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Abstract: The data collected by floating cars is an important source for lane-level map production.
Compared with other data sources, this method is a low-cost but challenging way to generate
high-accuracy maps. In this paper, we propose a data correction algorithm for low-frequency floating
car data. First, we preprocess the trajectory data by an adaptive density optimizing method to remove
the noise points with large mistakes. Then, we match the trajectory data with OpenStreetMap (OSM)
using an efficient hierarchical map matching algorithm. Lastly, we correct the floating car data by an
OSM-based physical attraction model. Experiments are conducted exploiting the data collected by
thousands of taxies over one week in Wuhan City, China. The results show that the accuracy of the
data is improved and the proposed algorithm is demonstrated to be practical and effective.
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1. Introduction

With the development of self-driving vehicles, lane-level maps have drawn much attention from
researchers, internet firms, and carmakers. Currently, lane-level map generation methods mainly
include the following three approaches: an integrated navigation system (INS) with three-dimensional
(3D) Lidar [1,2]; a vision-based approach [3]; and a floating car-based approach [4–6]. The precision
of the map can reach the centimeter level using the Lidar approach, but the cost of the devices and
production is the most expensive of the three approaches. The vision-based approach captures the
map information by monocular camera or stereo camera, however, the quality of the map is influenced
by the condition of the light to a great degree; moreover, the cost of production is also high. The cost
of the map is low if the data is collected by a floating car. However, the positional accuracy of global
positioning system (GPS) traces can only reach 5–30 m because GPS traces are prone to errors due to
the multipath effect and the loss of satellite signals. Therefore, it is a challenging task to produce a
map with floating car data.

In this paper, we propose a new data correction method for low-frequency floating vehicle data.
We developed an adaptive density optimization method to remove a fraction of the noise points by
using a Delaunay triangulation network to construct clusters of points. As OpenStreetMap (OSM) has
become one of the most successful projects in Volunteered Geographic Information (VGI) project, it is
free and has a range of applications. We attempt to match GPS traces with OSM maps and correct the
GPS traces by an OSM-based physical attraction model.
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In summary, the main contributions of this paper include the following: (1) we improved the
spatial–temporal (ST)-matching algorithm through a hierarchical method to match the floating car data
and OSM map, by which the accuracy and efficiency of the algorithm have been improved; (2) we used
a physical attraction model to correct the GPS points; (3) we proved that it is feasible to improve the
accuracy of the GPS points using the OSM map; and (4) we showed that the improvement in accuracy
of the GPS traces was helpful for the production of lane-level maps.

The remainder of the paper is structured as follows: In Section 2, we describe the related work
of data correction; in Section 3 we discuss the data correction algorithm; in Section 4 we present the
experimental result of the algorithm; and finally we present our conclusions in Section 5.

2. Related Work

Methods for correcting floating car data include the following: (1) clusters; (2) filters; and
(3) projecting the GPS points onto an existing map by map matching.

Approaches for removing noise points with clusters have been used by many researchers. Among
them, kernel density methods have often been used to build the probability function of the GPS points,
and the points with a low spatial density are thus eliminated as outliers [7,8]. Biagioni and Eriksson [9]
proposed a single sample point density estimate using a kernel density estimator with a Gaussian
kernel and extracted an initial road network based on the density estimate. In References [10–12], the
authors clustered the GPS data into regions based on the similarity of the position and direction and
filtered out the noise by using the average of the clusters. However, the approaches mentioned above
can only remove a small number of the noise points; the precision cannot be completely improved.

Various filtering techniques can also be used to smooth the noise of GPS trajectories.
In Reference [13], mean and median filters were applied to smooth the noise. These two filters
are similar, in that the median filter merely replaces the mean in the mean filter with the median. The
mean and median filters are simple but sensitive to outliers. More complex filters have also been used
to correct GPS data, such as a Kalman filter or a particle filter [13–16]; however, they are mainly used
in high-frequency GPS data processing.

