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Abstract: In this paper, the efficient 3D placement of UAV as an aerial base station in providing
wireless coverage for users in a small and large coverage area is investigated. In the case of providing
wireless coverage for outdoor and indoor users in a small area, the Particle Swarm Optimization
(PSO) and K-means with Ternary Search (KTS) algorithms are invoked to find an efficient 3D location
of a single UAV with the objective of minimizing its required transmit power. It was observed that a
single UAV at the 3D location found using the PSO algorithm requires less transmit power, by a factor
of 1/5 compared to that when using the KTS algorithm. In the case of providing wireless coverage
for users in three different shapes of a large coverage area, namely square, rectangle and circular
regions, the problems of finding an efficient placement of multiple UAVs equipped with a directional
antenna are formulated with the objective to maximize the coverage area and coverage density using
the Circle Packing Theory (CPT). Then, the UAV efficient altitude placement is formulated with the
objective of minimizing its required transmit power. It is observed that the large number of UAVs
does not necessarily result in the maximum coverage density. Based on the simulation results, the
deployment of 16, 19 and 26 UAVs is capable of providing the maximum coverage density of 78.5%,
82.5% and 80.3% for the case of a square region with the dimensions of 2 km × 2 km, a rectangle
region with the dimensions of 6 km × 1.8 km and a circular region with the radius of 1.125 km,
respectively. These observations are obtained when the UAVs are located at the optimum altitude,
where the required transmit power for each UAV is reasonably small.

Keywords: Unmanned Aerial Vehicles (UAVs); path loss model; Particle Swarm Optimization (PSO);
K-means algorithm; ternary search algorithm; Circle Packing Theory (CPT)

1. Introduction

Unmanned Aerial Vehicles (UAVs) have increasingly diverse and ubiquitous roles in today’s
society. They have been deployed in many civilian and military applications [1–3]. UAV can be used
as an aerial base station and as a supplement to the existing ground base station when the cellular
network is overloaded during a massively crowded special event or when the infrastructure of the
terrestrial base stations is damaged due to natural disasters [4,5].

Al-Hajj (pilgrimage to Mecca) is an annual massively crowded event for the Muslims around the
world. Every year, millions of pilgrims travel to the city of Mecca from all over the world for this event.
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During the peak of the event, more than two million pilgrims perform a series of rituals in Mecca city
within a one-week duration. The movement of a huge number of pilgrims occurred at the four holy
sites of Mina, Arafat, Mozdalifah and the holy Masjid Al-Haram. As a result of the huge gathering
of pilgrims, where large demand for communication is required, terrestrial base station overloading
may happen, and sometimes, the ground base station could not provide simultaneous coverage to
all pilgrims in this event [6,7]. Consequently, instead of building a cellular infrastructure network for
temporary crowded events [8], UAVs can be utilized as a supplement to the terrestrial base station,
in providing uninterrupted coverage [9–13].

Some of the key technical challenges in the deployment of UAVs as aerial base stations are
the efficient 3D deployment of UAVs, power consumptions, wireless coverage optimization and
interference management [3,10,14,15]. There has been an increase of research interest in the efficient
3D deployment of UAV strategies. This is because the UAV deployment problem has an impact on the
power consumptions [3,12,16]. Thus, this motivates research interest in the efficient 3D deployment of
UAV strategies that aim for minimum transmit power.

1.1. Related Works

The efficient 3D deployment of UAVs strategies can be categorized into two categories, namely
providing wireless coverage for outdoor users [9–11,13,14] and providing wireless coverage for indoor
users [16,17].

Two issues that must be taken into consideration in the deployment of UAV as an aerial base
station are the relation between the coverage area and the altitude of UAV and the effects of urban
environment on the performance of communications.

There are two effects of the UAV placement, namely the coverage performance in terms of the
number of users within the coverage area, as well as the quality of the Air-To-Ground (ATG) links.
ATG communication occurs in accordance to two main propagation groups, namely, Line-Of-Sight
(LOS) and Non-Line-Of-Sight (NLOS) conditions.

Several ATG channel models in a dense urban area have been studied in [9,18,19]. As presented
in [20], the probability of LOS for ATG communication is a function of elevation angle and the average
height of buildings. Furthermore, the characteristics of the ATG channel depends on the height of the
aerial base stations due to the path loss and shadowing effects of obstacles, as discussed in [19].

In [9], the authors provided a generic statistical propagation radio model for predicting the
ATG path loss between a Low Altitude Platform (LAP) and its corresponding ground terminal for
LOS and NLOS connections based on statistical parameters for different environments of the target
area. Furthermore, both issues were addressed in [9], namely the impact of the UAV placements
on the number of users within the coverage area, as well as the effect of the environment on the
occurrence of LOS. Many researches employ this path-loss model in addressing the UAV deployment
problem [10–13]. However, the ATG path loss model [9] is suitable for outdoor ground terminals only.

The authors in [10] studied the impact of UAV’s altitude position on the coverage performance
in terms of coverage area and minimum transmit power. More specifically, the ATG path loss model
developed by Al-Hourani et al. [9] was utilized to find the optimal altitude of UAV that maximized
the UAV coverage and minimized its required transmit power.

The authors in [11] utilized the ATG model to find the optimal deployment of UAVs acting as
flying base stations to minimize the total required UAV transmit power while satisfying the users’
data rate requirements. In [12], the authors used this model to find the efficient UAV placement
that maximized the network throughput. In [13], the study utilized this model to find the minimum
number of UAVs and their 3D placement so that all the users were served. However, all previous
studies assumed that all receivers are outdoors and located at 2D points. These assumptions limit the
applicability of this model when we need to consider the indoor users.

Thus, a suitable path loss model needs to be studied, in the case of providing wireless coverage
for indoor users. The authors in [17] utilized the outdoor-to-indoor path loss model certified by



Sensors 2018, 18, 3640 3 of 25

the International Telecommunication Union (ITU) [21] to provide coverage for indoor receivers.
More specifically, in [17], the authors proposed an efficient 3D UAV placement that minimized the
total transmit power required to provide wireless coverage for all indoor receivers, where the indoor
receivers are symmetrically distributed.

In [3], the authors proposed an efficient 3D deployment of UAV using the Particle Swarm
Optimization algorithm (PSO) to find an efficient 3D UAV location that minimized the total transmit
power required to cover all indoor receivers where the indoor receivers were uniformly distributed
inside the building. Due to the limited UAV transmit power, the authors in [16] minimized the number
of UAVs required to cover the indoor receivers. However, the studies in [3,16,17] assumed that all
receivers were located indoors. Furthermore, the above-mentioned strategies considered the 3D
location of a single UAV and covering a small area of communication. As an example, in [3], it is
assumed that all receivers are located in a building with the dimensions: horizontal building width xb
is 20 m; vertical building width yb is 50 m; building heights are 200 m, 250 m and 300 m.

Thus, when considering providing wireless coverage over a larger coverage area, this leads to
concerns about the number of UAVs that need to be employed. In this situation, the UAV deployment
strategy that maximizes the coverage area can be used. In [14], the authors utilized Circle Packing
Theory (CPT) to find an efficient placement of multiple UAVs acting as aerial base stations that
maximizes the coverage area. However, this method is appropriate only for a circular coverage area.

Explicitly, this paper extends the work in [22] by proposing the UAV deployment strategy for a
large coverage area. More specifically, in this paper, an efficient 3D deployment strategy is presented
to find an efficient 3D placement of a single UAV that minimizes the transmit power. The performance
of the 3D location of the UAV is analyzed in terms of the required transmit power when using two
different algorithms, namely the PSO and K-means with Ternary Search (KTS) algorithms. Next, to
provide wireless coverage over a large area, a 3D deployment strategy is proposed in a way that the
total coverage over a large area is maximized using CPT. Thus, this leads to finding the number of UAVs
equipped with a directional antenna needed to cover the area. The coverage performance is analyzed
for three different shapes of area, namely square, rectangle and circular, in terms of coverage density.

1.2. Paper Contributions

The contributions of this paper are summarized as follows:

• The existing ATG path loss model [9] and outdoor to indoor path loss model [21] are used to
study the problem of a single UAV placement to provide coverage in crowded events for both
outdoor and indoor receivers simultaneously, with the objective to minimize the required UAV
transmit power. Due to the intractability of the formulated problem, two algorithms are developed
to find an efficient 3D UAV placement using two optimization techniques, namely the PSO and
KTS algorithms. The proposed algorithms consider the problem in providing wireless coverage for
indoor and outdoor users, in a small area using a single UAV.

• The efficient 3D placements of multiple UAVs that provide maximum wireless coverage and
minimize the transmission power are found for each UAV.

