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Abstract: A passive harmonic tag for buried assets localization is presented for utility localization.
The tag design is based on a dual-polarized patch antenna at Ultra High Frequency (UHF) band.
One of its feeders is connected to a frequency doubler based on a Schottky diode that generates
the second harmonic, which is transmitted using a linear-polarized patch tuned at this frequency.
The power received at the other feeder of the dual-polarized antenna is harvested by an RF to DC
converter based on a five-stage voltage multiplier whose energy is used to bias a low-power quartz
oscillator that modulates the output of the doubler. The different parts of the system are presented,
and the theoretical read range is estimated as a function of the soil composition and the water content.
A low-cost reader based on a software defined radio is also presented. Finally, experiments with a
prototype of the tag are performed for different soil conditions.
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1. Introduction

Pipeline transportation is considered the safest, most progressive, and most economical mode of
transportation. Every day, energy resources such as refined petroleum and natural gas, as well as water
supplies, are all being transported through complex underground pipeline networks from production
areas or ports of entry to consumers, airports, military bases, population centers, and industry.
Most pipelines are typically designed to have a lifespan of more than 25 years. However, maintenance
and expansion operations are always required to meet high demands for safety, reliability, and efficiency.
During the excavation process, pipeline operators face a challenging and uncertain task in accurately
determining the position of buried pipelines, especially in urban areas. This leads to accidental
breakage of pipes that can be very costly and causes a significant delay in civil constructions [1].

In this context, there is an increasing need to use non-destructive techniques for detection
and localization of buried pipes in order to avoid and minimize failures during working processes.
There are two primary methods for detecting the locations of the underground infrastructures. The first
method is based on electromagnetic induction [2,3] and relies on materials being conductive or
metallic, which excludes the possibility of detecting plastic pipes recently used by many pipe operators.
The second method is GPR (ground penetrating radar), based on the propagation of a very short
electromagnetic pulse (1–20 ns) in the frequency band of 10 MHz–2.5 GHz [4,5]. Although GPR
has proven its efficiency in locating different types of pipes (especially metal pipes) and is the most
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widespread method, the use of this technique is quite expensive and requires experienced operators to
interpret the results of complex signal processing operations.

In recent years, Radio Frequency Identification (RFID) technology has grown significantly and
new applications have appeared, such as parking management based on RFID [6], tracking of objects
in hospitals [7], and localization based on RFID tags [8]. However, there are also other challenges such
as security aspects, interference issues [9], or undesired effects of the environment. In some of these
applications, special tags for metal surfaces or embedded tags are required [5,10–12]. Recently, RFID
systems have experienced a significant interest as a potentially cost-effective and less complicated
alternative technique for marking buried items [13,14], as well as for quality monitoring of oil and gas
pipelines [15]. The key challenges identified were the powering of these sensors and the communication
of the data to the operator, as a result of the attenuation of the electromagnetic signals caused by
the ground. To solve this problem, the use of active wireless systems [16] is a possible solution.
However, as a long lifetime is required for this application, passive devices provide a more efficient
solution compared with battery-powered devices. Also, passive green devices are preferred in order to
avoid soil contamination due to dangerous chemical substances in battery cells. Therefore, an energy
harvesting method to provide energy to the tag electronics is required. As the tags are buried, the easiest
way is to obtain the power from the interrogating radio frequency (RF) signal. On the other hand,
passive chipless RFID tags have been proposed for enhancement of the backscattered signal in the
detection of non-conductive pipes using commercial GPR systems. Both resonant tags and chipless
tags in time-domain have been proposed for this purpose [5,17–19].

As the attenuation of the soil increases with the frequency, another critical decision is to select
the frequency band of the tag. The patented system electronic marking system (EMS) by 3M [20] uses
low-frequency tags that can yield great ground penetration depths. A similar solution is shown in the
literature [21]. However, as frequency decreases, the minimum size of the tag increases considerably (due
to antenna dimensions) [22], which makes this technique more expensive compared with conventional
UHF RFID. The other option is to employ UHF passive RFID systems where higher transmitting power is
allowed compared with Industrial, Scientific and Medical (ISM) bands. The exact frequency band varies
between 865 MHz and 954 MHz depending on the region. In this frame, specific tag antenna design with
a high level of gain for underground localization applications has been reported in the works of [23–25].
Recently, smart floor applications such as indoor mapping, localization, and robot guidance have been
proposed in the literature [26–29] using different RFID bands.