Map matching algorithms for low-frequency data include both local and global algorithms [17].
Local matching algorithms usually match GPS points based on the distance, heading, speed, topology,
and shortest path [18,19]. However, the accuracy of local algorithms is generally low and sensitive
to the sampling frequency. Global algorithms match the entire trajectory with the road, based on
geometric similarity [20,21]. The limitations of global algorithms are highly time consuming and
computationally costly. Zhang et al. [22] matched traces with an existing road map based on three
features: the distance, direction, and angle between the trace and map. They estimated a new centerline
by modeling the traces with a Gaussian distribution, but the precision of their algorithm can only reach
to road level.

Different from the methods mentioned above, this paper corrects GPS points in two steps: we
first remove part of the noise by using an adaptive density optimization method, and then correct the
points through a physical attraction model and a matched OSM map.

3. Data Correction Algorithm

The processes of our proposed algorithm include the following three steps, as shown in Figure 1:
data preprocessing, map matching, and data correction. The following subsections detail each of
these steps.
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Figure 1. Overview of the proposed algorithm.

3.1. Problem Statement

In the floating car system, the location of a car is recorded by the GPS. A trajectory is a collection
of GPS points arranged in a time sequence, T = {P1, P2, . . . . . . Pn}, as shown in Figure 2. Each of
the points Pi has attributes Pi = {xi, yi, ti}, where (xi, yi) are the longitude and latitude of the point,
respectively, and ti is the time the point was collected.
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Figure 2. A trajectory of the GPS points. The green dots represent the GPS points and arrows represent
the driving direction of floating car. Pi is the ID of the GPS point.

The positional accuracy of GPS traces can reach 5–30 m, but the error will increase when the
satellite signals are obstructed by tall buildings, trees, and tunnel. Therefore, it is necessary to remove
the points with large error first. However, it is still hard to generate a lane-level map using this GPS
data because some points appear on the opposite road, which will influence the results of the lane
position. The aim of this paper is to correct the GPS points to the right location by a physical attraction
model based on the OSM map information.

3.2. Trajectory Preprocessing

To remove the noise points with a large error, the trajectory should be preprocessed first. In general,
points with fewer neighboring points are identified as outliers. However, as shown in Figure 3, there is
a big difference in density between different roads because of the different grades of the roads and the
divisions of urban zoning. The density of the points in a city center is larger than that of the points
at the edge of a city. If we were to use the same threshold to distinguish the noise in both the high
and low density areas, the correct points would be recognized as noise in the areas with low density.
Therefore, it is necessary to choose an adaptive density threshold to preprocess the data.

The density of a GPS point can be described by the null distribution [23]. The null distribution of
point P can be defined as follows:

P(N(S) = k) =
λk|B|k

k!
·e−λ|B| (1)

P(X < ni) =
ni−1

∑
j=0

e−λ̂λ̂j

j!
(2)

λ̂ =
ND

|D| (3)

P(X ≥ ni) = 1− P(X < ni) (4)
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Equation (1) is the expression of the null distribution, where N(S) is the number of points for a
spatial point dataset SD, λ is the intensity of the point dataset, and |B| is the area of SD. In this paper,
we calculate the density of GPS point P through the number of points in buffer D. As shown in Figure 2,
the probability of the number of points X < ni in a buffer D can be calculated via Equation (2). The
value of λ̂ can be calculated by Equation (3), where ND is the number of points in buffer D, and |D| is
the area of buffer D. Through Equation (4), we can calculate the probability of X ≥ ni in buffer D.