• The CPT is utilized to find the number of UAVs needed for providing wireless coverage for
outdoor users in a large coverage area having three different shapes of coverage area, namely
square, rectangle and circular. The problem is formulated with the objective to maximize the
wireless coverage area using multiple UAVs. In each subarea, the UAV altitude is optimized using
the algorithm to provide wireless coverage using a single UAV above.

The rest of this paper is organized as follows. In Section 2, the case of providing wireless coverage
for outdoor and indoor users using a single UAV is studied, where the objective is to minimize the
UAV transmit power. Section 3 presents the study of the problem in providing wireless coverage
using multiple UAVs equipped with directional antennas, where the objective is to maximize the
wireless coverage over a large area. Three different shapes of 2D region are considered, with each
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UAV employing a directional antenna, which produces a circular coverage pattern. Each circular cell is
referred to as a subarea. Section 4 presents the simulation results and analysis for the deployment of
the single UAV and multiple UAVs scenarios. Section 4.3 discusses the main observations obtained
from the simulation results. The conclusion and future work are presented in Section 5.

2. Providing Wireless Coverage Using a Single UAV

2.1. System Model

Consider a coverage area that is divided into K subareas. In each subarea, there are N
outdoor receivers and M indoor receivers, which are non-uniformly distributed using a beta random
distribution, denoted as function f (x, y). Let [x1,y1] × [x2,y2] denote the dimension of the subarea.
Then, the location of each outdoor receiver iout is denoted by (xiout , yiout , 0); the location of indoor
receiver iin is denoted by (xiin , yiin , ziin ); and the 3D UAV location is represented by (xUAV , yUAV , zUAV).
In this model, it is considered that a single UAV serves as an aerial base station, as shown in Figure 1.

Figure 1. Providing wireless coverage using a single UAV.

2.1.1. ATG Path Loss Model

In this system, the ATG path loss prediction between an LAP and ground terminals presented
in [9,23] is utilized. More specifically, the ATG path loss is modeled by considering the probability of
Line Of Sight (LOS) and Non-Line Of Sight (NLOS) links, which depend on the urban environment
parameters, building heights and elevation angle. The probability of LOS and NLOS links can be given
as [9]:

PLOS =
1

1 + a.exp(−b[
180
π

θout − a])
(1)

PNLOS = 1− PLOS (2)

where a and b are constant values that depend on the environment; such as urban, suburban,
dense urban and rural environments; whilst the elevation angle θout is given as θout = sin−1(h/d),

where the distance between UAV and the ground receiver is d=
√

h2 + r2
d and h is the UAV altitude. rd

denotes the distance between UAV projection at the xy plane (xUAV , yUAV) and the ground receiver
coordinates located at (xi,yi), which is given as rd=

√
(xUAV − xi)2 + (yUAV − yi)2. The average path

loss L̄ (dB) for LOS and NLOS links can be formulated as [9]:

L̄(dB) = PLOS × LLOS + PNLOS × LNLOS (3)

where the path loss for the LOS link, LLOS, and the path loss for the NLOS link, LNLOS, are given as:
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LLOS = 20log(
4π fcd

c
) + ηLOS

LNLOS = 20log(
4π fcd

c
) + ηNLOS

where fc is the carrier frequency, c is the speed of the light, whilst ηLOS and ηNLOS are additional losses,
which depend on the environment for LOS and NLOS links, respectively.

2.1.2. Outdoor-to-Indoor Path Loss Model

Furthermore, in order to provide the wireless coverage for indoor users, the path loss model for
outdoor-to-indoor certified by ITU is utilized. The path loss is given as [21]:

Li(dB) = LFSP + LBP + LIN (4)

where LFSP is the free space path loss, LBP is the penetration loss for the building and LIN is the loss
inside the building.

The free space path loss LFSP is given as LFSP = 20log(d3D) + 20log( fc(GHz)) + 32.4, where d3D is
the distance between an indoor receiver iin and the UAV, and the carrier frequency fc(GHz) is equal
to 2 GHz.

The building penetration loss LBP is given as LBP = 14 + 15 (1− cosθin)
2, where the incident angle

is denoted as θin and the loss inside the building LIN is given by LIN = 0.5 d2Din , where d2Din is the 2D
indoor distance between UAV and receiver iin located at (xiin , yiin , ziin ). More specifically, d2Din denotes
the indoor part of the 2D distance between the UAV and the indoor receiver, iin.

The building penetration loss LBP depends on the altitude of the indoor receiver ziin ; whilst
the free space path loss LFSP is related to the distance between an indoor receiver iin and the UAV d3D,
which depends on the altitude of the indoor receiver ziin . Thus, the altitude of the indoor receiver ziin
affects the path loss in terms of LFSP and LBP.

2.2. Problem Formulation

Consider a single UAV that is located at (xUAV , yUAV , zUAV) transmitting data to the outdoor
receiver iout located at (xiout , yiout , 0) or to the indoor receiver iin located at (xiin , yiin , ziin ). The data rate
for each receiver i that is located either indoors or outdoors is given by:

ri = Clog2(1 +
(

Pt,i

Li
)

Np
)

(5)

where C is the receiver bandwidth, Pt,i is the transmit power of UAV for receiver i, Li is the path loss
between UAV and receiver, i, and Np is the noise power. In this work, the interference is implicitly
modeled as noise.

In this system model, Frequency Division Multiple Access (FDMA) is used as the channel access
technique. It is assumed that each UAV allocates equal channel bandwidth to receivers, and in order to
avoid interference, each channel is assigned to one receiver.

In this problem, it is considered that the UAV transmits data to N outdoor and M indoor receivers
at a desired data rate (r). (M + N) is the total number of receivers inside the coverage subarea, and
each receiver has a channel with the bandwidth equal to A/(M + N), where A is the transmission
bandwidth of an UAV. The total required transmit power of UAV to satisfy the data rate r for all
receivers can be formulated as:

P =
(M+N)

∑
i=1

(2
r(M+N)

A − 1)NpLi (6)
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The objective is to find an efficient 3D placement of UAV, such that the total required transmit
power of UAV is minimized, and at the same time, the desired data rate of all receivers is
satisfied. However, the optimal UAV 3D placement that minimizes the total transmit power becomes
complicated, as the optimal solutions can be obtained by searching all possible sets of solutions [13],
while satisfying the data rate for all receivers. Thus, the efficient solution can be found using the
meta-heuristic algorithm.

2.3. Efficient UAV 3D Placement Algorithms

Due to the intractability of this problem, two algorithms are proposed to find an efficient 3D
placement of a single UAV using two optimization techniques, namely the PSO and KTS algorithms.
In PSO, a member of the set of possible solutions is known as a candidate solution, which is referred to
as a particle. PSO utilizes the number of particles, and each particle moves around in the search space
looking for the best solution. On the other hand, KTS includes two algorithms, namely the K-means
algorithm and the Ternary Search (TS) algorithm. K-means is a clustering algorithm that attempts to
split a given dataset into a fixed number of k clusters; whilst the ternary search employs the divide
and conquer algorithm used to find the minimum or maximum values of a function.

2.3.1. Particle Swarm Optimization Algorithm (PSO)

In 1995, the PSO algorithm was introduced by Kennedy and Eberhart [24]. PSO is an intelligent
optimization algorithm that is based on the swarm intelligence paradigm inspired by animals’ social
behavior such as a flock of birds or a school of fish. In PSO, the optimization problem is solved by
iteratively trying to improve a candidate solution based on the local best experience for each particle
and the global best experience for all candidates. In PSO, every particle is a candidate solution to the
optimization problem.

Algorithm 1 shows the pseudocode of the proposed algorithm using the PSO optimization
technique. Step 1 in Algorithm 1 presents the inputs of the algorithm, namely N_pop defines the
population of candidate solutions of the algorithm, W refers to the inertia weight, while r1 and r2

denote the two random numbers uniformly distributed randomly in a range between zero and one
and c1 and c2 are the acceleration coefficients.

In the initialization step, the values of the constriction factor, κ, cognitive parameter, φ1, and the
social parameter, φ2, must be selected, where κ = 1 and φ1 + φ2 > 4 [25]. This will help the PSO to find
the efficient solution for the optimization problem.

The PSO is initialized with a group of random solutions for all particles’ positions, Lo, and the
particles’ velocity, V, as shown in Steps 7 to 14. Then, in every iteration, for each particle, the best
local location, L_BL, and the velocity are updated according to Equations (7) and (8), respectively.
Moreover, the global best location, G_BL, is also updated, as in Steps 15 to 25. This will help the swarm
of particles to move toward the best solution.

