is problematic because dryland ecosystems generally go through
high interannual variability in precipitation [12,13]. The climate variability results in great changes
in interannual vegetation productivity, which affects the judgment of land degradation [14].
Field observations have been considered as an accurate means of identifying degradation for a
long time [13,15]. An unfortunate reality is that the ground observation is scarce throughout the
world because it is costly. Therefore, existing studies generally cover a small spatial scale [16],
a short time span, or only measure parameters for usability in small landscapes rather than a whole
ecosystem [17–20]. However, land degradation generally occurs progressively over a long time and
encompasses a large area. Hence, remote sensing provides a unique opportunity for evaluating
long-term land degradation over large areas.

Serious degradation generally lead to a long-lasting reduction in vegetation coverage and
productivity [21]. Therefore, trend in vegetation productivity is regarded as an effective indicator of
land degradation [22]. Vegetation indices based on reflectance of the near-infrared and visible spectra,
such as the normalized difference vegetation index (NDVI), have been shown to be highly correlated
with vegetation productivity [23,24]. Many studies on land degradation assessment are on the basis of
the NDVI trend calculated from long-term satellite data [25–30].

Variation in the original NDVI cannot reflect human-induced land degradation directly because
of the impact of precipitation. Hence, the major challenge to monitoring land degradation is to
differentiate the impact of precipitation and human activities [31,32]. During the past several decades,
many studies on this problem have been conducted. These studies can be divided into two major
types: rain-use efficiency (RUE) and residual trend analysis (RESTREND). RUE is the quotient value of
net primary production (NPP) to its corresponding precipitation [33]. Prince et al. (1998) investigated
the RUE in Sahel from 1982–1994 and pointed out that decreased RUE referred to land degradation
induced by reduced vegetation coverage and increased overland flow. Nevertheless, whether RUE is
an effective indicator of land degradation is still disputable [34]. RESTREND was first proposed by
Evans and Geerken in 2004. This method was based on a key hypothesis: NDVI is strongly correlated
with precipitation in arid and semi-arid regions [35–37]. It has become the most widely used method
to detect human-induced land degradation [38–40]. RESTREND first performs a linear regression
between the accumulated NDVI and precipitation in the growing season. Next, the difference
between the estimated NDVI value and the observed NDVI value is calculated, which is termed
vegetation–precipitation relationship (VPR) residual. Finally, the VPR residual trend is estimated by
using linear trend analysis. A negative trend in residual indicates land degradation [21,39]. RESTREND
has been applied in many regions with different climate and landscapes [41–43].

Despite the good performance in land degradation monitoring, RESTREND has several
limitations [21]. Particularly, the difference of vegetation growing season has not been paid sufficient
attention. It is well known that vegetation growing season differs in time and location. However,
previous studies have usually determined the growing season on the basis of priori knowledge [21,41],
which is generally imprecise. On the other hand, the influence of precipitation before the growing
season on NDVI is also not considered. This may bring in uncertainties because rainfall has lagging
influence on vegetation growth. Vegetation indices time series have been widely used to determine the
start and end of the growing season [44–46]. Using phenological information from vegetation indices
time series is helpful to solve these limitations of RESTREND.

In this study, we developed an improved RESTREND method by using phenological information
to enhance the accuracy of detecting human-induced land degradation. A modified model named



Sensors 2018, 18, 3676 3 of 16

phenology-based RESTREND (P-RESTREND) was introduced here. We compared the P-RESTREND
with RESTREND for detecting human-induced land degradation. Finally, we assessed land degradation/
recovery in the Songnen grasslands using the P-RESTREND model.

2. Materials and Methods

2.1. Study Area

We selected the Western Songnen Plain as the study area (Figure 1a). This area is under a semi-arid
temperate continental monsoon climate. The main soil type is chernozem. The land-cover types are
mainly grasslands and farmlands. The average annual precipitation ranges from 300 to 450 mm,
of which over 70% is concentrated from June to September. We acquired the spatial distribution of
grassland in the study area (Figure 1b) from MODIS land cover type product (MCD12Q1, with a 500 m
spatial resolution). The available MODIS C5 MCD12Q1 data are from 2001 to 2013. The International
Geosphere Biosphere Programme (IGBP) classification scheme was selected. Considering the influence
of land cover change, only grasslands unchanged during 2001–2013 were retained. Large areas of
grasslands are degraded because of unreasonable usage, restricting the sustainable development of
this area. Figure 1c shows a photograph of the degraded grasslands in the study area.
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Figure 1. Geographical conditions of the study area. (a) Location of the Songnen grasslands;
(b) land-cover types over the study area in 2013 from the MCD12Q1 product; (c) a photograph of
the degraded grasslands in the study area.