As already noted, on a different road, the density of GPS points is different. Therefore, we used a
Delaunay triangulation network to calculate the radius of the buffer:

RS = Mean(AT) + Variation(AT) (5)

where Mean(AT) is the average value of the length of the sides in the Delaunay triangulation network
and Variation(AT) is the variance of the lengths of the sides. In the center of the city, the density of
points is large, so the value of RS is small. In contrast, the value of RS is large at the edge of the city, as
shown in Figure 4.
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Figure 3. Areas with different point densities. D represents the buffer of central point P. The circle is
the range of buffer D. Red dots represent the GPS points inside D, and black dots are the GPS points
outside D. (a) The points in the center of a city have more neighboring points; (b) the points out of the
center of a city with lower density; and (c) the points at the edge of a city, which might be recognized
as noise.
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Figure 4. The Delaunay triangulation network of GPS points. The red dots represent the GPS points
and the blue lines are the edges of the Delaunay triangulation network. (a) in the center of the city, the
length and variance of edges in the Delaunay triangulation network are small, so the value of RS is
small; (b) at the edge of the city, the density of points is small, so the length and variance of the edges
in the Delaunay triangulation network is large. As a result, the value of RS is large.

3.3. Hierarchical Map Matching Algorithm (HST-Matching)

After the preprocessing, the points with large position error have been removed. However, the
accuracy of GPS trajectory still cannot meet the requirement of the lane-level map. In this section,
we propose hierarchical map matching (HST-Matching) method, by improving the ST-matching
algorithm [17], to match low-frequency floating car data with the OSM map. The HST-Matching
algorithm consists of two parts: preliminary matching and ST-matching.
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The OSM map, as crowdsourced geographic data, is one of the current research trends. The main
advantage is its low cost. From the literature [24–26], we know that most of the OSM map data have
high accuracy. However, the precision of the GPS points in the floating car measurement is 5–30 m.
Therefore, we can attempt to match the GPS points with the OSM map to improve the accuracy of the
GPS traces.

The OSM map consists of three parts: nodes, ways, and relations [27]. The nodes can be used
to define standalone point features or the shape of a way. The ways are used to represent the linear
features, for example, rivers and roads. A way consists of an ordered list of nodes between 2 and 2000
and is defined as a polyline. A relation is used to describe the relationship between two or more data
elements, including turn restrictions. The ways in the OSM map not only include the roads, but also
rivers, subways, and the boundary river. We only selected the types of roads on which vehicles can
drive, including motorway, trunk, primary, secondary, tertiary, service, and residential roads.

A complete road is divided into many segments in the OSM map, R = {e1, e2, . . . . . . en}. Each
segment contains a starting point, ei.start, an endpoint, ei.end, and the nodes that control the shape of
the road, ei.control, as shown in Figure 5.
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Figure 5. The segments in the OSM map. The red lines represent the roads of OSM, the blue points are
the start or end points of segments, and ei means the segment of road.

Before we introduce the map matching algorithm, it is necessary to describe the assumptions
used in this paper.

Assumption 1. The vehicle runs on the roads, so the trajectory can be matched to at least one road.

Assumption 2. The path of the car tends to be direct, rather than a roundabout route. This means that the
matching path between two GPS points will most likely be the shortest path.

3.3.1. Preliminary Matching

In the preliminary matching step, we generated the buffer of each point Pi, 1 ≤ i ≤ n, with radius
r in a trajectory T = {P1, P2 . . . Pn} to retrieve the candidate segments and candidate points of Pi. As we
had already preprocessed the trajectory, the noises with the largest deviations had been removed. The
radius of the buffer was set as 30 m.

An example is shown in Figure 6a. In the buffer of point Pi, there are three candidate segments
Pi =

{
e1

i , e2
i , e3

i
}

. The distances between Pi and the candidate segments are
{

d1
i , d2

i , d3
i
}

, and the
candidate points of Pi are

{
c1

i , c2
i , c3

i
}

. As azimuth information in floating car data is lacking, we
calculate the angle differences between the vector connecting points Pi and Pi+1 and the candidate
segments direction

{
e1

i , e2
i , e3

i
}

. As shown in Figure 6b, the angle differences are
{

θ1
i , θ2

i , θ3
i
}

. We use a

threshold Tθ to filter out parts of candidate segments. If θ
j
i > Tθ , the corresponding segment of angle