The main drawback of these systems is that the continuous-wave (CW) signal powering up the
passive tags is inevitably coupled to the receiver input as a strong self-interference, which presents a
significant challenge to the reader’s receiver design. Moreover, a strong reflection due to the ground
proximity is expected, and thus several cancellation techniques to overcome this problem in the RFID
readers should be implemented [30,31].

The utilization of harmonic tags can be an interesting alternative that overcomes the undesired
leakage between transmitter and receiver. This tag configuration consists of a frequency multiplier that
generates a harmonic or sub-harmonic of the interrogation signal [32–34], providing a unique response
signal independent of the leakage from the transmitter. Harmonic radars have been used to track
insects for several years [32] using maritime radar-based technologies at X-band fundamental frequencies.
The transponder typically consists of a dipole antenna directly matched to a Schottky diode [34]. In this
application, it is possible to detect the insect at long distances within an environment with strong clutter,
often using modified X-band marine radars transmitting high power. A commercial system to discover
persons buried in avalanches is available from RECCO [35], which uses 917 MHz fundamental frequency
to achieve outstanding ground penetration capability. Recently, several harmonic tags have been proposed
in the literature for sensing applications [36–38] or combined with conventional UHF tags [39–41].

Previous works [42,43] discussed the feasibility of using harmonic tags for buried assets
localization with operational frequencies of 2.5 GHz and 5 GHz, and measurements were realized
using a high-dynamic range spectrum analyzer. However, a limited distance of interrogation was
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achieved (about 3 cm [42]). A humidity sensor based on a modulated tag has been presented by the
authors of [38] with a read range of 7 m in free space. In the literature [44], modulated harmonic tags
have been proposed for sensing applications where a read range of 4.5 m in free space is obtained using
a non-linear transmission line as a frequency doubler. The main advantage of using the modulated
harmonic tag compared with harmonic tags without modulation is the simplification in the receiver
design as the modulated tag response at the second harmonic can be easily separated from the coupling
at the second harmonic generated by the reader. Nevertheless, the modulated harmonic tags and
chip-based RFID have the common drawback that the electronics used to modulate the harmonic
components require a DC power source. In both cases, the tags [38,44] are powered based on an energy
harvesting module, which converts the interrogation signal at UHF band to DC.

The main contribution of this work is to study the feasibility of using frequency-modulated
harmonic tags for underground detection. To this end, an improved frequency-modulated harmonic
tag is designed based on the work of [38]. A theoretical analysis is presented to estimate the read
range, taking into account the different ground attenuations, which affect the interrogation signal
and the second harmonic. The conversion loss of the frequency doubler is characterized according
to the input power and is taken into account in the analysis. Measurements are performed for
different types of soil (dry and wet), showing the possibility of detecting the tag buried at a depth of
around 0.6 m, which highlights the potential of the proposed design. In contrast with simple one-bit
harmonic tag configurations ([17,42,43]), where detection is based on the presence or absence of the
tag, this work presents an advanced detection technique allowing the identification of the type of
pipeline by specifying a different modulation frequency for each type. The study is completed with a
proof-of-concept of a low-cost reader based on a simple Phase-Locked Loop (PLL) synthesizer used as
a transmitter and an RTL software defined radio (SDR) used as a receiver. To the best of our knowledge,
the frequency-modulated harmonic tag for localization of buried items is studied here for the first time.

The paper is structured as follows. Section 2 describes the system architecture and the harmonic
tag design. Section 3 analyzes the tag performance based on the criterion of the maximum depth that
can be detected depending on the attenuation of the ground. In this section, the theoretical reading
range underground is estimated as a function of the soil composition and water content. A low-cost
harmonic reader prototype based on an RTL SDR is presented in Section 4. A discussion of the results and
a comparison with the state-of-art is given in Section 5. Finally, some conclusions are drawn in Section 6.

2. Harmonic Tag

2.1. Frequency Bands and Regulations

A passive harmonic tag is based on a non-linear device (usually a diode) that generates a useful
emission at the second harmonic of the reader’s fundamental frequency. As in all passive RFID systems,
higher transmitted power makes harmonic tag detection easier. The options for high power license-free
operation are typically chosen between the 865/915 MHz, 2.4 GHz, or 5.8 GHz bands. In order to
reduce losses due to the soil, the lowest frequency band is preferable. Therefore, the UHF RFID band
at 865–868 MHz is chosen.