2.2. Datasets

2.2.1. MODIS Reflectance Data

The NDVI and NDWI time series were derived from the MODIS MOD09A1 surface reflectance
product. MOD09A1 is an 8-day composite surface reflectance data, with a spatial resolution of 500 m.
Each MOD09A1 pixel contains the best possible observation during an 8-day period as selected on the
basis of high observational coverage, low view angle, absence of cloud, and aerosol loading. These data
were already corrected for the influence of atmospheric gases and aerosols. We downloaded the Terra
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MOD09A1 data from 18 February 2000 to 30 December 2015 in the study area. NDVI and NDWI were
calculated as follows:

NDWI =
(ρb2 − ρb6)

(ρb2 + ρb6)
(1)

NDVI =
(ρb1 − ρb2)

(ρb1 + ρb2)
(2)

where ρb1, ρb2, and ρb6 represent the reflectance of Band 1 (620–670 nm), Band 2 (841–876 nm),
and Band 6 (1628–1652 nm) of MODIS data, respectively. In fact, MODIS also includes another two
bands of water absorption: Band 5 and Band 7. Band 6 is the most commonly used band for calculating
NDWI from MODIS.

2.2.2. Precipitation Data

The daily precipitation data with 0.5◦ spatial resolution from 2000 to 2015 were downloaded from
the Meteorological Data Center of the China Meteorological Administration (http://data.cma.cn/).
These data were produced from thin plate spline (TPS) by using digital elevation model (DEM) data
(GTOPO30) and relevant meteorological data. We converted the daily precipitation data to a 10-day
temporal resolution. Considering the difference in spatial resolution between MODIS vegetation
indices and the precipitation data, we resampled the precipitation data to a 500 m spatial resolution.

2.3. Methods

Figure 2 shows the framework of the proposed method. The method mainly includes two
parts: (1) quantification of the relationship between precipitation and NDVI by using phenological
information; (2) analysis of the trend in VPR residual for detecting human-induced land degradation.

2.3.1. Extraction of Growing Season Using NDWI Time Series

The curve of NDVI can be affected by the seasonal snow cover (generally from November
to April) in the study area. On the other hand, vegetation growth status can be characterized by
vegetation water content. Therefore, we selected NDWI time series to detect phenological information
in our model. NDWI, which was proposed by Gao (1996), was based on near infrared (NIR) and
short-wave infrared (SWIR) bands. It is an effective index for detecting vegetation water content [47].
In addition, the NDWI was demonstrated to be more efficient in distinguishing snowmelt from
vegetation growth. For example, it is more suitable for detecting the phenological information than
NDVI, which is seriously affected by snow cover in boreal regions [48]. We reconstructed the NDWI
time series by using stationary wavelet transform. The quality flag in MOD09A1 was used to reduce
the influences of cloud and cloud shadow. If the flag of an observation in the NDWI time series was
cloud or cloud shadow, we replaced the corresponding NDWI value by linear interpolation from
the nearest observations. We then performed the stationary wavelet transform to smooth the time
series. The decomposition level was three, and the mother wavelet was Daubechies 3. The two highest
frequency signals were regarded as noise [49]. We obtained the daily NDWI time series using cubic
spline interpolation after the aforementioned processes (Figure 3a).

