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Abstract: Speckle noise can reduce the image quality of synthetic aperture radar (SAR) and complicate
image interpretation. This study proposes a novel three-step approach based on the conventional
probabilistic patch-based (PPB) algorithm to minimize the impact of bright structures on speckle
suppression. The first step improves the calculation accuracy of the weight by pre-processing speckle
noise with a linear minimum mean-square error filter and reassessing similarity between pixels.
In the second step, an iterative method is developed to avoid interfering with bright structures
and acquires a more accurate homogeneous factor by adaptively changing the size of the search
window. In the final step, the spreading and blurring of bright structures is corrected using a
modified bias-reduction technique. Experimental results demonstrate the proposed algorithm
has improved performance for both speckle suppression and preservation of edges and textures,
evaluated by indicators including the equivalent number of looks, the edge preservation index,
the mean, and standard deviation of ratio images.

Keywords: synthetic aperture radar (SAR); speckle noise; non-local filtering; probabilistic
patch-based (PPB)

1. Introduction

Synthetic aperture radar (SAR) is a coherent imaging system [1]. Each pixel in SAR images
represents the coherent addition of scatterers from a corresponding resolution cell. These scatterers
interfere, either constructively or destructively, depending on the phase of the scatterers. As such,
the resulting images exhibit bright and dark pixels and are uneven, even for homogeneous regions.
This phenomenon is called speckle noise and it often reduces the quality of images and complicates
image interpretation [1,2]. This study proposes a novel speckle removal algorithm to not only suppress
speckle noise but also preserve edges and textures.

The simplest speckle removal approach is spatial multi-looking [3], which efficiently suppresses
speckle noise at the cost of resolution loss. Three types of non-multi-looking processing methods
have been proposed to balance spatial resolution and speckle removal performance.

The first is a local spatial filtering method proposed by Lee [4–8]. Representative algorithms
include Kuan [9] and maximum a posteriori (MAP) filtering [10]. Such methods have been
implemented in the spatial domain based on Bayesian criteria and a speckle model. Although
resolution is well-preserved and speckle noise is suppressed, the edges and textures are not maintained
because the speckle model is unsuitable for filtering areas containing strong scattering points.
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The second approach involves transform-domain filtering methods, such as linear minimum
mean-square error (LMMSE) estimation in the wavelet domain [11]. These methods perform
multi-scale decomposition on the image, implement filtering to each decomposition image,
and reconstruct the despeckling result by fusing sub-images. Since transform domain methods
can distinguish edges from homogeneous areas, these techniques can more accurately preserve edges
and textures compared to spatial filtering algorithms. However, these techniques are often worse for
de-noising homogeneous areas than the following approach.

The third approach is adaptive filtering, which includes methods based on partial differential
equations (PDEs) [12] and non-local approaches [13]. This PDE-based approach gradually suppresses
speckle noise during iterative processing and is sensitive to edge preservation. However, repeated
iterations tend to diminish texture, particularly in SAR images. The non-local methods exploit similar
pixels or blocks in images to implement filtering. It obtains the most comprehensive performance
in speckle suppression and preservation of edges and textures. The probabilistic patch-based (PPB)
algorithm is a representative of nonlocal methods. It was proposed by Deledalle et al. in 2009 [14].
In 2015, they proposed a unified nonlocal framework where bias-reduction was introduced to reduce
the spreading of bright structures [15].

Compared with the conventional PPB, the proposed algorithm achieves a more accurate weighting
and homogeneous factor to improve the performance of speckle suppression, with a modified
bias-reduction method to further balance speckle suppression with the correction of bright
structure spreading.

This paper is structured as follows. The conventional PPB algorithm is introduced and analyzed
in Section 2. The three-step algorithm is then proposed to compensate for the limitations of these
existing techniques in Section 3. Section 4 presents and analyzes corresponding results by comparing
the proposed algorithm with conventional PPB, and Section 5 concludes the paper.