Loi(t + 1) = Loi(t) + Vi(t + 1) (7)

Vi(t + 1) = W ∗Vi(t) + r1 ∗ c1 ∗ (L_BLi(t)− Loi(t)) + r2 ∗ c2 ∗ (G_BL(t)− Loi(t)) (8)

2.3.2. K-Means with Ternary Search Algorithms

K-means is an algorithm that uses an iterative refinement technique to solve the clustering
problem. This is accomplished by partitioning a given dataset into k clusters. In this algorithm, each
cluster is represented by its centroid. Thus, there are k centroids for k clusters. Each point in the dataset
is assigned to a cluster that has the nearest centroid. More specifically, the K-means algorithm can be
performed in the following stages:

1. Initially, random guesses for cluster centroids are made, as shown in Step 3 of Algorithm 2.
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2. The nearest centroid is determined for each data point, by calculating the Euclidean distance
between each point and the centroid of the cluster, as shown in Step 5 of Algorithm 2.

3. In each cluster, the centroid is replaced by a new value. This new value is the means of the points
belonging to the cluster, as in Step 6 of Algorithm 2.

4. Repeat the process in Items 2 and 3 above, until the solution converges. The convergence happens
when the centroids and their locations are no longer changed; more specifically, when the cluster
mean is not changed as in Steps 4 to 6 of Algorithm 2.

Algorithm 1 Particle swarm optimization algorithm.
1: Input:
Vmin: Lower bound decision variable.

Vmax: Upper bound decision variable.

c1 and c2: Acceleration coefficients.

r1, r2: Uniformly-distributed random number U(0, 1).

N_it: Number of iterations.

N_pop: Population size.

(κ, φ1, φ2): Construction coefficients.
2: Initialization:
3: φ = φ1 + φ1,
4: χ = 2κ/|2− φ− (φ2 − 4φ)0.5|
5: W = χ, c1 = χφ1, c2 = χφ2,
6: globalbest.cost = ∞
7: for i = 1:N_pop
8: Loi(t) = unifrnd(Vmin, Vmax, Vsize)
9: Vi(t) = zeros(Vsize)
10: costi = costfunction(Loi)
11: best.Loi(t) = Loi(t)
12: best.costi(t) = costi(t)
13: if best.costi(t) < globalbest.cost
14: globalbest = best_costi(t)

end if
end
15: PSO Loop:
16:for t = 1:N_it
17: for i = 1:N_pop
18: Vi(t + 1) = W * Vi(t) + c1 * r1 .* Loi(t)) + c2 * r2 .* (best.Loi(t) − (globalbest_Lo - Loi(t))
19: Loi(t + 1) = Loi(t) + Vi(t + 1)
20: costi(t) = costfunction(Loi(t))
21: if costi(t) < best_costi(t)
22: best_Loi(t) = Loi(t)
23: best_costi(t) = costi(t)
24: if best_cost(t) < globalbest.cost
25: globalbest = best_costi(t)

end if
end if

end
end
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Moreover, the TS algorithm is used in tandem with the K-means algorithm, to determine the
position of a specific value in a dataset. The sorted dataset is divided into three parts, and after that,
the ternary search determines in which part the element exists. In Algorithm 2, Step 7 initiates the min
and max variables for the left and right edge of the intervals, respectively. Then, in Step 10, the TS
algorithm will repeat Steps 11 to 16 while max−min < ε. In this work, K-means is used to find the
2D placement (xUAV ,yUAV) of UAV, since the outdoor and indoor receivers in the coverage area are
assumed to be non-uniformly distributed. Then, the ternary search algorithm is used to find the UAV
altitude (zUAV). Algorithm 2 shows the pseudocode of the KTS algorithm.

Algorithm 2 K-means with ternary search algorithm.
1-K-means algorithm:

1: Input:
K: number of clusters, xi: data points i = 1. . . n, ck: set of centers k = 1. . . K,
uk: cluster position that minimizes the distance from the data points to the cluster, k = 1. . . K

2: Initialization:
3: ci = random(num)
4: Loop until convergence ∀ j = 1:n
5:

K

∑
k=1

∑
i∈ck

d(x− uk) =
K

∑
k=1

∑
i∈ck

||xi − uk||2

xi = j: d(xj, ui) ≤ d(xj, ul), l 6= i
6: ui =

1
ci

∑j∈ck
Xj, ∀i

end
2-Ternary Search Algorithm:

7: Input:
a: interval left edge, b: interval right edge, f : function, ε: tolerance.
8: Initialization:
9: l = a, r = b.
10: while (r− l > ε)
11: x1 = (2 ∗ l + r) / 3.
12: x2 = (l + 2 ∗ r) / 3.
13: if f (x1) < f (x2)
14: l = x1
15: else
16: r = x2
17: return r
end

3. Providing Wireless Coverage Using Multiple UAVs Equipped with Directional Antennas

In this section, an efficient deployment of multiple UAVs equipped with directional antennas is
proposed. More specifically, the UAV deployment strategy to provide wireless coverage for receivers
distributed over a large area of square, rectangle and circular 2D regions is investigated. Each UAV
employs a directional antenna, which forms a subarea having a circular coverage pattern, referred to as
the circle cell. Therefore, the CPT [26] is utilized to divide the total coverage area into non-overlapped
circle cells, such that the coverage area is maximized. In order to avoid the interference between
contiguous cells, the non-overlapped constraint is considered. Then, for each circle cell, an efficient 3D
UAV placement that minimizes the total UAV transmit power required to cover all receivers within
the cell is found. Furthermore, in this work, it is assumed that the distribution of the users is not
given. Thus, the CPT is more suitable to be utilized in finding the UAV 2D placement, when compared
with the K-means algorithm. Moreover, in this work, an efficient deployment of multiple UAVs is
determined, such that the coverage area and density are maximized. However, the proposed algorithm
presented in Section 2 does not consider this objective.
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3.1. Case of a Square Region

Gatherings of people in some crowded events can form a square shape, such as the gathering of
pilgrims in Arafat. The optimal packing of n identical and non-overlapped circles in a unit square is a
widely-explored problem in the literature [27–29]. Many researchers have applied the CPT to find the
maximum radius of n equal circles that can be packed in a unit square without overlapping.

In this scenario, it is assumed that the ground receivers are located in a geographical area that
has a square shape and n UAVs can be deployed to maximize the total wireless coverage and density.
More specifically, CPT is utilized to divide the total coverage area into non-overlapped circle cells.
Then, for each cell, one UAV can be deployed to provide wireless coverage for receivers within the cell.

3.1.1. Problem Formulation

The packing of equal circles in a square can be formulated in the following way:

• P1 : Place n identical non-overlapping circles in a unit square, with the objective function to maximize
the radius of the circles r, such that the coverage area and coverage density are maximized.

The problem P1 is a continuous, nonlinear, inequality-constrained global optimization
problem [30]. The problem P1 can be formulated as:

max
xi ,yi

r

subject to :

r ≤ xi ≤ 1− r, ∀i ε I = (1, ...., n) .....(9.a)

r ≤ yi ≤ 1− r, ∀i ε I = (1, ...., n) .....(9.b)√
(xi − xj)2 + (yi − yj)2 ≥ 2r, ∀ i 6= j .....(9.c)

(xi, yi)ε[0, 1] ∀i ∈ I = (1, ...., n, ) .....(9.d)

(9)

where (xi, yi) denotes the center coordinates of the circle i,
√
(xi − xj)2 + (yi − yj)2 is the Euclidean

distance between the centers of circles i and j, 1 ≤ i < j ≤ n and ris the coverage radius of each
cell. The objective function is to maximize the radius of the coverage cell. The constraint equations
of (9.a) and (9.b) ensure that all packed circles lie inside the square. The constraint equation of (9.c)
guarantees no overlapping between circles.

There has been a number of optimum solutions proposed for the problem of placing n identical
non-overlapping circles in a unit square, such that the circle radius is maximized [27–29]. More
specifically, in [27–29], the optimum arrangement of n identical non-overlapping circles in a unit
square was solved by maximizing the distance m between any pairs of circles.

For a unit square, the density of packing n identical non-overlapping circles dn can be defined as
the ratio of area occupied by the packed circles to a unit square area. Thus, the density of the packed
circles in a unit square is related to the maximum radius of the packed circle rn by the following
equation [31]:

dn = nr2
nπ (10)

Table 1 shows the optimal results of the maximum radius of the packed circle rn and the
corresponding maximum density dn of packing equal circles in a unit square for 2 ≤ n ≤ 22.