From a regulation point of view, one potential drawback is the interference of the second harmonic
generated by the harmonic tag. The second harmonic (1730–1736 MHz in Europe or 1810–1830 MHz
when 915 MHz is used) falls into the mobile Long Term Evolution (LTE) band 3. As the power received
at the tag is relatively small, conversion loss is high. The result is that the second harmonic falls
below the emission mask, as the typical license-free emission limit (FCC Part 15.209, in the United
States) in which the effective isotropic radiated power (Equivalent Isotropic Radiated Power, EIRP)
is −41.2 dBm at a distance of 3 m. In Europe, the ETSI standard EN 302 208 considers that the tag
response is a spurious emission that must be below −47 dBm (Equivalent Radiated Power, ERP) at
1 m of distance. Additionally, for the United States, the FCC has determined that such tags (like RFID)
are passive devices and the certification is done on the reader where the second harmonic can be easily
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filtered. Also, spread spectrum techniques used in modern mobile systems help to mitigate the effect
of potential narrowband interference. Moreover, as the tag is interrogated from the reader using a very
strong signal, typically −20 dBm or more to generate a useful return, any external interference over
the reader transmitted signal would be negligible. It is also sometimes forgotten that conventional
UHF tags work as non-linear elements, also generating spurious emissions [40,41], but fortunately,
they do not interfere with the systems that operate in the mobile communications band due to their
low level. This point will be discussed later according to the experimental results.

2.2. System Operation and Tag Description

The system is based on a harmonic reader configuration where the tag is placed over a pipeline as
shown in Figure 1. The depth of the pipes of different services depends on the application, but the tag
can be buried closer to the surface to facilitate its detection. This is an important difference compared
with detection techniques based on GPR systems where the measured backscattered pulses correspond
to the depth at which the pipes are buried. The reader interrogates the tag at the UHF frequency,
f 0 (a tone between 865 and 868 MHz). The tag is composed of a frequency doubler that generates the
second harmonic at 2f 0, which is modulated (modulation frequency fm) and transmitted by an antenna
tuned at the second harmonic. This modulated signal is then detected and filtered by the reader
where undesired reflections at f 0 coming from the ground or other objects (clutter) are eliminated.
Hence, the harmonic frequency component (2f 0 ± fm) allows for detecting the presence of the buried
tag. In this work, the tag is modulated using a low-frequency oscillator for tag identification and
facilitates its detection. The modulation frequency is adjusted depending on the asset or pipeline to be
detected. Therefore, the measurement of the modulation frequency allows for identification of the tag.
In addition, the introduction of the tag modulation concept simplifies the design of the reader as the
high isolation between the fundamental frequency and second harmonic is not required.

 

1 

 

 
(a) (b) 

Figure 1. Block diagram of the proposed harmonic system (a) and an image of a typical installation (b). 

 

Figure 1. Block diagram of the proposed harmonic system (a) and an image of a typical installation (b).

The tag is inspired from a previous harmonic tag used as a humidity sensor [38], but with some
modifications that have been performed to stabilize the modulation frequency, and the antennas have
been redesigned for the underground operation. The block diagram of the proposed tag is shown in
Figure 2. A prototype of the tag is implemented on standard 1.6-mm thick FR4 substrate, which is
shown in Figure 3. The reader transmits a continous-wave (CW) signal at frequency f 0 using a circularly
polarized antenna. The tag receives this signal using a dual-polarized patch antenna tuned at f 0. One of
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the outputs of this antenna is connected to the frequency doubler and a linear-polarized transmitter
antenna at 2f 0, and the other output to an RF-to-DC converter. The converter’s output is used to
bias a low voltage oscillator that modulates the tag response by changing the bias of the Schottky
diode at the frequency doubler. To this end, an oscillator based on two low-power NAND gates
(74AUP1G00, Plano, TX, USA) and a quartz crystal at the modulation frequency (32 KHz) are used
in this work. The high-quality factor of the quartz resonator allows using low-resolution bandwidth
filters (in the receiver) that reduce the noise and make the tag detection easier, because the oscillation
frequency is constant independently of the harvested voltage in contrast with the previous tag [21].
The schematic of the oscillator is shown in Figure 4. The frequency doubler is based on a zero-bias
Schottky diode (Avago Technologies, San Jose, CA, USA, model HSMS-2850) [21]. The fundamental
signal at f 0 is filtered using a high-pass filter (output filter in Figure 2) implemented with a λ/4 stub
at 2f 0. The second harmonic is blocked at the frequency doubler input using a short-circuited λ/4
stub at f 0 and a bypass capacitor. The output of the frequency doubler can be modulated by changing
the diode DC bias point. To this end, a bias resistor (Rbias) is inserted at the output of the oscillator.
The quarter wavelength line end is connected to the ground at RF using a bypass capacitor. The high
value of the resistor (1 kΩ) also blocks the RF signal and limits the DC current consumption, while the
DC return is allowed through the resistor.
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2.3. Tag Antenna Design