2. Conventional PPB Algorithm

As illustrated in Figure 1, Ps represents a pixel to be processed in the SAR image. A search window
(centered on Ps) is defined to estimate the intensity of Ps, as represented by the pink rectangle in the
figure. The conventional PPB algorithm calculates the weight w(Ps, Pi) between Ps and the pixel (Pi)
in the search window and replaces the intensity of Ps with [14]:

ÎPs =

∑
i∈Ds

w(Ps, Pi)IPi

∑
i∈Ds

w(Ps, Pi)
(1)

where Ds represents a set composed of pixels in the search window and IPi denotes the original
intensity of Pi.
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Figure 1. The basic elements in the conventional probabilistic patch-based (PPB) algorithm. Ps is the 

pixel to be processed. The search window and patch are represented by the pink and cyan rectangles, 

respectively. Pi denotes any pixel in the search window. 

Figure 1. The basic elements in the conventional probabilistic patch-based (PPB) algorithm. Ps is the
pixel to be processed. The search window and patch are represented by the pink and cyan rectangles,
respectively. Pi denotes any pixel in the search window.



Sensors 2018, 18, 3643 3 of 13

This patch region is represented by the cyan rectangle in Figure 1. The weight w(Ps, Pi) can be
calculated as [14]:

w(Ps, Pi) = exp

[
−∑

k

2L− 1
h

log
(

As,k

Ai,k
+

Ai,k

As,k

)]
(2)

where As,k and Ai,k are the amplitudes of the kth pixels in the two patches centered on Ps and Pi,
respectively. The greater the weight, the more similar Ps and Pi. The term L is the equivalent number of
looks and h is defined as [14]:

h = q− E

[
−∑

k
log p

(
As,k, Ai,k

∣∣∣I∗s,k = I∗i,k
)]

(3)

and q is given by:
q = F−1

−∑
k

log p(As,k ,Ai,k |I∗s,k=I∗i,k)
(α) (4)

where E(·) and F(·) denote the expectation and cumulative distribution functions, respectively.
A bias reduction method was developed to reduce the spreading of bright structures and the intensity of
Ps was modified as follows [15]:

ÎRB
Ps

= ÎPs + αPs

(
IPs − ÎPs

)
(5)

where ÎRB
Ps

is the intensity after applying bias reduction and IPs is the intensity of Ps in the raw
SAR image. The homogeneous factor (αPs ) corresponding to Ps is given by

αPs = max

(
0, 1−

Î2
Ps

/L
σPs

)
(6)

and

σPs =

∑
i∈Ds

w(Ps, Pi)I2
Pi

∑
i∈Ds

w(Ps, Pi)
− Î2

Ps
(7)

where αPs is defined on the interval [0, 1]. If Ps is in the completely homogeneous area, αPs equals 0. If
Ps is in the bright structures, αPs tends to 1. A TerraSAR-X image with the resolution of one meter and
the processing results acquired by applying the conventional PPB algorithm are shown in Figure 2.
Figure 2a displays a raw unquantized single-look image, where the maximum and minimum intensities
are 3.68 × 107 and 0, respectively. Figure 2b shows the result processed by Equation (1), and Figure 2c
shows the result processed by Equations (1) and (5).

The comparison between Figure 2a and Figure 2b demonstrates the extent of speckle noise
suppression achievable with Equation (1). However, the high intensity of the strong scattering targets
present in the patches negatively affect the estimation using Equation (1). Figure 2a includes three
patches (centered at P1, P2, and P3) with intensities of IP1 = 900, IP2 = 601, and IP3 = 345, 217,
respectively. The corresponding weights were w(P1, P2) = 0.0255 and w(P1, P3) = 2.4437× 10−4

by applying Equation (2). It is worth noting that w(P1, P2) > w(P1, P3), which indicates that
P2 is much more similar to P1, whereas the product terms satisfy w(P1, P2) · IP2 < w(P1, P3) · IP3 .
As a result, the contribution of the dissimilar point (P3) is higher when estimating the intensity of P1

in Equation (1). This improves the filtering result, which degrades speckle suppression performance.
This effect is evident near bright structures, and widens edges and increases the size of strong scattering
targets. This effect is referred to as the spreading of bright structures and can be seen in Figure 2b.
The performance of speckle suppression can be further improved by considering the impact of bright
structures, which will be discussed in Section 3.1.