Considering the growth of vegetation in semi-arid ecosystem is closely related to the rainfall,
the thresholds method was adopted for detecting phenology in this research. The minimum value
during spring (NDWImis), the minimum value during autumn (NDWImia), and the maximum value
(NDWIma) between NDWImis and NDWImia were detected first. The NDWImis and NDWIma values
were used to determine the amplitude of spring growth process. The NDWIma and NDWImis were
used to determine the amplitude of autumn decay process in NDWI time series. The timing of SOS
(start of the growing season) was defined as follows:

http://data.cma.cn/
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TSOS = max
(
(tε[NDWImis, NDWIma])

∣∣∣ (NDWI(t) < NDWImis + ε
))

(3)

where ε is the threshold, and TSOS is the timing of SOS. We defined the date that equals to 10%
amplitude of the spring growth process in the modeled NDWI time series as SOS. It has been widely
used for the detection of phenology [50,51]. The EOS (end of the growing season) was detected by
using the 10% amplitude between NDWIma and NDWImia (Figure 3b).Sensors 2018, 18, x FOR PEER REVIEW  5 of 15 
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2.3.2. Phenology-Based RESTREND (P-RESTREND) for Assessing Land Degradation

Accumulated NDVI over the growing season (NDVIacc) is a typical indicator of vegetation
productivity [29,52,53]. P-RESTREND determined land degradation by analyzing the variation in
NDVI. As a pixel-based method, we first modeled the NDVI time series by using the same process as
NDWI, and calculated NDVIacc and accumulated precipitation over the corresponding growing season.
P-RESTREND is based on a hypothesis: the change in NDVI is not only influenced by the precipitation
over the growing season, but also influenced by the precipitation before SOS. We used the precipitation
occurred over the month before SOS (hereafter known as precipitation over pre-growing season);
a binary linear regression was used to evaluate the vegetation–precipitation relationship (VPR):

NDVIaccp = αPgreen + βPpgreen + γ (4)

where NDVIaccp is the predicted NDVIacc; Pgreen and Ppgreen is the accumulated precipitation over
the growing season and pre-growing season, respectively; α and β are the weight of Pgreen and
Ppgreen, respectively, and γ is the intercept. The difference between the observed NDVI and the NDVI
estimated from VPR was referred to as the VPR residual. The residual trend was then calculated
by ordinary least-squares (OLS) linear regression between the VPR residual and time, as shown in
Figure 4. The trend in VPR residual can be regarded as independent to precipitation [39]. We then
evaluated the significance of residual trend by hypothesis testing, and the significant trend indicates
the process of land degradation or recovery.
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2.3.3. Comparison of RESTREND and P-RESTREND

VPR was used to assess the performances of RESTREND and P-RESTREND in differentiating
precipitation- and human-induced land degradation. Three trials of the VPR test were conducted
as follows:

1. The standard RESTREND was performed. Considering the geographical and climatic conditions
of the study area, we determined the period May–September as grassland growing season.

2. Considering the different phenological behaviors of different pixels, we first extracted the growing
season by the thresholds method and then performed the RESTREND method according to
different phenological information pixel by pixel.

3. The P-RESTREND method was performed.

We then compared the significance of the VPR of the three trials to verify the performance of
P-RESTREND in removing of the precipitation influence on NDVI.
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In addition, the degraded areas in Songnen grassland were detected by RESTREND and
P-RESTREND. The pixel that presents a significant land degradation trend in P-RESTREND but
did not show significant degradation in the standard RESTREND was extracted. These pixels are
hereafter known as missed pixels. We used the high-resolution remote sensing images obtained from
Google earth to observe land surface changes by artificial interpretation. We selected three images for
a missed pixel with a time interval of five years starting from 2000. If the image is missing in a specific
year, we chose the nearest year to replace it. If the missed pixels are interpreted as degraded areas,
it suggests that the P-RESTREND was more effective than the standard RESTREND.

3. Results

3.1. The Difference of Grassland Phenology across the Study Area

Approximately 30,000 pixels from MODIS data were analyzed in the study area to test the model.
We averaged the pixel information over the study area and analyzed the interannual variability in
SOS and EOS. As shown in Figure 5a, the fluctuation of SOS is significant and erratic. In particular,
the biggest difference of SOS is over 30 days between 2002 and 2004. Simultaneously, the EOS also
shows huge differences among years (Figure 5b).
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Figure 5. Mean values of interannual variability in (a) the start of the growing season (SOS) and (b) the
end of the growing season (EOS) in the whole study area.

Generally, for the mean date of SOS and EOS during 2000–2015, different regions show great
differences. Spatial distributions of the mean dates of SOS and EOS are shown in Figure 6. An earlier
SOS often occurs in the north-central regions rather than other regions in the study area (Figure 6a).
The central region in the study area often presents a later EOS. Regarding the mean length of the
green season (LGS), we found that the LGS in the western grassland is much shorter than that in
other regions. These results indicate the necessity of using phenological information to define the
growing season.