The antennas have been designed using the Keysight Momentum simulator. The size of the
receiver patch is 75 mm by 75 mm, and a 1-mm wide coplanar line is employed to match the antenna.
The length of the coplanar line is 14 mm. The transmitter patch has a dimension of 40.5 by 40.5 mm,
and the inset of the 1-mm wide coplanar line has a length of 12 mm.

Patch antennas are narrow-band antennas, especially if thin substrates are used [45]. As the
tag is buried in soil, a detuning due to the presence of high-permittivity material can be expected.
In addition, the tag must be protected from contact with moisture through a plastic box (see Figure 3).
By means of electromagnetic simulations, the effect of the height of the box and the soil permittivity
is studied. Figure 5 shows the reflection coefficient of the antennas for different air spacers (placed
between tag and soil due to the height of the protection box) varying between 3 mm and 12 mm.
A relative permittivity of 7 and loss tangent of 0.25 is considered as a worst case in the simulations in
order to simulate wet soil [46,47]. The plastic box is made with polylactic acid (PLA) using a 3D printer.
A 1-mm thick top cover has been considered in the simulations and in the prototype. The dielectric
permittivity (εr = 2.8 and tanδ = 0.003) used in the simulations is taken from the work of [48]. It is
shown that for a spacing of 12 mm, the detuning due to the presence of soil is small. Consequently,
in order to avoid the antenna’s detuning, the tag is inserted into a plastic box with an air gap of 12 mm
between the antenna and the soil, which also protects the tag against water (see Figure 3).
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2.4. Tag Characterization

A reader based on laboratory instruments to characterize the tag has been designed. A block
diagram of the experimental setup and a photograph are shown in Figure 6. It is composed of a
signal generator (Rohde & Schwarz SMA100A, Moorpark, CA, USA) connected to a power amplifier
(PA, Minicircuits ZHL-3010, New York, NY, USA). It is tuned at the fundamental frequency (f 0)
and is capable of performing sweeps in frequency and varying its power level. A commercial
circular-polarized UHF RFID antenna (Feig) is used in transmission. The receiver is a spectrum analyzer
(Rohde & Schwarz FSP30, Cary, NC, USA) with a preamplifier and a Band-Pass Filter (BPF) tuned at
the second harmonic band to avoid the saturation of the low-noise amplifier (LNA). A linear-polarized
antenna (Geozondas AU-1.0G4.5GR, Vilnius, lithuania) is used in reception. In addition, a multimeter
is connected to the output of the RF-to-DC converter to measure the rectified voltage. An oscilloscope
is used to measure the oscillation frequency and to check the oscillation of the tag.
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Compared with harmonic tags based on simple diodes [32,33], the oscillator requires a power
source that is obtained from the input rectenna. The RF-to-DC converter is based on a diode
voltage multiplier using five stages of series-connected zero bias diodes (Avago Technologies, model
HSMS-2852) [38]. The matching network at the input of the circuit is optimized to be matched between
−20 dBm and −10 dBm. It consists of an LC matching network and it is tuned with the network
analyzer. This circuit needs only 0.45 V DC to oscillate. From the characterization of the RF-to-DC
converter that is shown in Figure 7, a threshold power of around −20 dBm is required to bias the
circuit. At this threshold power, the efficiency obtained with the oscillator connected to the output is
about 15% (Figure 7b).