Equation (5) was used to correct for the spreading of bright structures by moderately restoring the
original intensities of pixels according to the factor αPs , as shown in Figure 2c. However, speckle noise
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was also restored, particularly near bright structures. This occurred because of the inverse relationship
between speckle suppression and the spreading correction in Equation (5). The value of αPs obtained
from Equation (6) w typically close to 1 for pixels near bright structures. As such, ÎRB

Ps
tends to IPs in

Equation (5), which indicates the processed results are similar to the original image and the speckle
remains mostly unaffected. We investigated this limitation using two approaches.

The first approach involved calculation of a homogeneous factor αPs . There are three search
windows centered on P1, P4, and P5 in Figure 2a. These three points were located in homogeneous areas,
and we set the size of the search window to 25 results in αP1 = 0.9591, αP4 = 0.9977, and αP5 = 0.6476.
As the size of the search window decreased, a sudden decrease occurred in the homogeneous factor,
as shown in Figure 3. For example, as the size of the search window centered on P4 decreased
from 17 to 15, the homogeneous factor decreased from 0.9032 to 0.1942. This occurred because
bright structures were excluded from the search window, as shown in Figure 4. Therefore, a more
accurate value of αPs could be determined by choosing an appropriately-sized search window to avoid
interfering with bright structures. This process is discussed further in Section 3.2. The second approach
involves modifying the form of Equation (5) to balance speckle suppression with the correction of
bright structure spreading, which will be discussed in Section 3.3.
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Figure 2. Processing results achieved using the conventional PPB algorithm: (a) the raw single look
complex image, (b) the result processed using Equation (1), and (c) the result processed by Equations (1)
and (5). (a) There are three search windows centered on P1, P4, and P5, and three patches centered at
P1, P2, and P3.
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curves correspond to P1, P4, and P5 in Figure 2a. The initial window size was 25 and the step size for
the window reduction was 2.
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Figure 4. Two search windows centered on P4 with outer and inner frame sizes of 25 and 15, respectively.
A bright structure is evident between these two frames, which did not affect the homogeneous factor
calculated using Equation (6) in the inner frame. Homogenous factors of 0.9032 and 0.1942 were
produced by the large and small windows, respectively.

3. Three-Step Algorithm for Speckle Suppression

Figure 5 compares the proposed three-step algorithm with the conventional PPB algorithm.
The conventional PPB algorithm applies Equations (1) and (5) to the raw image. In the proposed
algorithm, the first step improves the calculation accuracy of the weight by pre-processing speckle
noise and reducing the effects of bright structures, and better effect of speckle suppression can be
obtained using Equation (1). In the second step, an iterative method is utilized to obtain a more
accurate value of αPs by adaptively changing the size of the search window. The final step corrects for
spreading and blurring of bright targets using a modified bias-reduction method.Sensors 2018, 18,  6 of 13 
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3.1. Speckle Pre-Processing and Weight Correction

The primary objective of speckle pre-processing is to suppress speckle noise in homogeneous
areas without losing edge and texture details, which reduces the influence of speckle noise on
weight calculation. This study adopts the linear minimum mean-square error (LMMSE) filter for
pre-processing [11]. Although the denoising results produced by this algorithm are not ideal, it is highly
suitable for preserving edges and textures.

Then, a threshold was set, which was 25 dB higher than the average intensity of the search
window [16]. Any pixels with an intensity exceeding this threshold were considered to be strong
scattering points. The influence of these points on weight calculation was then considered in four
cases, as demonstrated in Figure 1.