In this work, the coverage density of packing n identical non-overlapping circles dn is defined as
the ratio of the area occupied by the packed circles to the area of the coverage region.
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Table 1. Results of packing of n equal circles in a unit square.

n rn dn Ref. n rn dn Ref.

2 0.292893 0.539 [32] 13 0.133994 0.733 [27]
3 0.254333 0.6096 [32] 14 0.128556 0.727 [27]
4 0.250000 0.785 [32] 15 0.126478 0.754 [27]
5 0.207107 0.674 [32] 16 0.125000 0.785 [27]
6 0.187681 0.664 [32] 17 0.117186 0.733 [27]
7 0.174458 0.669 [33] 18 0.115522 0.755 [27]
8 0.170541 0.731 [33] 19 0.112265 0.752 [27]
9 0.166666 0.785 [34] 20 0.111382 0.779 [27]

10 0.148204 0.690 [27] 21 0.106839 0.753 [27]
11 0.142399 0.701 [27] 22 0.105665 0.772 [27]
12 0.139959 0.738 [27]

3.2. Case of a Rectangle Region

There are many crowded events where the users can form a rectangular shape, for example the
movement of a huge number of attendees through streets or rectangular paths, such as the movement
of pilgrims in Mina. The packing of n identical circles into a rectangle can be efficiently used to divide
the rectangle region into equal circle cells, and for each cell, one UAV can be deployed to provide
wireless coverage for users within the cell. This problem is known as an NP-hard problem, so finding
the optimal packing solution is difficult and makes the problem very complicated [26,35,36]. Therefore,
meta-heuristics approaches or local exhausted search methods can be used to solve this problem and
find an efficient packing solution.

In [37], the authors proposed a heuristic algorithm to find the maximum radius of a specified
number of non-overlapped equal circles inside a fixed size rectangle. They used the Formulation Space
Search (FSS) approach to solve the circle packing problem.

3.2.1. Problem Formulation

The problem of packing equal circles in a rectangle region can be formulated as follows:

• P2: Place n identical non-overlapping circles in a rectangle region L ×W, with the Cartesian
origin (0, 0) as the rectangle center. The objective function is to maximize the radius of the circles
r such that the coverage area and density are maximized.

In problem P2, Roverlap is the upper bound radius of the packed circles, and it can be defined by
nπRoverlap = LW, then Roverlap =

√
LW/nπ. A mixed Cartesian and polar formulation has been used.

Hence, problem P2 is a mixed nonlinear formulation and can be formulated as [37]:
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max
xi ,yi

r

subject to :

−L/2 ≤ xi + r ≤ L/2; −W/2 ≤ yi + r ≤W/2 .........................(11.a)

−L/2 ≤ xi − r ≤ L/2; −W/2 ≤ yi − r ≤W/2 ........................(11.b)

∀ i ε C : Cartesian Set

−L/2 ≤ ricos(θ) + r ≤ L/2; −W/2 ≤ risin(θ) + r ≤W/2 ....(11.c)

−L/2 ≤ ricos(θ)− r ≤ L/2; −W/2 ≤ risin(θ)− r ≤W/2 ....(11.d)

∀ i ε P : Polar Set

0 ≤ ri ≤
√
(L/2)2 + (W/2)2, ∀ i ε P .....................(11.e)√

xi − xj)2 + (yi − yj)2 ≥ 2r, ∀ i 6= j ....................(11. f )

1 ≤ i < j ≤ n

0 ≤ θ ≤ 2π .....................(11.g)

0 ≤ r ≤ ROverlapped .....................(11.h),

(11)

where (xi, yi) is the circle i center. The first four constraints ensure that all packed circles are

located inside the rectangle.
√
(xi − xj)2 + (yi − yj)2 is the Euclidean distance between the centers of

circles i and j, ∀ 1 ≤ i < j ≤ n, and this distance must be at least 2r to ensure that there is no overlap
between circles. The objective of this problem is to maximize the radius of n identical non-overlapping
circle cells. The constraints of Equations (11.a), (11.b), (11.c) and (11.d) ensure that all packed circles
are located inside the coverage area. Moreover, the constraints of Equations (11.e) and (11. f ) guarantee
no overlapping between cells.

Similarly, the coverage density of packing n identical non-overlapping circles dn is defined as
the ratio of area occupied by the packed circles to the area of the coverage region, as discussed
in Section 3.1.

3.2.2. Algorithms for Packing Circles in a Rectangle Region

Many algorithms were developed for solving the problem of packing equal circles in a rectangle
region, using meta-heuristic approaches [36–40]. In [36], two algorithms were developed using
the meta-heuristic simulated annealing optimization technique to solve the packing problem of
circular-based items into a rectangular pallet, such that the number of circular-based items being packed
in the rectangular pallet was maximized without overlaps. These algorithms were referred to as the
Cylinder Packing Algorithm using Minimizing Overlap with Simulated Annealing (CPA-MinOSA) and
the Cylinder Packing Algorithm using Maximizing the Number of circles with Simulated Annealing
(CPA-MaxNSA). The pseudocode of the CPA-MinOSA algorithm is shown in Algorithm 3.

In [37], a heuristic algorithm was proposed to solve the problem of packing n identical
non-overlapping circles into a 2D container of fixed size, such that the circle radius was maximized.
This algorithm was developed based on the Formulation Space Search (FSS) method. Algorithm 4
illustrates the FSS pseudocode.

Moreover, the Packomania website [40] used heuristic algorithms to find the best known solutions
for packing identical circles in fixed size shapes, such that the circle radius and packing density
were maximized.
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Algorithm 3 CPA-MinOSA algorithm.
Input:
n1 = Number_o f _circles.
n2 = New_Number_o f _Circles.
Number_o f _circles = Lower_bound() {Initial n1 ≤ n2}.
MinOSA: Minimizing overlap with simulated annealing.
repeat

Result = MinOSA(n1);
if overlap(n2) == 0 then

n2 = Result;
n1 = n1 + 1

end if
until overlap(n2) 6= 0

Algorithm 4 Formulation space search pseudocode.
Input:
Q: Set of all pairs (i, j) ε I, J = 1, . . . , n, C: Set of circles in Cartesian coordinates.
P: Set of circles in polar coordinates. Rbest: Max. radius over all iterations.
δ: Max. shift dist.of the circle center,
ROverlapped: Max. radius that circles can have before overlapping occurs. Citr: Counter iteration.
Initialization δ = (2/3)ROverlapped,
Rbest = 0
(X,Y)← rnd(X, Y){Randomly generating n circles into plane}
Citr = 0
iterative process:
repeat

Q← Overlapped_Set(X, Y, δ, ROverlapped),
(x, y) ← NLP(x0, y0, Q, C, P, X, Y, δ, ROverlapped) {Solve the non-linear optimization problem to

give (x, y), x0ε(X− δ, X + δ), y0ε(Y− δ, Y + δ)}
Rnew ← correction(x0, y0, x, y) {Radius correction [37]}
Rbest = Max(Rnew, Rbest) {Update Rbest}
if Rnew < 0.001 then

δ =
1

10
ROverlapped;

else

δ =
2
3

ROverlapped
end if
Citr = Citr + 1 {Update counter}
C ← P, P← {1,. . . .,n} - C {C & P Sets Swap}
(X,Y) = (x, y) {(X,Y)← current solution }

until Reach termination condition

3.3. Case of a Circular Region

In this section, a circular coverage region is considered. The CPT of packing equal circles into a
circular region is utilized, to provide wireless coverage using UAVs for receivers within the circular
coverage region. Here, the problem to find the maximum radius of equal circles that can be packed
into a unit circle with radius of r = 1 is discussed. Moreover, the mathematical formulation and the
main algorithm used to solve this problem is presented [37,41,42] in this section.

3.3.1. Problem Formulation

The problem of packing equal circles into a unit circular region can be formulated as:
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• P3: Place n identical non-overlapping circles into a unit circle with radius of r = 1. The objective
function is to maximize the radius of the packed circles, such that the coverage area and density
are maximized.

The problem P3 can be formulated as:

max
xi ,yi

r

subject to :√
(xi − xj)2 + (yi − yj)2 ≥ 2r, ∀ i 6= j .......(12.a)

1 ≤ i < j ≤ n

x2
i + y2

i ≤ (1− r)2 1 ≤ n ≤ n .......(12.b)

(xi, yi) ε [−1, 1] i = 1, ...., n .......(12.c)

(12)

where (xi, yi) is the center coordinates of a circle i, and the constraint equation of (12.a) is the Euclidean

distance between the center of circles i and j, which is defined as
√
(xi − xj)2 + (yi − yj)2 and must be

≥2r to ensure no overlapping between circles. The second constraint equation of (12.b) guarantees
that the packed circles must fully lie inside the circular region.