θ
j
i is removed. If only one candidate segment, e1

i , remains, point Pi is counted as a high-confidence
tracking point (HCTP) according to Assumption 1 and segment e1

i is the matched road of point Pi.
Algorithm 1 shows the details of the preliminary matching procedure.
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Figure 6. (a) Pi means the ID of GPS point and ej
i represents the candidate segment of road. dj

i means

the distance between Pi and the candidate segment. cj
i is ID of the candidate point of Pi. The red lines

represent the roads of OSM, and blue dashed lines represent the buffer of center point Pi. Green dashed
lines represent the distance between Pi and candidate points. The red dots mean the GPS points, and
the green dots are the candidate points of Pi. In the buffer of point Pi, there are three segments with
which it intersects. (b) The red dashed lines indicate the direction of the candidate segments; θ

j
i means

the angle differences; only segment e1
i remains after being filtered out by a threshold.

Algorithm 1 Preliminary Matching Algorithm

Input: Trajectory P1 → P2 . . . → Pn; OSM road network R
Output: HCTPlist; Candidate matched points list c1

i , c2
i . . . cj

i
1: Initialize HCTPlist and CanditateList as empty list;
2: for i = 1 to n do
3: C = GetCandidate (Pi, R, r); //get the candidates within radius r
4: for j = 1 to C.count do
5: θ

j
i = |azi_Pi-azi_cj

i|;
6: if θ

j
i < Tθ then

7: CandidatedList.add (cj
i);

8: end if
9: end for

10: if CandidateList.count == 1 then
11: HCTPlist.add (Pi);
12: end if
13: end for

If a point was counted as high-confidence tracking point (HCTP), we only retained the candidate
segment which meets the requirement of threshold Tθ ; other candidate segments will be deleted.
There is no need to calculate further. This can reduce the uncertainty and running time of the
matching algorithm. However, for other points which do not count as HCTPs, we calculated it by the
ST-matching algorithm.

3.3.2. Spatial–Temporal Matching

After the preliminary matching step, some points will have matched with the OSM map. However,
there will be many points left to be matched. We choose an ST-matching algorithm to match these
points [17,28]. ST-matching is a stable global optimization matching algorithm which can integrate
the geometrical, topological, and speed information of traces and map. It includes two steps: spatial
analysis and temporal analysis. First, the observation probability is calculated by identifying the
shortest distance between the GPS points and the candidate points. Then, the transmission probability
is estimated by comparing the shortest path of the GPS points and the candidate points. The temporal
probability is calculated by the cosine distance to measure the similarity between the actual speed
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of the path and the road speed constraints. Finally, the candidate segment with the largest value is
considered to be the final matching result.

We improve this algorithm in three ways. In addition to the HCTPs, we give different weights to
the observation and transmission probabilities. Considering that the shortest path is more reliable than
the position accuracy of GPS. Therefore, the transmission probability has a higher reliability than the
observation probability. Its weight should be set to be larger than the observation probability. Beyond
this, the road speed constraint should be a range rather than a simple value. Therefore, we use a new
method to calculate the temporal value. This is calculated by comparing the probability of the actual
speed and the road speed constraint range.

Spatial Analysis

According to Reference [9], the position error of the GPS can be described with a normal
distribution, and the formula of the observation probability can be calculated via:

O
(

cj
i

)
=

1√
2πσ

e−
(dj

i−µ)
2

2σ2 (6)

where dj
i is the distance between point Pi and candidate segment ej

i , dj
i = dist

(
cj

i , Pi

)
, and µ and σ are

the mean and variance value of normal distribution.
Because of the position error of the GPS, it is not enough to only consider the Euclidean distance

between the GPS trace and the segment. For example, as shown in Figure 7, there are two candidate
points for Pi,

(
c1

i , c2
i
)
. The observation probabilities of these two candidate points are equal. Obviously,

the correctly matched point should be c2
i according to Assumption 2. Hence, topological information is

important for map matching, by which we can exclude certain points. The formula of the transmission
probability is shown in Equation (7):