The tag read range will be studied in the next section. To this end, the conversion loss of the
doubler must be known. When the tag is modulated with an ideal square wave train, the expected
spectrum is the Fourier transform of the waveform pulse at the harmonics of the modulating frequency
(fm). Therefore, there is a modulation loss (K) with respect to the unmodulated case [49]. A prototype
of doubler for characterization purposes has been manufactured. Figure 8 shows the measured
conversion loss when the doubler is externally modulated with a 32 KHz square wave of 0.45 V
(minimum DC voltage needed by the oscillator). The conversion loss is obtained from the difference
between the measured power at the output at 2f 0 + fm and the input power at f 0, obtaining a value
around 34 dB for −20 dBm of input power.

Sensors 2018, 18, x FOR PEER REVIEW  8 of 21 

 

multiplier using five stages of series-connected zero bias diodes (Avago Technologies, model HSMS-

2852) [38]. The matching network at the input of the circuit is optimized to be matched between −20 

dBm and −10 dBm. It consists of an LC matching network and it is tuned with the network analyzer. 

This circuit needs only 0.45 V DC to oscillate. From the characterization of the RF-to-DC converter 

that is shown in Figure 7, a threshold power of around −20 dBm is required to bias the circuit. At this 

threshold power, the efficiency obtained with the oscillator connected to the output is about 15% 

(Figure 7b). 

The tag read range will be studied in the next section. To this end, the conversion loss of the 

doubler must be known. When the tag is modulated with an ideal square wave train, the expected 

spectrum is the Fourier transform of the waveform pulse at the harmonics of the modulating 

frequency (fm). Therefore, there is a modulation loss (K) with respect to the unmodulated case [49]. A 

prototype of doubler for characterization purposes has been manufactured. Figure 8 shows the 

measured conversion loss when the doubler is externally modulated with a 32 KHz square wave of 

0.45 V (minimum DC voltage needed by the oscillator). The conversion loss is obtained from the 

difference between the measured power at the output at 2f0 + fm and the input power at f0, obtaining 

a value around 34 dB for −20 dBm of input power. 

 

(a) 

 
(b) 

Figure 7. (a) Measured detected voltage as a function of input power at 868 MHz. The dashed line 

shows the minimum voltage needed to power up the oscillator (0.45 V). (b) Measured efficiency as a 

function of the input power at 868 MHz. 

Figure 7. (a) Measured detected voltage as a function of input power at 868 MHz. The dashed line
shows the minimum voltage needed to power up the oscillator (0.45 V). (b) Measured efficiency as a
function of the input power at 868 MHz.
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Figure 8. Measured conversion loss as a function of input power when the frequency doubler is
modulated with a 32 KHz 0.45 V square wave.

Compared with the tag presented in the work of [38], the modulation frequency is determined by
the quartz crystal, and it is not sensible to the variation of the bias voltage. Therefore, as the power
reaching the tag overcomes the oscillator power threshold, the modulation frequency detected does
not vary with the input power. The frequency modulation of the tag proposed in this work has several
advantages. First, it overcomes the inevitable parasitic coupling between transmitter and receiver at the
second harmonic. This undesired harmonic signal is mainly generated by the output power amplifier
in the reader transmitter. Figure 9 shows a couple of measurements of the receiver spectrum using the
setup of Figure 6 considering the tag over the ground located at 70 cm from the reader antennas and
without the tag. As shown in Figure 9, a residual level at 2f 0 is always detected, despite the use of
filters, even in the absence of the tag. Therefore, this modulation technique increases the tag read range
because measurements are performed at 2f 0 + fm, and thus are not affected by the coupling limitations.
Furthermore, different oscillation frequencies can be chosen, as shown in Figure 10, by changing the
quartz crystal depending on the target to be identified (e.g., water, gas, or electricity installations).
These features highlight the potential of applying the proposed design in this work. The received level
clearly complies with the regulations.
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3. Read Range

3.1. Soil Attenuation Model

In order to estimate the maximum underground range for tag detection, a study of the soil’s
attenuation loss is required. The attenuation can be obtained from the complex dielectric constant
of the soil. It can be divided into two parts. The first one, called the reflection attenuation, is the
result of the reflection produced when the wave changes medium (air–soil), and the second one is the
attenuation due to the soil’s loss. These components can be estimated from the dielectric constant of
the soil. The reflection attenuation (Lr) is independent of the distance, and can be calculated for normal
incidence using the Fresnel coefficient.