Case 1: Patches centered on Ps and Pi do not contain any strong scattering points, which indicates
that an influence of strong scattering points on weight calculation does not exist. In this case, the weight
w(Ps, Pi) was calculated using Equation (2).

Case 2: Both Ps and Pi are strong scattering points. It was assumed that these two points are likely
similar. The weight was then calculated using Equation (2).

Case 3: Either Ps or Pi was a strong scattering point (not both). In this instance, the two patches
centered on Ps and Pi were thought to be completely different and the weight was accordingly set to 0.

Case 4: The patches centered on Ps or Pi contained strong scattering points, none of which were
Ps or Pi. In order to reduce the impact of the strong scattering points, the weight was then determined
from Equation (2), in which all intensities for strong scattering points were replaced by the average
intensity of the patch.

3.2. Iteratively Calculating the Homogeneous Factor

As illustrated in Figure 3, the homogeneous factor αPs is dependent on the size of the search
window. Therefore, the simplest approach to improving the accuracy of αPs was to reduce the window
size. However, this also reduces the number of similar pixels and degrades speckle suppression
performance in homogeneous areas. As such, an iterative method was developed to adaptively
maximize the search window without affecting the accuracy of αPs . The details of this process are
as follows.

(1) The initial side length of the search window centered on Ps is set to ∆S0 and the corresponding
homogeneous factor αS0 is calculated using Equation (6). Bright structures have little effect on this
calculation. If αS0 , the estimation of the homogeneous factor for Ps is less than 0.5, which is an empirical
threshold. In this case, αS0 is the final estimation. Otherwise, the iteration continues. This step can
reduce the computational complexity by identifying pixels that require homogeneous factor correction.

(2) Let ∆Si = ∆Si−1 − 2 (i = 1, 2, . . . ), and the corresponding homogeneous factor αSi is determined
using Equation (6). If ∆Si × ∆Si is less than the minimal size of the search window (i.e., 3 × 3),
the iteration terminates and αSi represents the final estimation. Otherwise, the process continues to
step (3).

(3) The ratio r1 is calculated as:
r1 = αSi /αSi−1

The value of αSi decreases dramatically if the region does not contain any bright structures,
as illustrated in Figure 3. Therefore, if r1 is less than 0.5, indicating the homogeneous factor is less than
half the previous value, the iteration terminates and αSi is the final estimation. Otherwise, the process
continues to step (2) when i equals 1, or step (4) when i is greater than 1.

(4) The ratio r2 is calculated as:
r2 = αSi /αSi−2

The iteration terminates if r2 is less than 0.5 and αSi becomes the final estimation, as in the previous
step. Otherwise, the process returns to step (2).
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3.3. Correcting the Spreading and Blurring of Bright Targets

As aforementioned, the minimum size of the search window was set to 3 × 3. Therefore,
homogeneous factors were updated by applying the methods proposed in Section 3.2., with the
exception of 3 × 3 regions surrounding bright structures. A modified bias-reduction method is
proposed to reduce the spreading of these bright structures.

A new ratio r3 can be defined as:

r3 =
ÎPs

IPs

(8)

which indicates whether significant spreading occurs or not. Equation (5) can be modified to balance
speckle suppression with the correction of bright structure spreading as follows:

ÎRB
Ps

= ÎPs + F(αPs , r3)(IPs − ÎPs), αPs ∈ [0, 1], F(αPs , r3) ∈ [0, 1] (9)

where F(αPs , r3) satisfies the following conditions:
(1) When r3 ≤ 1,

F(αPs , r3) = 0 (10)

Equations (9) and (10) demonstrate that ÎRB
Ps

equals ÎPs in areas that do not exhibit bright structure
spreading. The level of speckle suppression is maintained in such areas.