T
(

ck
i−1 → cj

i

)
=

dis(Pi−1, Pi)

S
(ck

i−1→cj
i)

(7)

where dis(Pi−1, Pi) is the Euclidean distance between tracking points Pi−1 and Pi and S
(ck

i−1→cj
i)

represents the shortest path between candidate points ck
i−1 and cj

i . There are many algorithms for
the shortest path computation, such as the Dijkstra, Floyd, and A* algorithms [29]. Considering the
efficiency of the algorithms, we choose the A* algorithm to calculate the shortest path.
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the trajectory of floating car. The red lines represent the OSM roads and the green dots indicate the
candidate points of Pi.
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Combining Equations (6) and (7), the spatial analysis function is calculated as follows:

Fs

(
ck

i−1 → cj
i

)
= w1O

(
cj

i

)
+ w2T

(
ck

i−1 → cj
i

)
, 2 ≤ i ≤ n (8)

where w1 and w2 represent the weight of the observation and the transmission probabilities,
respectively, and w1 + w2 = 1.

Temporal Analysis

The spatial analysis can match the GPS trace to the OSM map in most cases. However, there are
lots of elevated roads in China, and the shape and location of the elevated roads are similar to the
roads underneath them. Therefore, it is difficult to match the GPS trace using only spatial analysis.
However, as shown in Table 1, the road speed constraints are different for the elevated roads than for
other roads. Therefore, it is feasible to use the road speed constraint information to refine our analysis.
We calculate the probability of the actual speed of a vehicle in different road speed constraint ranges,
as shown in the equations below:

Ft

(
ck

i−1 → cj
i

)
=
∫ V.max

V.min

1√
2πR.σ

e−
(V(ck

i−1→cj
i )−R.u)

2

2R.σ2 (9)

V
(

ck
i−1 → cj

i

)
=
[
V.min, V.max

]
(10)

V.min =
S
(ck

i−1→cj
i)

∆t(i−1→i)
− τ (11)

V.max =
S
(ck

i−1→cj
i)

∆t(i−1→i)
+ τ (12)

where R.u and R.σ represent the mean value and variance of the candidate road speed, respectively,
and V

(
ck

i−1 → cj
i

)
is the average speed of the car from point ck

i−1 to cj
i , ∆t(i−1→i) is the time interval

from point ck
i−1 to cj

i , and τ is the calculation error of the speed.

Table 1. The road speed constraint ranges in China.

Value Motorway Trunk Primary Secondary Tertiary Service Residential

Min-speed (km/h) 90 60 40 30 20 0 0
Max-speed (km/h) 120 100 60 50 40 20 15

Combining Equations (8) and (9), the final ST-matching function is:

F
(

ck
i−1 → cj

i

)
= Fs

(
ck

i−1 → cj
i

)
× Ft

(
ck

i−1 → cj
i

)
2 ≤ i ≤ n. (13)

After the HST-matching steps, the value of F
(

ck
i−1 → cj

i

)
should be calculated for each candidate

point. We select the highest score as the matching result between two HCTPs, as shown by the red line
in Figure 8. Algorithm 2 shows the process of ST-matching.
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Figure 8. The matching result of the ST-algorithm. Pi means the ID of GPS point and cj
i is the ID of

candidate point. The points Pi and Pi+k are the HCTP points, so there is only one candidate point. The
black arrows represent the candidate matching path from Pi to Pi+1, and the red arrows represent the
final matching results.