Lr(dB) = −10 log

(
1−

∣∣∣∣√εs − 1√
εs + 1

∣∣∣∣2
)

(1)

The attenuation loss due to the propagation (Lp) can be calculated from the complex propagation
constant γ and the propagation distance d.

Lp(dB) = 8.686α(Np/m)× d (2)

α(Np/m) = −Im(γ) =
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where εs = εs′ − jε′′s is the complex dielectric relative constant of the soil and c is the speed of light in
the vacuum.

The dielectric constant depends on soil physical properties including bulk density, soil texture,
and the level of water content. The dielectric soil properties can be measured following the procedure
described in the literature [43] from the measurement of the S parameters with an especial coaxial
fixture. After de-embedding the S parameter of the coaxial line with the soil as a dielectric, the dielectric
constant can be found using the Nicholson and Ross algorithm. In this work, we use the model
of Peplinski et al. [46,47], which is validated for the frequency range of 0.3–1.3 GHz. This model
provides expressions for soil dielectric constant as a function of the soil volumetric water content
θV, the frequency f, the fraction of sand particles S, the fraction of clay particles C, the density of the
soil particles ρS (a typical value is 2.66 g/cm3), and the bulk density of the soil ρB (an average value
is 1.6 g/cm3).
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Using Equations (1)–(3) and the dielectric constant given by Peplinski’s model, Figures 11 and 12
depict the simulations of the attenuation coefficient α in (dB/m) and the reflection loss at f 0 (865 MHz)
and 2f 0 (1730 MHz) for two soil cases; namely, case 1 (sand fraction S = 15%, clay fraction C = 20%)
and case 2 (sand fraction S = 60%, clay fraction C = 20%). The attenuation coefficient increases with
the frequency especially when the water content increases, and it is noticeably higher at the second
harmonic. These simulations show that the attenuation can vary considerably depending on the
composition of the soil. On the other hand, the loss due to signal reflection at the boundaries of the
two mediums (air and soil) is considerably lower than the attenuation due to propagation.
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3.2. Link Budget

The read range in an RFID system can be limited by the uplink (reader to tag) or by the downlink
(tag to reader) [49,50]. In the uplink, the tag must receive enough power to be activated (Pr, tag > Pth),
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whereas in the downlink, the backscattered power (Pr, reader) by the tag must be higher than the reader
sensitivity (Smin).

In a conventional UHF RFID system, as the reader’s antenna interrogates the tag in the air,
the main problem is the fading due to multipath interference from objects, especially in indoor
environments. The read range is limited by the tag sensitivity as the propagation loss is the same in
both directions.

In this application, the reader antennas are close to the ground (for example, at 10 cm in order
to avoid detuning by the proximity of the ground), and the main source of attenuation is the result
of the loss of the soil that depends on its composition. Therefore, the read range is the maximum
distance that complies with the two conditions (Pr, tag > Pth and Pr, reader > Smin). The main advantage
of harmonic systems is that the receiver sensitivity in the reader may be noticeably better than in a
conventional reader because the coupling interference between the reader transmitter and receiver
can be filtered as the receiver is tuned at the second harmonic. As discussed previously in Section 2,
the effect of residual coupling at 2f 0 can be reduced by improving the filters in the transmitter and
receiver or by modulating the radar cross-section as in conventional tags. In this work, the second
option is investigated.

The power received at the tag from the reader can be calculated from the Friis equation,
the reflection loss, and the attenuation [38], as follows:

Pr,tag(dBm) = EIRP(dBm)− 10log
(

4πd2
g

)
+ Gtag(dB) + 10log

(
λ2

4π

)
− Lr(dB)− Lp(d)(dB) (4)

where dg is the distance from the reader antenna to the ground; λ is the wavelength at f 0; EIRP is
the equivalent isotropic radiated power of the reader (limited by the regulations); Gtag is the gain of
the tag antenna; Lr and Lp are the reflection and propagation loss of the soil in dB, given by (1) and
(3), respectively; Lp is a function of the underground distance; d. Gtag is the gain of the tag antenna;
and GR, reader is the gain of the reader antenna in reception.