Though the field observation data is lacking in the Songnen grassland, a number of studies exists
that can be compared to the results of this study [54,55]. The results of this study showed that the
mean SOS was primarily between DOY 105 to 150. The EOS in our study was mainly between DOY
275 to 310. By comparison, we found that the phenological information we extracted was similar to
existing studies. For example, Liu et al. showed that the average EOS was mainly from DOY 270 to
310 [54]; Zhao et al. showed that the mean SOS was mainly from DOY 110 to 150 [55].
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3.2. Comparison of VPR Determined by Three Trials

Pixel information was averaged to compare the VPR. Table 1 suggests that P-RESTREND had
better performance in differentiating precipitation and human-induced drivers of land degradation,
with the mean value of R2 reaching 0.45. It met our expectations, and we also found that the second
trial’s R2 (0.35) is slightly lower than the first trial’s R2 (0.38) in Table 1.

Table 1. VPR of the three trials at the overall level.

Trials Type of Method NDVI Period Precipitation Period R2

1 All study area May–September May–September 0.38
2 Pixel-by-pixel Growing season Growing season 0.35
3 Pixel-by-pixel Growing season Growing season and pre-growing season 0.45

RESTREND has a criterion of application on a pixel: the VPR should be significant and strong.
Wessels et al. (2012) suggest a value of R2 > 0.3 [21]. The frequency distributions of R2 are shown
in Figure 7. As expected, approximately 75% of the pixels met the criteria using the P-RESTREND,
which was the highest proportion among the three trials. The proportions of pixels meeting the criteria
of the RESTREND and the second trial were 61% and 58%, respectively.
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In addition, we compared the VPR based on each individual pixel for three trials. The performance
of P-RESTREND was also better than RESTREND (Figure 8). For most pixels, the R2 of P-RESTREND
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was higher than that of the other two trials (Figure 8b,c). The significance of VPR is similar between
RESTREND and the second trial, which can also be observed in Figure 8a. The results indicated that the
P-RESTREND, compared to the standard RESTREND method, had greater accuracy in discrimination
of land degradation caused by climate and human activities.Sensors 2018, 18, x FOR PEER REVIEW  9 of 15 

 

 
Figure 8. Pixel-by-pixel comparison of R2 between (a) RESTREND and the second method, (b) 
RESTREND and P-RESTREND, and (c) the second method and P-RESTREND. 

3.3. Land Degradation in Songnen Grasslands Detected by Different Methods 

3.3.1. Land Degradation Detected by P-RESTREND and RESTREND 

We categorized the pixels into seven classes by calculating the trend of the VPR residual and its 
significance. For the regions where the productivity increased (presenting land recovery) LR1 (P < 
0.01), LR2 (0.01< P < 0.05), and LR3 (0.05 < P < 0.1); for the areas where the productivity decreased 
(presenting land degradation) LD1 (P < 0.01), LD2 (0.01 < P < 0.05), and LD3 (0.05 < P < 0.1). We 
defined the last category as no significant changes in productivity NSC (∝ > 0.1). Figure 9 shows the 
significance and direction in grassland productivity in Songnen Plain between 2000 and 2015 by using 
P-RESTREND and RESTREND. According to statistics, a total of 29.81% pixels showed a significant 
trend with 2.44% were negative and 27.37% were positive when we adopted P-RESTREND in the 
study area; similarly, there are 1.89% of the pixels showed the significant land degradation trend, and 
25.68% of the pixels showed the significant land recovery trend while using the RESTREND method 
(Table 2). Most pixels that presented no significant changes in productivity can be observed in both 
methods.  

Table 2. Percentage of pixels among the seven different categories detected by P-RESRTREND  
and RESTREND. 

Method LR1 LR2 LR3 LD1 LD2 LD3 NSC 
P-RESREND 8.30 11.26 7.81 0.34 1.08 1.02 70.19 
RESTREND 6.43 12.52 6.73 0.26 0.87 0.76 72.43 

As shown in Figure 9, no matter which method we adopt, positive trends are widespread 
throughout the study area, particularly apparent in the eastern grassland and southern grassland. 
Negative changes are generally concentrated in some areas near the latitude of 46 degrees, in the 
central of our study area. In addition, the grassland located in southeastern area of the study area had 
small-scale degradation, which can be observed in Figure 9. 