Here, the coverage density of packing n identical non-overlapping circles dn is defined as the ratio
of area occupied by the packed circles to the area of the coverage region, as discussed in Section 3.1.

3.3.2. Algorithms for Packing Circles into a Circular Region

The authors in [37] presented the formulation of the circle packing problem inside a fixed size
container with the objective to maximize the radius of the packed circles. To solve this problem,
they used the FSS algorithm with the Sparse Nonlinear OPTimizer solver (SNOPT), as discussed in
Section 3.2.2.

In [41], the authors found the densest packing of identical circles inside a unit circle using the
general Reformulation Descent (RD) heuristic to maximize the radius of the packed circles into a fixed
size container. They proposed nonlinear reformulation to transform one coordinate system to the
other, such as switching from Cartesian to polar coordinates and vice versa. This solution was invoked
in order to solve local search using the gradient method when it reached a stationary point in the
Nonlinear Programming problem (NLP). It was observed that this technique allowed the NLP-solver
to find a better solution. Moreover, the Packomania website [40] shows the best known solutions for
packing n identical circles inside a unit circle with the maximum common circle radius and maximum
packing density.

In addition to the previous convex shapes, CPT can be utilized in the problem of providing
wireless coverage for crowded events that have other convex shapes such as an equilateral triangle [43]
and a polygon [44]. Moreover, CPT can be also utilized for the problem of providing wireless coverage
for crowded events that have non-convex 2D shapes [45].

4. Simulation Results and Analysis

4.1. Providing Wireless Coverage Using a Single UAV

This section presents the simulation results of the proposed algorithms to find an efficient 3D
placement of a single UAV for providing wireless coverage for outdoor and indoor users, such that the
transmit power is minimized.

In this simulation, an area in Mena city is considered, which is divided into several subareas.
The PSO and KTS algorithms are invoked to find the efficient placement of a single UAV for providing
wireless coverage for outdoor and indoor users in a rectangle subarea, with the dimensions of
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300 m × 150 m. More specifically, for each subarea, it is assumed that 35% of the total number
of receivers inside the subarea is active users.

The simulations and analysis of the simulation results are performed using MATLAB R©. Moreover,
all simulation parameters are listed in Table 2.

Table 2. Simulation parameters.

Parameter Value Parameter Value

Carrier frequency ( fc) 2 GHz (Vmin, Vmax, Vsize) (0, 1000, 3)
Noise power (Np) −120 dBm Population size (N_pop) 50

Total available 50 MHz Max number of iterations 50
bandwidth (N_it)

UAV transmit power Pt = 5 watt (κ, φ1, φ2) (1, 2.05, 2.05)
Data rate (r) 0.5 Mbps Tolerance (ε) 0.1

Environment Value Environment ValueParameter Parameter

a 9.6 ηLSO 1
b 0.28 ηNLSO 20

In this scenario, it is considered that there are two buildings in the subarea, and each building
consists of 12 floors. The number of outdoor receivers is 2750, where it is assumed that 35% of the total
number of receivers is active users. On the other hand, three different numbers of indoor receivers,
namely 600, 750 and 960, are considered. For the case of having 960 indoor users, it is assumed that
there are 40 active receivers on each floor. Both outdoor and indoor receivers are non-uniformly
distributed based on the beta random distribution function, f (x, y). The total number of active outdoor
and indoor receivers is presented in Table 3. For each receiver, the data rate r is 0.5 Mbps.

Table 3. Simulation results for providing wireless coverage using a single UAV for outdoor and
indoor receivers. KTS, K-means with Ternary Search.

(Outdoor) (Indoor) Number of Number of Efficient UAV UAV Enhanced
Algorithm Subarea Building Outdoor Active Indoor Placement Transmit PSO

Dimensions Dimensions Users Users (xU AV , yU AV , zU AV ) Power (watt) than KTS

PSO 300 m × 150 m (35, 30, 60) 2750 One Building, (117.49, 58.78, 60.89) 0.42 5.7×
KTS 12 floors→ 600 (129.53, 60.26, 49.1) 2.39
PSO 300 m × 150 m (35, 30, 60) 2750 One Building, (151.95, 58.3, 61.5) 0.86 5.4×
KTS 12 floors→ 750 (158, 60.76, 46.5) 4.639
PSO 300 m × 150 m (35, 30, 60) 2750 Two Buildings, (161.66, 62.79, 62.12) 3.255 5.1×
KTS 12 floors→960 (162.64, 63.23, 41.11) 16.594

Figure 2a illustrates the distribution of the outdoor receivers and the coordinates of the two
buildings inside the subarea; whilst Figure 2b illustrates the 3D view of the distribution of the indoor
and outdoor receivers.

The simulation results of the proposed algorithms, when varying the number of indoor active
users, are shown in Table 3. More specifically, this table compares the minimum required total UAV
transmit power that satisfies the data rate of all receivers, when invoking the PSO and KTS algorithms.
The results show that the proposed algorithm using PSO requires less transmit power when the UAV
is at the 3D efficient location; more specifically, for the case of having the greatest number of indoor
receivers, 960. The 3D location of UAV using the PSO algorithm is (161.66, 62.79, 62.12), as shown in
Figure 2a. This requires a total UAV transmit power of 3.255 watts, as illustrated in Figure 3. On the
other hand, the 3D location of UAV using the KTS algorithm is (162.64, 63.23, 41.11), and the required
UAV transmit power is 16.594 watts, as we can see in Figure 2b. Thus, the proposed algorithm using
PSO exhibits about five-times improvement in terms of minimum required transmit power, when
compared with that using the KTS algorithm.
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This is because, in PSO, the efficient 3D UAV placement is determined without dividing the
problem into subproblems. On the other hand, in KTS, the solution to find an efficient 3D placement of
UAV is divided into two stages of solving two subproblems. In the first subproblem, K-means is used
to find the 2D placement of UAV (xUAV , yUAV). Then, in the second subproblem, the ternary search
algorithm is used to find the altitude (zUAV) of UAV.

Figure 2. (a) Top view of the receivers’ distribution and the two buildings’ locations; (b) 3D view of
outdoor and indoor receivers.

Figure 3. (a) The convergence speed of the PSO algorithm; (b) the convergence speed of the KTS
algorithm, for the case of 960 indoor receivers inside each building.

4.2. Providing Wireless Coverage Using Multiple UAVs

This section presents the simulation results of the proposed algorithms for the efficient deployment
strategy of multiple UAVs equipped with directional antennas, to provide wireless coverage for
receivers distributed over a large area of a square, rectangle and circle. The simulations and analysis of
the simulation results are performed using MATLAB R©.

4.2.1. Case of a Square Region

In this scenario, the case of providing wireless coverage for gatherings of pilgrims in Arafat city
that forms a square shape is considered, as shown in Figure 4. The square region has dimensions of
2 km × 2 km.
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In this simulation, the CPT and the results in Table 1 are utilized to find the maximum radius of n
identical circles that can be packed inside the targeted coverage area of a square shape. Each circle
is referred to as a subarea. Then, the 3D placement for UAVs that minimizes the total UAV transmit
power required to provide wireless coverage for all outdoor receivers within the circle subarea is
determined. For each circle cell, it is assumed that 35% of the total number of receivers inside the
coverage circle is active.

Figure 4. Square coverage area of 2 km × 2 km.

All simulation parameters are listed in Table 2.
Table 4 presents the simulation results of the proposed algorithms to pack n equal circles inside a

2 km × 2 km square region, for n = 8 to n = 22. More specifically, this table presents the maximum
radius of the circle, r, such that the coverage area and density are maximized for each case of packing
n identical circles in the square region. Consequently, the corresponding optimal 3D placement of
UAVs that minimizes the total transmit power required to provide wireless coverage for all receivers
inside the circle is presented in Table 4. The center coordinate of the circle cell is denoted as (xi, yi),
which refers to UAV 2D location, and zi is the optimal UAV altitude. The maximum packing density
of the coverage region is also evaluated. The directional antenna half beamwidth θi/2 is defined as
tan−1(ri/hi), where ri is the radius of circle i and hi is the optimal UAV altitude.