The backscattered power in a harmonic tag is given by the following [38]:

Pr,reader(dBm) = Pr,tag(dBm)− CL(dB) + Gtag,2(dB)− 10log

(
λ2

2
4π

)
+ GR,reader(dB) (5)

where CL is the doubler conversion loss (including the modulation factor, that is a function of the
Pr, tag power and is given in Figure 8), Gtag, 2 is the antenna gain at 2f 0, and λ2 is the wavelength at
2f 0 (=λ/2).

3.3. Tag Read Range

Figure 13 shows read range simulations as a function of the received power for dry and wet soil
(case 2: 60% sand, 20% clay). The volumetric water content (VWC) in the case of wet soil is considered
the worst case, close to the saturation (30%). Considering tags with a threshold power of −20 dBm,
the link budget is limited by the downlink (received power at the reader). Table 1 summarizes the
main parameters used in calculations.

These results show that the read range underground depends on the water content. In the case of
wet soil, the read range is about 0.7 m for a receiver sensitivity of −110 dBm (considering a 10 dB of
margin over the noise floor). Indeed, it is different than traditional UHF RFID applications in the air,
where the read range is limited by the threshold tag power.

Although the attenuation of the soil at the second harmonic is higher than at the fundamental
frequency, better read range performance is obtained for the harmonic tags because the receiver
sensitivity is better than that of conventional UHF readers (≈−73 dBm).
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Table 1. Parameters used in the read range simulations. EIRP—equivalent isotropic radiated power;
VWC—volumetric water content.

Parameter Value Unit

Transmitter EIRP 2 W
Frequency f 0 865 MHz

Tag antenna gain, Gtag at f 0 6 dB
Tag antenna gain, Gtag, 2 at 2f 0 6 dB

Reader antenna gain, GR 6 dB
Volumetric water content VWC for the wet soil 30 %

Distance to ground, dg 10 cm

Measurements have been performed with the instruments shown in Figure 6 and the tag buried
underground. To this end, the tag was placed in a cylindrical plastic container with a diameter of
0.6 m filled with soil with known water content. This container was placed inside a hole in the
ground. The volumetric water content (VWC) is determined from the ratio between the soil and water
introduced in the container. The antennas of the reader were placed 10 cm away from the ground.
Figure 14 shows measurements of the received power (at frequency f 0 + fm) with the tag buried 60 cm
underground for two volumetric water contents (5% and 25%). The first water content is close to the
residual value of dry soil and the second is close to the saturation value for the soil used. This figure
also compares a measurement of the tag in the air at the same distance from the antennas (70 cm) and
the measurement of the noise floor (measurement without tag). The equivalent isotropic radiated
power (EIRP) is swept from 19 dBm to 33 dBm, as shown in Figure 7a, and the frequency is swept in
the European RFID band (865–869 MHz) for the case of EIRP of 33 dBm. The measured power level
with the spectrum analyzer is referred to the antenna input after subtracting the gain of the chain of
amplifiers and filters connected to the input of the spectrum analyzer to reduce the noise factor of the
instrument. The effect of the attenuation of the soil can be observed, especially for high volumetric
water content. An attenuation of about 19 dB (or 32 dB/m) and 25 dB (or 42 dB/m) between the case
of the tag and the air and the tag buried for 5% and 25% VWC, respectively, is found. These values of
attenuation are within the order of magnitude obtained in Figure 11. A difference of about 10 dB over
the noise floor for the case of 25% of VWC is observed, which leaves a certain margin to detect the tag
if there are variations in attenuation caused by changes in the composition of the soil. A nearly flat
response is obtained in all frequency bands (Figure 14b).
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Figure 14. (a) Measured tag response under different conditions (tag in the air, buried in the soil,
and without tag) as a function of the transmitted power (equivalent isotropic radiated power—EIRP)
and a function of the input frequency (b) for the EIRP of 33 dBm.