(2) When r3 > 1, indicating the presence of spreading, the following condition is satisfied:

F(αPs , r3) = (1− 1
r3
)αPs +

1
r3

f (αPs) (11)

where

f (αPs) = α

n
n−(n−1)αPs
Ps

(12)

when 0 < αPs < 1, f (αPs) is less than αPs , as illustrated in Figure 6, where n is a parameter to
balance speckle suppression with the correction of bright structure spreading. In the conventional PPB
algorithm, F(αPs , r3) = αPs , which corrects for the spreading of bright structures but degrades speckle
noise suppression, as discussed in Section 2. In contrast, for F(αPs , r3) = f (αPs), ÎRB

Ps
tends to ÎPs ,

which improves the performance of speckle suppression but induces obvious bright structure
spreading. Equation (11) makes f (αPs) ≤ F(αPs , r3) ≤ αPs , which results in more balanced performance
with some suppression of both spreading and speckle.

Figure 7 demonstrates the impact of n on the speckle suppression and correction for the
spreading of bright structures. From left to right, the values of n for these images are 1, 5, 10, 20,
and 50. When n = 1, the speckle noise in the corresponding image was the most serious. As n increased,
the speckle noise was more effectively suppressed, while the spreading of bright structures worsened.
When the value of n was between 5 and 10, a more balanced performance was obtained. In this study,
the value of n was set to 5.

In the filtering process described by Equation (9), the bright structures are also suppressed and
blurred. A matrix denoted by αfinal was developed to recover these structures. This matrix is the
same size as the image, and each element in this matrix corresponds to the homogeneous factor of a
pixel. Bright structures in SAR images can be positioned from the matrix αfinal by the canny operator,
after which ÎRB

Ps
is directly set to the original intensity of these bright structures.
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Figure 7. Impact of n in Equation (12) on the speckle suppression and correction for the spreading of
bright structures. There are two groups of experimental results: (a1) to (a5) and (b1) to (b5). For (a1)
and (b1), n is set to 1. And for the second, third, fourth, and fifth columns, the values of n are 5, 10,
20 and 50, respectively.

4. Experimental Results and Analysis

Four TerraSAR-X images were used to validate the proposed algorithm, as illustrated in the first
column of Figure 8. Among these, Figures 8a1 and 8b1 exhibit clear edges and uniform backgrounds,
whereas Figures 8c1 and 8d1 include complex structures. All these images contain strong scattering
points. These characteristics help demonstrate the comprehensive performance of the proposed
technique. The results achieved using the fast non-local means algorithm [17], conventional PPB
algorithm, and proposed three-step algorithm are shown in the second, third, and fourth columns of
Figure 8, respectively.



Sensors 2018, 18, 3643 9 of 13

Several quantitative metrics were used to evaluate Figure 8: the equivalent number of looks
(ENL) [18], the edge preservation index (EPI) [19], the mean µr, and the standard deviation σr of the
ratio image [20,21]. The results of this evaluation are presented in Table 1. The terms ENL1 and ENL2

were calculated using the areas enclosed by the red frames, labeled 1 and 2, respectively.
Processing and evaluation results indicated that all three algorithms significantly suppress speckle

noise. The fast non-local and conventional PPB algorithms have basically the same ability in speckle
suppression, which is indicated by the ENL value. The fast non-local algorithm performed the worst
in edge preservation. The proposed algorithm produced the highest ENL and EPI values, indicating
that it was most successful in both preserving edges and suppressing speckle.

Table 1. Evaluation results.