Table 4. Simulation results for packing n circles in a 2 km × 2 km square region (xi,yi) ε I = 1, . . ., n.

n Circle Number of Active Optimal 3D UAV Transmit Density Antenna Half
Radius r Receivers 35% UAV Placement (Power) watt Beamwidth θ/2

8 341.1 m 5076 (xi, yi, 213) 5095 Very High 0.731 58.01
9 333.3 m 4925 (xi, yi, 208) 2068 Very High 0.785 58.03
10 296.4 m 3819 (xi, yi, 185) 16.5 0.690 58.03
11 284.8 m 3565 (xi, yi, 178) 3.39 0.701 58.0
12 279.9 m 3445 (xi, yi, 175) 1.61 0.738 57.9
13 267.9 m 3200 (xi, yi, 167) 0.373 0.733 58.06
14 257.1 m 2973 (xi, yi, 160) 0.091 0.727 58.1
15 252.9 m 2860 (xi, yi, 158) 0.043 0.754 58.0
16 250.0 m 2745 (xi, yi, 156) 0.020 0.785 58.03
17 234.4 m 2422 (xi, yi, 147) 2.60 ×10−3 0.733 57.91
18 231.0 m 2328 (xi, yi, 144) 1.40 ×10−3 0.755 58.06
19 224.5 m 2226 (xi, yi, 140) 7.34 ×10−4 0.752 58.05
20 222.8 m 2136 (xi, yi, 139) 3.87 ×10−4 0.779 58.04
21 213.7 m 2025 (xi, yi, 133) 2.03 ×10−4 0.753 58.10
22 211.3 m 1953 (xi, yi, 132) 1.24 ×10−4 0.772 58.0
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It can be seen from Table 4 that the highest achievable density of the packed circles in a square
occurs when n = 9 and n = 16, when the proposed algorithm is invoked. However, the minimum
UAV transmit power when packing n = 9 circles is very high.

For the case of packing n = 16 circles, the maximum circle radius r is 250 m. For this case,
the distribution of 2745 active receivers inside the subarea is illustrated in Figure 5. It can be seen from
Figure 6a that the corresponding optimal UAV altitude is at 156 m, when the minimum transmit power
is at the minimum.

Figure 5. Top view of uniformly distributed active users inside the circle subarea with a radius of
250 m, when n = 16.

Figure 6. (a) The optimal UAV altitude is at 156 m; (b) the optimal placement of 16 UAVs with a circle
radius of 250 m, when n = 16.
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Thus, the distribution of the outdoor receivers and the corresponding optimal 3D placement of
16 UAVs can be illustrated as shown in Figure 6b. Each UAV provides wireless coverage for one circle
cell (subarea) with a radius of 250 m. The center of each subarea (xi,yi) ε i = 1, . . . , n is the (xUAV , yUAV)

location, whilst the optimal altitude of all UAVs is at zUAV = 156 m. At this location, the UAV required
transmit power for each UAVi ε 1, . . . , 16 is equal to 20 mwatt, and the maximum coverage density dn

is 78.5%.
Specifically, the optimal 3D locations (coordinates) of 16 UAVs are: (−750,−750, 156);

(−250,−750, 156); (250,−750, 156); (750,−750, 156); (−750,−250, 156); (−250,−250, 156);
(250,−250, 156); (750,−250, 156); (−750, 250, 156); (−250, 250, 156); (250, 250, 156); (750, 250, 156);
(−750, 750, 156); (−250, 750, 156); (250, 750, 156); (750, 750, 156). On the other hand, Figure 7 presents
the square coverage density for different n values. In this figure, we can see that when n = 4, 9, 16, the
maximum coverage density occurs where dn = 0.785. However, the lowest UAV required transmit
power occurs when n = 16. Hence, the UAV optimal altitude is at zUAV = 156 m.

Figure 7. The coverage density for n = 2 to n = 22 identical circles inside a square coverage area with
the dimensions of 2 km × 2 km.

4.2.2. Case of a Rectangle Region

In this scenario, the case of providing wireless coverage for gatherings of pilgrims that forms
a rectangle shape is considered, which is located in the area between Arafat city and Mena city, as
shown in Figure 8. The rectangle region has the dimensions of 6 km × 1.8 km. More specifically,
this simulation finds the maximum radius of n identical non-overlapping circles that can be packed
inside the targeted coverage area of a rectangle shape. Similar to the case of packing circles into a
square region, each circle is referred to as a subarea. Then, for each subarea, the optimal 3D UAV
placement is determined. The objective is to minimize the total transmit power required to provide
wireless coverage for all receivers inside the circle cell, such that the packing density is maximized.
The coverage area contains roads and paths for users’ movement, and there are areas where nobody
crosses. Therefore, for each circle cell, it is assumed that 25% of the total number of users inside the
coverage circle is active.
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Figure 8. Rectangle coverage area with the dimensions of 6 km × 1.8 km.

Table 5 presents the simulation results for packing n identical circles inside a 6 km × 1.8 km
rectangular region, for n = 10 to n = 33. The 3D placement of UAV that minimizes the total transmit
power required to cover all active users in each circle cell is determined. The center coordinate of the
circle cell is denoted as (xi, yi), which refers to UAV 2D location, and zi is the optimal UAV altitude.
The maximum packing density of the coverage region and the antenna half beamwidth for each cell is
also evaluated. It can be seen from Table 5 that the highest achievable density of the packed circles in a
rectangle occurs when n = 26 and the proposed algorithm is invoked.

Table 5. Simulation results for packing n circles in a 6 km × 1.8 km rectangle (xi,yi) ε i = (1, . . ., n).

n Circle Number of Active Optimal 3D UAV Transmit Density Antenna Half
Radius r Users 35% UAV Placement Power (watt) Beamwidth θ/2

10 493 m 7634 (xi, yi, 307) Very High 0.707 58.089
15 402 m 5020 (xi, yi, 251) Very High 0.709 58.02
18 368 m 4181 (xi, yi, 229) 53.9 High 0.708 58.107
19 357 m 3953 (xi, yi, 223) 11.95 0.706 58.009
20 351 m 3843 (xi, yi, 219) 6.088 0.719 58.039
21 345 m 3736 (xi, yi, 215) 3.306 0.729 58.069
22 341 m 3626 (xi, yi, 213) 1.59 0.744 58.010
23 339 m 3559 (xi, yi, 211) 1.013 0.768 58.101
24 334 m 3518 (xi, yi, 208) 0.847 0.779 58.087
25 331 m 3418 (xi, yi, 206) 0.435 0.796 58.104
26 330 m 3384 (xi, yi, 20 6) 0.246 0.825 58.026
27 319 m 3213 (xi, yi, 199) 0.125 0.798 58.043
28 308 m 3006 (xi, yi, 192) 0.036 0.771 58.062
29 303 m 2890 (xi, yi, 189) 0.018 0.777 58.046
30 300 m 2821 (xi, yi, 187) 0.011 0.785 58.063
31 289 m 2636 (xi, yi, 180) 0.0037 0.755 58.084
32 285 m 2543 (xi, yi, 178) 0.0020 0.756 58.013
33 279 m 2459 (xi, yi, 174) 0.0012 0.748 58.050

Figure 9a illustrates the distribution of the outdoor receivers and the corresponding optimal
3D placement of 26 UAVs. Each UAV provides wireless coverage for one circle cell (subarea) with a
radius of 330 m. The center of each subarea (xi,yi) ε i = 1, . . ., n is the (xUAV , yUAV) location, whilst the
optimal altitude of all UAVs is at zUAV = 206 m. At this location, the UAV required transmit power
for each UAVi ε 1, . . . , 26 is equal to 0.246 watts, and the maximum coverage density dn is 82.5%.
More specifically, the efficient 3D placements (coordinates) of 26 UAVs that maximizes the coverage
area and density are: (−2670,−570, 206); (−2002,−570, 206); (−1335,−570, 206); (−667,−570, 206);
(0,−570, 206); (667,−570, 206); (1335,−570, 206); (2002,−570, 206); (2670,−570, 206); (−2336, 0, 206);
(−1669, 0, 206); (−1001, 0, 206); (−334, 0, 206); (334, 0, 206); (1001, 0, 206); (1669, 0, 206); (2336, 0, 206);
(−2670, 570, 206); (−2002, 570, 206); (−1335, 570, 206); (−667, 570, 206); (0, 570, 206); (667, 570, 206);
(1335, 570, 206); (2002, 570, 206); (2670, 570, 206). Moreover, for the case of packing n = 26 circles,
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the coverage density is 82.5%, as shown in Figure 9b, and each UAV requires 0.246 watts to cover all
active receivers inside the cell with a radius of r = 330 m.

Figure 9. (a) Top 3D view of the users distribution and the UAVs’ placement inside the coverage area
6 km × 1.8 km; (b) the coverage density for packing n identical circles inside the coverage area.