Figure 8. Pixel-by-pixel comparison of R2 between (a) RESTREND and the second method,
(b) RESTREND and P-RESTREND, and (c) the second method and P-RESTREND.

3.3. Land Degradation in Songnen Grasslands Detected by Different Methods

3.3.1. Land Degradation Detected by P-RESTREND and RESTREND

We categorized the pixels into seven classes by calculating the trend of the VPR residual and its
significance. For the regions where the productivity increased (presenting land recovery) LR1 (P < 0.01),
LR2 (0.01< P < 0.05), and LR3 (0.05 < P < 0.1); for the areas where the productivity decreased (presenting
land degradation) LD1 (P < 0.01), LD2 (0.01 < P < 0.05), and LD3 (0.05 < P < 0.1). We defined the last
category as no significant changes in productivity NSC (∝ > 0.1). Figure 9 shows the significance and
direction in grassland productivity in Songnen Plain between 2000 and 2015 by using P-RESTREND
and RESTREND. According to statistics, a total of 29.81% pixels showed a significant trend with 2.44%
were negative and 27.37% were positive when we adopted P-RESTREND in the study area; similarly,
there are 1.89% of the pixels showed the significant land degradation trend, and 25.68% of the pixels
showed the significant land recovery trend while using the RESTREND method (Table 2). Most pixels
that presented no significant changes in productivity can be observed in both methods.

Table 2. Percentage of pixels among the seven different categories detected by P-RESRTREND
and RESTREND.

Method LR1 LR2 LR3 LD1 LD2 LD3 NSC

P-RESREND 8.30 11.26 7.81 0.34 1.08 1.02 70.19
RESTREND 6.43 12.52 6.73 0.26 0.87 0.76 72.43

As shown in Figure 9, no matter which method we adopt, positive trends are widespread
throughout the study area, particularly apparent in the eastern grassland and southern grassland.
Negative changes are generally concentrated in some areas near the latitude of 46 degrees, in the
central of our study area. In addition, the grassland located in southeastern area of the study area had
small-scale degradation, which can be observed in Figure 9.
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3.3.2. Changes of Land Surface in “Missed Pixels” by Artificial Interpretation

Both methods, though, show similar trends of land degradation in the study area. There were
approximately 0.6% of the pixels are missed pixels. Figure 10 showed the spatial distribution of the
missed pixels. In general, the distribution of these areas is scattered throughout the study area and
mainly centralized in the central and eastern of the study area, which is shown in Figure 10.
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Because the missed pixels are scattered throughout the study area, the remote sensing images for
some pixels are missing. On the other hand, the land degradation is not serious in some missed pixels;
we could not observe the clear signs of land degradation. Therefore, we selected approximately 40% of
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the missed pixels where high-resolution remote sensing images were available to observe the changes
of land surface. The result showed that the areas of desertification obviously increased in most of the
missed pixels, which is the typical form of land degradation. In particular, most missed pixels showed
obvious signs of human activity. By artificial interpretation, we found that P-RESTREND was more
effective in monitoring land degradation than RESTREND, because these missed pixels have the sign
of land degradation indeed. We randomly selected some pixels among the missed pixels to show these
typical changes in Figure 11.
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4. Discussion

The climate influence on vegetation productivity trends seriously interferes with the monitoring
human-induced land degradation by remote sensing data [31,32]. The purpose of this study was to
more effectively remove the influence of precipitation on the interannual changes in NDVI that can
improve the accuracy of monitoring land degradation. To achieve this goal, we considered the influence
of precipitation before the growing season on NDVI and the difference of growing season across a
large region. The results of the modified methodology named P-RESTREND were compared with the
typical RESTREND. Notably, P-RESTREND can distinguish different drivers of land degradation more
effectively than RESTREND can. Furthermore, we detected the degradation areas in Songnen grassland
based on RESTREND and P-RESTREND, and extracted the missed pixels mentioned above. The result
of artificial interpretation showed that many of these missed pixels were land degradation pixels,
which cannot be detected by RESTREND. Therefore, the modified method has better applicability than
RESTREND for large-scale studies.