Algorithm 2 Spatial and Temporal Matching Algorithm

Input: HCTPlist Pi, Pi+k; CandidateList c1
i , c2

i . . . cj
i ; Trajetory Pi+1 → Pi+2 . . . → Pi+k

Output: OSM-WayID-List;
1: Initialize OSM-WayID-List as empty list;
2: for each c1

i and c1
i+k do

3: F(c1
i ) = 1;

4: F(c1
i+k) = 1;

5: end for
6: for t = i + 1 to i + k − 1 do
7: max = −∞;
8: for s = 1 to candidateList(Pt).count do
9: F(cs

t ) = F(cj
t−1) + F(cj

t−1 → cs
t );

10: Alt = F(cs
t );

11: if (Alt > max) then
12: max = Alt;
13: C = max. cs

t ;
14: end if
15: end for
16: OSM-WayID-List.add(C.id);
17: end for

3.4. Trajectory Correction Algorithm

The accuracy of the trajectory improves after the optimization approach; however, it is not enough
for the accurate generation of a lane-level map. As shown in Figure 9, the red points are matched to
the yellow road which should locate at the road from right to left. However, some points appear on
the opposite road because of the multipath effect, which will decrease the accuracy for generating the
lane-level map. Thus, to address this issue, this paper proposes a physical attraction model based on
the matched OSM map.

According to [7,30], in the physical attraction model two types of forces act on the trajectories.
One is an attractive force from the other traces in the same direction and on the same road. The other is
a spring force to prevent the trace from moving away from its original position, as shown in Figure 10.
All the traces in the same direction will be grouped together by these forces. The accuracy of this
approach can reach the road level, but the original information of the trace is lost. Moreover, this
approach makes mistakes at crossings, and it is time-consuming to calculate the distance between one
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trace and all the other traces. Thus, this paper introduces the matched OSM map algorithm to address
these concerns.
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Figure 9. An example of the multipath effect. The yellow line is the OSM road from right to left and the
white line is the OSM road from left to right. The red dots are matched to the yellow road and the green
dots are matched to the white road. Some points appear on the wrong road because of the GPS error.
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Figure 10. Two types of forces acting on the trajectories. The green dots are the GPS points on a
trajectory and the black dots are the points on another trace.

In general, when a car drives on the road, it tends to keep driving in the same lane, unless an
emergency occurs or it drives to an intersection. Therefore, the traces tend to keep the same distance
with the matched OSM map. We calculated the attractive force by the relative distance between
the trace and OSM road. Compared to calculating the distance between one trace and all the other
traces, this method can greatly decrease the running time of the algorithm. At the intersection, our
method is more reliable because the OSM map constrains the direction of the force. The equations are
shown below:

F1(Pi) = −
M

σ3
√

2π
e(−

(di−d)2

2σ2 )
(di − d) (14)

F2(Pi) = k(y− di) (15)

F1(Pi) = F2(Pi) (16)

d =
∑n

i=1 di

n
, (17)

where M and σ are the two experimental parameters that determine the potential energy of the
attractive force, K is the spring constant, di is the distance from Pi to the matched OSM map points, d
is the average distance of di, and (y− di) is the difference of the distance between the new and the
original position of point Pi in order to keep F1(Pi) equal to F2(Pi). As shown in Figure 11, we set the
direction of the OSM road as the x-axis and the left side of the road as the y-axis. P′i is the new position
of Pi. The details are shown in Algorithm 3.
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4.2. Trajectory Preprocessing 

The trajectory preprocessing algorithm is an adaptive density optimization method. The result 

is shown in Figure 13. The red dots and black dots represent the selected GPS points and outliers, 

respectively; the noise points that are removed by this method. 

Figure 11. An example of the physical attraction model for point Pi. Pi means the ID of GPS points,
and di represents the distance from GPS points to the matched OSM road. P′i is the new position of Pi.
The green dots are the GPS points, and the red dot is the new point. The red lines are the OSM roads,
the black lines represent the original trajectory, and the black dashed lines indicate the new trajectory.