4.2.3. Case of a Circular Region

In this scenario, the case of providing wireless coverage for gatherings of pilgrims in Masjid
Al-Haram and its outer courtyard is considered, which forms a circular shape, with a radius of
r = 1.125 km, as shown in Figure 10. This region is divided into identical circles, and each circle
(subarea) is served by one UAV. This simulation is performed to find the maximum radius of n
identical non-overlapping circles that can be packed inside the targeted area of the circular region.
Then, the 3D UAV placement that minimizes the total transmit power required to provide wireless
coverage for active receivers inside the circle cell for each circle is determined. For each circle cell, it is
assumed that 35% of the total number of receivers inside the circular region is active.

Figure 10. Circular coverage region with r = 1125 m.

The simulation results for packing n identical circles inside a circular region with r = 1.125 km are
presented in Table 6. Then, the efficient 3D placement of the UAV that minimizes the total transmit
power required to cover all active users inside the circle cell (subarea) for each circle cell is found.
The center coordinate of the circle cell is denoted as (xi, yi), which refers to UAV 2D location, and zi is
the optimal UAV altitude. The maximum packing density of the coverage region and the antenna half
beamwidth for each case of packing n identical circles is also evaluated.
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Table 6. Simulation results for packing n identical circles in a circle region with r = 1.125 km, (xi, yi) ε i
= 1, . . ., n.

n Radius (r) Circle Radius (r) Number of Active Optimal 3D UAV Transmit Density Antenna Half
(Unit Circle) (R = 1125 m) Receivers 35% UAV Placement Power (watt) Beamwidth θ/2

8 0.30259339 340 5077 (xi, zi, 212) 53,564 Very High 0.7325020 58.06
9 0.27676865 311 4252 (xi, yi, 194) 267.1 Very high 0.68940799 58.04

10 0.26225892 295 3820 (xi, yi, 184) 17.43 0.68779743 58.05
11 0.2548547 287 3600 (xi, yi, 179) 4.29 0.71446011 58.05
12 0.24816347 279 3445 (xi, yi, 174) 1.63 0.7390213 58.05
13 0.23606798 266 3082 (xi, yi, 166) 0.166 0.72446517 58.03
14 0.23103073 260 2973 (xi, yi, 162) 0.0874 0.74725276 58.07
15 0.22117254 249 2746 (xi, yi, 155) 0.0199 0.73375938 58.10
16 0.21666474 244 2634 (xi, yi, 152) 9.80 ×10−3 0.75109777 58.08
17 0.20867967 235 2422 (xi, yi, 147) 2.40 ×10−3 0.74030245 57.97
18 0.20560465 231 2318 (xi, yi, 144) 1.30 ×10−4 0.76091887 58.06
19 0.20560465 231 2318 (xi, yi, 144) 1.30 ×10−4 0.80319214 58.06
20 0.19522401 220 2127 (xi, yi, 137) 3.76 ×10−4 0.76224829 58.09
21 0.19039215 214 2026 (xi, yi, 133) 2.01 ×10−4 0.76123256 58.14
22 0.18383303 207 1851 (xi, yi, 129) 6.29 ×10−5 0.7434808 58.07

It can be seen from Figure 11 that the best coverage density is 80.3% when n = 19. For the case of
packing n = 19 circles in the circular region, it can be observed from Table 6 that the required transmit
power is 13 mwatt for each UAV to provide coverage for all active receivers inside the circle cell with a
radius of r = 231 m; whilst the optimal 3D placement of 19 UAVs is at 144 m.

Figure 11. The coverage density of the circular coverage region with r =1125 m.

4.3. Discussion

In this section, the main observations obtained from the simulation results presented in
Sections 4.1 and 4.2 are discussed.

It is observed that the UAV required transmit power depends on the number of active receivers
within the coverage subarea and, hence, affects the altitude of the UAV. More specifically, in the case
of finding the efficient 3D placement of a single UAV in providing wireless coverage for outdoor
and indoor users, it is observed that as the number of indoor active users increases, the required
transmit power increases, which causes the altitude of the UAV to increase, as presented in Table 3.
Similar performance is observed for the case of providing wireless coverage using multiple UAVs.
More specifically, for this case, as the number of circle cells (subareas) increases, the number of users
inside each subarea decreases. Hence, the UAV required transmit power decreases, and consequently,
the altitude of the UAV decreases, as observed in Tables 4–6.

With the specific observation from the case of providing wireless coverage using a single UAV,
the problem is formulated to find the efficient 3D placement with the objective to minimize the UAV
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transmit power. In this case, the choice of the algorithm used to find the efficient 3D placement affects
the UAV required transmit power. More specifically, it was observed that the PSO algorithm performed
better than the KTS algorithm to find the 3D efficient placement of the UAV, where the 3D location
found using the PSO algorithm requires less transmit power, by a factor of 1/5 compared to that when
using the KTS algorithm, as discussed in Section 4.1.

Providing wireless coverage for outdoor users within a larger coverage area requires more than
one UAV. Thus, it is proposed to utilize CPT in dividing the coverage area into subareas, such that
the coverage area and density are maximized. Then, the optimal UAV altitude is determined with the
objective of minimizing the UAV required transmit power. It is observed that the large number of
UAVs does not necessarily results in the maximum coverage density.

As observed in Table 4, the maximum coverage density is obtained when the number of identical
cells n = 4, 9 and 16 for the case of providing wireless coverage for users in a square region with the
dimensions of 2 km × 2 km. However, the UAV required transmit power is very high when n = 4, 9.
Thus, for this case, the deployment of 16 UAVs is capable of providing the maximum coverage density
of 78.5%, with the optimal altitude of all UAVs at zUAV = 156 m. At this location, the required transmit
power for each UAV is equal to 20 mwatt, which is not the minimum. The minimum transmit power
of 0.124 mwatt is observed when n = 22, which is when the number of active users within the subarea
is the smallest.

A similar observation is obtained from Tables 5 and 6, where there is a trade-off between the
maximum coverage density and the UAV required transmit power. More specifically, having the
maximum coverage density does not guarantee having the smallest value of the UAV required transmit
power. However, the required transmit power is reasonably small.

5. Conclusions

In this paper, a UAV deployment strategy is proposed, for providing wireless coverage for users
in small and large coverage areas of massively crowded events. More specifically, in a small coverage
area, the problem was formulated to provide wireless coverage for outdoor and indoor users, with the
objective to minimize the UAV transmit power. In this case, the PSO and KTS algorithms were used to
find an efficient 3D UAV placement that minimizes the total required transmit power and satisfies the
data rate for users. It was observed that the PSO algorithm performed better than the KTS algorithm
to find the 3D efficient placement of UAV. More specifically, for a single UAV at the 3D location found
using the PSO algorithm, the UAV requires less transmit power, by a factor of 1/5 compared to that
when using the KTS algorithm.

For the deployment of UAV in providing wireless coverage for users in a large area of massively
crowded events, CPT is utilized. More specifically, in a large coverage area, CPT is utilized to find
the efficient 3D placements of multiple UAVs by packing identical, non-overlapping and interference
free circle cells inside three different 2D shapes’ coverage area, namely square, rectangle and circular
regions. The problems were formulated with the objective to maximize the total coverage area and
coverage density. Then, the efficient altitude placement of each UAV was found using the formulation
that minimizes the transmit power in each circle cell.

For the case of a square region, it was found that the deployment of 16 UAVs at the optimum
altitude of 156 m is capable of providing 78.5% coverage density of a square region with the dimensions
of 2 km× 2 km, where each UAV required 20 mwatt. For the case of a rectangle region, the deployment
of 26 UAVs at the optimum altitude of 206 m is capable of providing 82.5% coverage density of a
rectangle region with the dimensions of 6 km × 1.8 km, where each UAV requires 0.246 watt. For the
case of a circular region, the deployment of 19 UAVs at the optimum altitude of 144 m is capable of
providing 80.3% coverage density of the circular region with the radius of 1.125 km, where each UAV
requires 13 mwatt. However, it was also observed that an increase of the number of UAVs did not
necessarily result in the maximum coverage density.



Sensors 2018, 18, 3640 23 of 25

As future work, it is proposed to generalize the solution techniques to provide wireless coverage
using UAVs by utilizing the packing of identical circles inside convex and non-convex regions.
Moreover, it is also proposed to study the presence of interference between congruent cells in providing
wireless coverage.

Author Contributions: A.S. and H.S. conceived of the idea of this work. A.S. formulated the problems, developed
the system model and executed the algorithms. N.S.O. and H.S. analyzed the results. All authors contributed
equally of the preparation and writing of the paper.