Algorithm Image ENL1 ENL2 EPI µr σr

Raw image

1

0.9996 0.9682 – – –
Fast non-local algorithm 12.7594 12.3647 0.5134 1.5448 × 1010 1.4475 × 1012

Conventional PPB 16.9518 12.7141 0.8685 0.8648 0.6390
Three-step algorithm 36.3338 26.3064 0.9484 0.9484 0.8271

Raw image

2

0.9983 1.0154 – – –
Fast non-local algorithm 22.1223 4.8051 0.2603 7.9030×1010 1.9913×1012

Conventional PPB 17.3786 15.0505 0.8278 0.8473 0.6132
Three-step algorithm 40.2398 26.0787 0.9435 0.9458 0.7977

Raw image

3

1.042 1.0051 – – –
Fast non-local algorithm 17.5744 2.5683 0.2936 3.3912 × 1011 1.4966 × 1013

Conventional PPB 10.7677 4.651 0.9180 0.8055 0.4402
Three-step algorithm 67.2727 36.5582 0.9480 0.9631 0.8314

Raw image

4

1.0044 1.0147 – – –
Fast non-local algorithm 15.7269 11.3674 0.3532 3.1675 × 1011 9.9027 × 1012

Conventional PPB 13.2521 12.7311 0.9174 0.8292 0.4846
Three-step algorithm 33.0672 47.3125 0.9491 0.9598 0.8227

ENL1 and ENL2 represent the equivalent number of looks calculated using the areas enclosed by the red frames,
labeled 1 and 2, in Figure 8. EPI represents the edge preservation index. µr and σr are the mean and standard
deviation of ratio images shown in Figure 9.

A point-to-point comparison of the texture preservation results is shown in Figure 9. These images
were produced using the ratio between raw and de-speckled data, with corresponding evaluation
results shown in the last two columns of Table 1. The application of an ideal despeckling algorithm
would produce a ratio image containing only speckle points, indicating that the mean and standard
deviation of the ratio image would be 1 and

√
1/L, respectively, for an L-look raw image [3]. As all raw

SAR images in this study were single-look complex images, the ideal mean and standard deviation
were both one. As shown in the second column of Figure 9, the ratio images obtained by the fast
non-local algorithm contained bright structures, so the mean and standard deviation of the ratio
images were far from one. Ratio images corresponding to the conventional PPB algorithm are shown
in the third column of Figure 9. They contain obvious geometric structures related to the original
images, indicating that not only speckle noise but also textures were removed by the conventional PPB
algorithm. In contrast, the ratio images produced using the proposed technique exhibited much weaker
geometric structure, as shown in the fourth column. This indicates that the proposed algorithm can
preserve texture details, with a mean and standard deviation of ratio images closer to one compared
with the conventional PPB algorithm. These results demonstrate the superior performance of the
proposed method.
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Figure 8. Despeckling results. (a1), (b1), (c1) and (d1) show raw SAR images. (a2), (b2), (c2) and (d2)
illustrate results obtained by the fast non-local algorithm. (a3), (b3), (c3) and (d3) illustrate results
obtained by the conventional PPB algorithm. (a4), (b4), (c4) and (d4) illustrate results obtained by the
proposed three-step algorithm.
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Figure 9. Ratio images. (a1), (b1), (c1) and (d1) show raw SAR images. (a2), (b2), (c2) and (d2) show
ratio images corresponding to the fast non-local means algorithm. (a3), (b3), (c3) and (d3) illustrate
ratio images corresponding to the conventional PPB algorithm. (a4), (b4), (c4) and (d4) represent ratio
images corresponding to the proposed algorithm.

5. Conclusions

In this study, we developed a novel three-step technique based on the conventional PPB algorithm.
The proposed algorithm improved the calculation accuracy of the weighting by pre-processing speckle
noise with the LMMSE filter and reducing the influence of bright structures. The algorithm also
improves upon the accuracy of the homogeneous factor by adaptively changing the size of the search
window, and then corrects for the spreading and blurring of bright structures. TerraSAR-X images
with clear edges, uniform backgrounds, and complicated internal structures were used to validate this
technique. This algorithm has the advantages of the conventional PPB and has better performance for
both speckle suppression and the preservation of edges and textures. In a future study, deep neural
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networks, such as generative adversarial networks, which have adaptive and strong filtering abilities,
will be used to further improve the performances. In particular, we expect that suppressing bright
structure spreading can be achieved without weakening the denoising effect.
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