Algorithm 3 Physical Attraction Model

Input: Trajectory P1 → P2 → Pn; OSM-WayID-List;
Output: New Trajectory P′1 → P′2 . . . → P′n;

1: for t = 1 to n do
2: T = 0; K = ∞;
3: d = meandistance (d1, d2 . . . dn);
4: K = di − d;
5: While T ≤ 20 && K > 0.5 do
6: F1(Pi) = F2(Pi);
7: d

′
= meandistance ();

8: K = d′i − d
′
;

9: T = T + 1;
10: end while
11: end for

4. Experimental Tests of the Proposed Approach

4.1. Experimental Data

To test the algorithms proposed in this paper, we collected about 40 million GPS points from
thousands of taxis within one week in Wuhan, China. The sampling frequency ranged from 1 s to
10 min, as shown in Figure 12. Over 60% of the points are included in the sampling frequency range of
1–40 s.
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Figure 12. The experimental data. (a) GPS points collected from taxis; the yellow dots represent
the GPS points whose sampling frequency ranged from 2–10 min; the gray dots are the points who
sampling frequency ranged from 1–2 min; the orange dots are the points whose sampling frequency
ranged from 40–60 s; and the blue dots are the points whose sampling frequency ranged from 1–40 s.
(b) Distribution of the sampling frequencies.
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4.2. Trajectory Preprocessing

The trajectory preprocessing algorithm is an adaptive density optimization method. The result
is shown in Figure 13. The red dots and black dots represent the selected GPS points and outliers,
respectively; the noise points that are removed by this method.
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Figure 13. The results of preprocessing. The red dots are the preserved GPS points and the black dots 

are noise points (a) An example on a large scale. (b) The detailed results of the black rectangle in (a). 
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4.3.1. Evaluation Approach 

To evaluate the matching quality, we calculated the accuracy and recall, as shown in the 

following equations: 
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 ������ �� �������� ������ �� ������� ������
× 100% (19) 

4.3.2. Parameter Selection 
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Figure 13. The results of preprocessing. The red dots are the preserved GPS points and the black dots
are noise points (a) An example on a large scale. (b) The detailed results of the black rectangle in (a).

4.3. Map Matching

The matching data was labeled by real people. Compared to the synthetic trajectory data used
in reference [17], it is more reliable. The labeled data contains 34 traces covering about 494 km, as
represented in Figure 14.
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4.3.1. Evaluation Approach

To evaluate the matching quality, we calculated the accuracy and recall, as shown in the
following equations:

accuracy =
Number o f correctly matched points

Total number o f matched points
× 100% (18)

recall =
Number o f correctly matched points

Number o f relavant points in labeled points
× 100% (19)
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4.3.2. Parameter Selection

In Section 3.3.1, we used the threshold Tθ to screen out the candidate segments. The accuracy and
recall are different, depending on the choice of Tθ , as shown in Figure 15. The recall of the HCTPs is
about 86–92%, and the points matched as HCTP do not need to be matched further. This reduces the
running time of the algorithm. The accuracy of HCTP is about 90%. This means that Assumption 1, as
proposed above, is dependable. According to these results, when we set Tθ = 90◦ the accuracy and
recall reach their maximums.
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In the ST-matching step, the parameters included the following: µ, σ, w1, w2, τ, R.σ, R.u. µ

and σ are the mean value and variance of the normal distribution, respectively. In this paper, we set
µ = 0 and σ = 10. w1 and w2 are the weight of the observation and the transmission probabilities,
respectively. As explained above, the transmission probability is more reliable than the observation
probability; therefore, we set w1 = 0.3 and w2 = 0.7. The value of τ was 10 km/h. R.u and R.σ are the
mean value and variance of the road speed constraints, respectively. The values for the different roads
are shown in Table 2.

Table 2. The mean (R.u) and variance (R.σ ) of the road speed constraints for the different roads.