Funding: The second author acknowledges the support of the Universiti Tenaga Nasional under UNIIG 2017 grant.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shakhatreh, H.; Sawalmeh, A.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.;
Guizani, M. Unmanned Aerial Vehicles: A Survey on Civil Applications and Key Research Challenges.
arXiv 2018, arXiv:1805.00881.

2. Orfanus, D.; de Freitas, E.P.; Eliassen, F. Self-organization as a supporting paradigm for military UAV relay
networks. IEEE Commun. Lett. 2016, 20, 804–807. [CrossRef]

3. Shakhatreh, H.; Khreishah, A.; Alsarhan, A.; Khalil, I.; Sawalmeh, A.; Othman, N.S. Efficient 3D placement
of a uav using particle swarm optimization. In Proceedings of the 8th IEEE International Conference on
Information and Communication Systems (ICICS), Irbid, Jordan, 4–6 April 2017; pp. 258–263.

4. Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on unmanned aerial vehicle networks for civil applications:
A communications viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [CrossRef]

5. Chandrasekharan, S.; Gomez, K.; Al-Hourani, A.; Kandeepan, S.; Rasheed, T.; Goratti, L.; Reynaud, L.;
Grace, D.; Bucaille, I.; Wirth, T.; et al. Designing and implementing future aerial communication networks.
IEEE Commun. Mag. 2016, 54, 26–34. [CrossRef]

6. Henderson, J.C. Religious tourism and its management: The Hajj in Saudi Arabia. Int. J. Tour. Res. 2011,
13, 541–552. [CrossRef]

7. General Authority for Statistics. Hajj Statistics Report 2016. 2016. Available online: https://www.stats.gov.
sa/en (accessed on 20 May 2018).

8. Kumbhar, A.; Koohifar, F.; Güvenç, I.; Mueller, B. A survey on legacy and emerging technologies for public
safety communications. IEEE Commun. Surv. Tutor. 2017, 19, 97–124. [CrossRef]

9. Al-Hourani, A.; Kandeepan, S.; Jamalipour, A. Modeling air-to-ground path loss for low altitude platforms
in urban environments. In Proceedings of the IEEE Global Communications Conference (GLOBECOM),
Austin, TX, USA, 8–12 December 2014; pp. 2898–2904.

10. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Drone small cells in the clouds: Design, deployment and
performance analysis. In Proceedings of the IEEE Global Communications Conference (GLOBECOM),
San Diego, CA, USA, 6–10 December 2015; pp. 1–6.

11. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Optimal transport theory for power-efficient deployment of
unmanned aerial vehicles. In Proceedings of the IEEE International Conference on Communications (ICC),
Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6.

12. Bor-Yaliniz, R.I.; El-Keyi, A.; Yanikomeroglu, H. Efficient 3-D placement of an aerial base station in next
generation cellular networks. In Proceedings of the IEEE International Conference on Communications
(ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–5.

13. Kalantari, E.; Yanikomeroglu, H.; Yongacoglu, A. On the Number and 3D Placement of Drone Base Stations
in Wireless Cellular Networks. In Proceedings of the IEEE Vehicular Technology Conference (VTC-Fall),
Montreal, QC, Canada, 18–21 September 2016; pp. 1–6.

14. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient deployment of multiple unmanned aerial vehicles
for optimal wireless coverage. IEEE Commun. Lett. 2016, 20, 1647–1650. [CrossRef]

15. Shakhatreh, H.; Khreishah, A.; Othman, N.S.; Sawalmeh, A. Maximizing indoor wireless coverage using
uavs equipped with directional antennas. In Proceedings of the 2017 IEEE 13th Malaysia International
Conference on Communications (MICC), Johor Bahru, Malaysia, 28–30 November 2017; pp. 175–180.

http://dx.doi.org/10.1109/LCOMM.2016.2524405
http://dx.doi.org/10.1109/COMST.2016.2560343
http://dx.doi.org/10.1109/MCOM.2016.7470932
http://dx.doi.org/10.1002/jtr.825
https://www.stats.gov.sa/en
https://www.stats.gov.sa/en
http://dx.doi.org/10.1109/COMST.2016.2612223
http://dx.doi.org/10.1109/LCOMM.2016.2578312


Sensors 2018, 18, 3640 24 of 25

16. Shakhatreh, H.; Khreishah, A.; Khalil, I. Indoor Mobile Coverage Problem Using UAVs. IEEE Syst. J. 2018.
[CrossRef]

17. Shakhatreh, H.; Khreishah, A.; Ji, B. Providing wireless coverage to high-rise buildings using UAVs.
In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017; pp. 1–6.

18. Feng, Q.; McGeehan, J.; Tameh, E.K.; Nix, A.R. Path loss models for air-to-ground radio channels in urban
environments. In Proceedings of the IEEE 63rd Vehicular Technology Conference, Melbourne, Australia,
7–10 May 2006; Volume 6, pp. 2901–2905.

19. Holis, J.; Pechac, P. Elevation dependent shadowing model for mobile communications via high altitude
platforms in built-up areas. IEEE Trans. Antennas Propag. 2008, 56, 1078–1084. [CrossRef]

20. Feng, Q.; Tameh, E.K.; Nix, A.R.; McGeehan, J. WLCp2-06: Modelling the likelihood of line-of-sight for
air-to-ground radio propagation in urban environments. In Proceedings of the IEEE Global Telecommunications
Conference, GLOBECOM’06, San Francisco, CA, USA, 27 November–1 December 2006; pp. 1–5.

21. Series, M. Guidelines for evaluation of radio interface technologies for IMT-Advanced. Report ITU 2009.
22. Sawalmeh, A.; Othman, N.S.; Shakhatreh, H.; Khreishah, A. Providing Wireless Coverage in Massively

Crowded Events Using UAVs. In Proceedings of the IEEE 13th Malaysia International Conference on
Communications (MICC), Johor Bahru, Malaysia, 28–30 November 2017; pp. 158–163.

23. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel.
Commun. Lett. 2014, 3, 569–572. [CrossRef]

24. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

25. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional
complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

26. Hifi, M.; Paschos, V.T.; Zissimopoulos, V. A simulated annealing approach for the circular cutting problem.
Eur. J. Oper. Res. 2004, 159, 430–448. [CrossRef]

27. DeGroot, C.; Peikert, R.; Würtz, D. The Optimal Packing of Ten Equal Circles in a Square; Eidgenössische
Technische Hochschule Zürich, Interdisziplinäres Projektzentrum für Supercomputing, Zurich, August 1990.

28. Nurmela, K.J.; Östergård, P.R. Packing up to 50 equal circles in a square. Discret. Comput. Geom. 1997,
18, 111–120. [CrossRef]

29. Nurmela, K.J.; Östergård, P.R. More optimal packings of equal circles in a square. Discret. Comput. Geom.
1999, 22, 439–457. [CrossRef]

30. Horst, R.; Tuy, H. Global Optimization: Deterministic Approaches; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013.

31. Musin, O.R.; Nikitenko, A.V. Optimal packings of congruent circles on a square flat torus. Discret. Comput. Geom.
2016, 55, 1–20. [CrossRef]

32. Szabó, P.G.; Markót, M.C.; Csendes, T. Global optimization in geometry—Circle packing into the square.
In Essays and Surveys in Global Optimization; Springer: Berlin/Heidelberg, Germany, 2005; pp. 233–265.

33. Schaer, J.; Meir, A. On a geometric extremum problem. Canad. Math. Bull. 1965, 8, 21–27. [CrossRef]
34. Schaer, J. The densest packing of nine circles in a square. Canad. Math. Bull. 1965, 8, 273–277. [CrossRef]
35. Demaine, E.D.; Fekete, S.P.; Lang, R. Circle packing for origami design is hard. arXiv 2010, arXiv:1008.1224.
36. Correia, M.H.; Oliveira, J.F.; Ferreira, J.S. Cylinder packing by simulated annealing. Pesqui. Oper. 2000,

20, 269–286. [CrossRef]
37. López, C.O.; Beasley, J.E. A heuristic for the circle packing problem with a variety of containers. Eur. J.

Oper. Res. 2011, 214, 512–525. [CrossRef]
38. Birgin, E.G.; Martınez, J.; Ronconi, D.P. Optimizing the packing of cylinders into a rectangular container:

A nonlinear approach. Eur. J. Oper. Res. 2005, 160, 19–33. [CrossRef]
39. Isermann, H. Heuristiken zur Lösung des zweidimensionalen Packproblems für Rundgefäße. Oper.-Res.-Spektrum

1991, 13, 213–223. [CrossRef]
40. Specht, E. Packomania. 2009. Available online: http://packomania.com (accessed on April 2018).
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