The comparison of VPR between the standard RESTREND and the second trial as described above
presented a strange result: RESTREND had a slightly better performance in removing the precipitation
influence on vegetation productivity changes instead of the second trial, which we speculated was
caused by the long and cold winters in Songnen grassland. The SOS is concentrated in May, while in
some cold regions, the SOS occurs even later in the year. In this study, the growing season was
assumed as the time from May to September when we performed the standard RESTREND. It is
very possible that a part of the precipitation over the pre-growing season was covered in the VPR
calculation. This assumption, which may make the VPR was more significant than the second trial.
We also speculated that the precipitation over the growing season was not the only driver of NDVI
changes based on this result. In particular, as shown in Figure 8b, the performance of P-RESTREND in
removing the precipitation influence was not better than that of RESTREND for all pixels. It may relate
with the low utilization of precipitation before the SOS for some regions. There are many reasons
for this: increasing in surface runoff caused by rapid land degradation, temperature abnormalities
before the SOS resulting in high evaporation, abnormal precipitation, etc. All of these factors can
result in a relatively low R2, because the rainfall over the pre-growing season can be ignored in these
conditions. On the other hand, the response between precipitation and the NDVI is complicated.
Although precipitation over the pre-growing season has correlation with NDVI to some extent, this
linear relationship is not completely uniform for each time period. This is related to the different
growth conditions of vegetation at each period. The timing of rainfall is closely related to vegetation
productivity, but hard to quantify. That is to say, correlation between precipitation and NDVI is
perhaps the highest during May–September in several regions, even if we consider precipitation over
the pre-growing season.

The improved performance of the modified methodology highlights the importance of considering
different phenological signals and precipitation periods for each pixel. The modified algorithm
presented in this study has several desirable properties. RESTREND assumes that the growing season
is similar in temporal-space, which is unreasonable in several situations. In fact, the temporal-spatial
differences of phenological information are huge, which has been observed in Figures 5 and 6. Moreover,
precipitation during the pre-growing season was also ignored in the RESTREND method. Our modified
methodology comprehensively considered the phenology of grassland. We also characterized the
influence of precipitation on NDVI by different weights. This operation partly eliminates the irrationality
of RESTREND, which cannot accurately detect the degradation pixels in our study area. This suggests
that, if the influence of precipitation has not been removed accurately, the residual trends will not
veritably reflect the changes in vegetation productivity caused by human-induced land degradation [39].
Therefore, the results of RESTREND we obtained in this study were not satisfactory. Simultaneously,
the remote sensing images with high spatial resolution were used to verify the situation of land
degradation in missed pixels. The results showed that these areas had significant signs of human
activities and the loss of grassy areas, which further confirms the validity of the modified methodology.
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Notably, the verification method was designed for missed pixels; it is only applied to small areas that
like a single pixel. That is to say, the verification method cannot be regarded as an effective tool for land
degradation monitoring on a region scale.

Some limitations also exist in our study. P-RESTREND was based on phenological signal detection,
and any false extraction of growing season will exert an adverse impact on the entire technique, for
which the time series should be reasonably modeled and practical method for phenology detection
should be selected. Moreover, this study used the linear model to characterize the VPR, the nonlinear
response between precipitation and NDVI was not considered in our methodology. Finally, an arid
ecosystem which occurred major structural changes result in an abnormal VPR; the P-RESTREND also
does not perform well. We did not take these abnormal changes into consideration, which is one of
our directions of further work.

5. Conclusions

This research demonstrated the feasibility of improving the RESTREND by introducing phenological
information to remove the influence of precipitation on NDVI for detecting human-induced land
degradation. We used the NDWI time series to detect the growing season in regions with seasonal
snow cover. We then developed a modified method to estimate vegetation–precipitation relationship
using phenological information. We tested the proposed method through comparison of different trials
and demonstrated its performance from three aspects. Our method showed better performance in
distinguishing different drivers of land degradation than the typical RESTREND. In addition, we also
applied the RESTREND and P-RESTREND in the Songnen grasslands to detect the degradation
situation. We found that the RESTREND missed some land degradation areas that could be detected by
P-RESTREND. The results indicated that our method is more effective in large areas.
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