Threshold Motorway Trunk Primary Secondary Tertiary Service Residential

R.u 105 80 50 40 30 10 10
R.σ 5 7 3 3 3 3 1.5

4.3.3. Matching Result

We compared the HST-matching results with those of the ST-matching algorithm. To evaluate the
quality and efficiency of the two algorithms, we compared the accuracy and running time. Figure 16
represents the accuracy comparison results. When the number of points on a trajectory was in the
range 5–15, the HST-matching algorithm significantly outperformed the ST-matching algorithm; the
accuracy of the HST-matching algorithm showed about a 15% improvement. With an increasing
number of points in a trajectory, the performance of these two algorithms became more similar, but the
HST-matching algorithm still showed about an 8% improvement over the ST-matching algorithm.

4.3.4. Running Time

As shown in Figure 17, it is clear that the HST-matching algorithm is faster than the ST-matching
algorithm, especially when the number of points is in the range 5–15. This is because we calculate the
HCTPs first. This method greatly reduces the number of unnecessary calculations, especially when
there are fewer points on the trajectory. As the number of points increases, the time cost of the two
methods increases quickly and tends to become more similar. This is because the algorithms need
more time to calculate the shortest path with an increased number of points.
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4.4. Data Correction

4.4.1. Parameter Selection

In this part, there are three main parameters that need to be set: M, σ, and k. According to
reference [30], we set M = 1, σ = 10, and k = 0.005.

4.4.2. Correction Result

Figure 18 shows the original data. The data is messy, and there are a many points that appear on
the wrong side of the road, against the traffic regulations. After the data correction algorithm proposed
in this paper is used the position accuracy of the data improved. The trajectory no longer appears in
the opposite lane; the points corrected to the right position, as shown in Figure 19.
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the points matched to the upper black line, and the green dots are the points matched to the lower line.
The points from different directions are mixed together.
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Figure 19. The results of the correction algorithm represented in this paper. The points from different
directions separate well.

The algorithm proposed in reference [30] groups the traces with the same direction together; the
gap between them is less than 0.5 m, as represented in Figure 20. By this approach, the accuracy of the
data can only reach the road level, beyond which a lane-level map cannot be generated. Additionally,
original information of the floating car traces is lost. Moreover, there are still some mistakes at the
intersections when using this approach, as shown in Figure 21b; there are some incorrect edges that
need to be removed. In contrast, in our method points are previously matched to the OSM, so they can
be correctly clustered especially at the intersection, as shown in Figure 21a.
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Figure 21. An example of an intersection. (a) The result of the algorithm represented in this paper.
Various colors represent different directions of GPS points. (b) The result of the algorithm represented
in reference [30], in which there are some incorrect edges as represented by the teal lines.

The time complexity of the algorithm in reference [30] is (M2), where M is the number of nodes in
the GPS dataset. For each node, a dataset was a square (100 × 100 m) centered at the node. It took at
least 15 s to calculate the data for each node. However, the time complexity of the algorithm proposed
in this paper is (M). Our algorithm only needs 150 ms to calculate the data for each point—a marked
improvement on previous algorithms.

5. Conclusions

In this paper, we proposed a data correction algorithm for low-frequency floating car data. After
preprocessing the data, we employed an HST-matching algorithm to match the GPS trajectories with
the OSM map. The accuracy and running time of this algorithm were compared with those of the
ST-matching algorithm. The accuracy of the HST-matching algorithm was higher; the accuracy of the
HST-matching algorithm was always 8–15% higher than that of the ST-matching algorithm. Moreover,
we needed less time to calculate the results because we adopted a hierarchical algorithm to calculate
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the HCTP first. Next, the data was corrected by a physical attraction model based on the matched OSM
map. A verification experiment was conducted based on the data of actual taxi trajectories. The results
showed that the accuracy of the data after the correction was improved, especially at the crossroads.
Moreover, we improved the time efficiency by 150 times.

This paper proved that OSM can be used to improve the accuracy of low-floating car data. This
study was also useful for increasing the precision of the production of lane-level maps, which were
generated by the corrected data.

However, although we greatly improved the time efficiency, it still took a long time to calculate all
the data because of the huge quantity of floating car data. In the future, we will continue to improve
the calculation efficiency of this algorithm and to research the production of lane-level maps.
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