4. Low-Cost Harmonic Reader

Unfortunately, harmonic readers are not yet commercially available. A proof-of-concept reader
based on a generator with a power amplifier and a spectrum analyzer is implemented. A low-cost
implementation based on an SDR device (RTL–SDR based on chipset R820T2 RTL2832U) and free
open source SDR software (SDRsharp) is presented in Figure 15. A photograph of the system is
shown in Figure 15b. The transmitter is based on a PLL synthesizer where a low-cost 868 MHz
ISM band FM transmitter (FM-RTFQ1-868) from Telecontrolli is employed. A chain of amplifiers
composed by Minicircuit Gali-84+ and Broadcom ALM-31122 are used to reach maximum output
power (26 dBm). An attenuator is included to avoid the saturation of the amplifiers and to control
the output power. Custom combline passband filters were designed using microstrip technology.
A bandpass filter centered at 868 MHz is added to filter spurious emissions at the second harmonic.
The receiver is composed of a bandpass filter at the second harmonic and two amplifiers. The first
amplifier (Minicircuits GALI-84+) presents a high compression point to avoid the saturation of the
chain. The second block amplifier is the Minicircuits ERA-3SM. The microstrip combline filters are
designed to be connected both before and after the transmitter/receiver antenna. A dual-polarized
RFID antenna (model FEIG gain 8.5 dBi) is used in transmission, as well as a custom circular-polarized
patch antenna (a circular path with a hybrid) with gain 6 dBi in reception. A photograph of the system
mounted on a trolley is shown in Figure 16. In order to control the soil’s water content, the tag is
submerged in a plastic container within a hole in the ground. The water content of the soil of the
container is known. The tag is placed again at a distance of 70 cm from the TX/RX antennas and
buried 60 cm under the ground. Figure 17 shows a screenshot of the SDRsharp corresponding to the
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measurement of the tag’s response when the prototype of the reader passes over it. When the tag is
out of range, a central peak caused by the parasitic coupling appears in the center of the spectrum
(Figure 17b), whereas when the antennas are on top of the tag, a couple of peaks at the modulation
frequency arise around the central frequency (Figure 17c). A version of SDRsharp is available also for
Android devices; therefore, the software can run on a small tablet or smartphone in order to reduce the
weight of the system in a future potential commercial product.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 

 

(Figure 17b), whereas when the antennas are on top of the tag, a couple of peaks at the modulation 
frequency arise around the central frequency (Figure 17c). A version of SDRsharp is available also for 
Android devices; therefore, the software can run on a small tablet or smartphone in order to reduce 
the weight of the system in a future potential commercial product. 

Attenuator

Tx
FM-

RTFQ1-
868

BPF
865 MHz

ALM-31122
GALI-84+

BPF
1710 
MHz

Rx
RTL-SDR

GALI-84+ERA3-SM

USB

 
(a) 

 
(b) 

Figure 15. Block diagram (a) and photography (b) of the low-cost reader implemented. 

 
Figure 16. Photography of the system and measurement setup. 

Finally, Figure 18 shows a comparison between the tag responses using the proposed low-cost 
reader for three configurations. The comparisons between previous measurements in Figure 18 
demonstrate the limitation of this reader because the PLL presents a higher noise level. This affects 

Figure 15. Block diagram (a) and photography (b) of the low-cost reader implemented.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 

 

(Figure 17b), whereas when the antennas are on top of the tag, a couple of peaks at the modulation 
frequency arise around the central frequency (Figure 17c). A version of SDRsharp is available also for 
Android devices; therefore, the software can run on a small tablet or smartphone in order to reduce 
the weight of the system in a future potential commercial product. 

Attenuator

Tx
FM-

RTFQ1-
868

BPF
865 MHz

ALM-31122
GALI-84+

BPF
1710 
MHz

Rx
RTL-SDR

GALI-84+ERA3-SM

USB

 
(a) 

 
(b) 

Figure 15. Block diagram (a) and photography (b) of the low-cost reader implemented. 

 
Figure 16. Photography of the system and measurement setup. 

Finally, Figure 18 shows a comparison between the tag responses using the proposed low-cost 
reader for three configurations. The comparisons between previous measurements in Figure 18 
demonstrate the limitation of this reader because the PLL presents a higher noise level. This affects 

Figure 16. Photography of the system and measurement setup.



Sensors 2018, 18, 3635 16 of 21

Finally, Figure 18 shows a comparison between the tag responses using the proposed low-cost
reader for three configurations. The comparisons between previous measurements in Figure 18
demonstrate the limitation of this reader because the PLL presents a higher noise level. This affects the
measurements performed under wet soil because the tag cannot be detected when the water content is
higher than 15%.
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Figure 18. Comparison of tag measured spectrum response at 2f 0 = 1732 MHz as a function of the
offset frequency (∆f ) for three configurations: (i) tag in the air, (ii) tag buried under dry soil, and (iii)
tag buried under the wet soil (VWC 15%).

5. Discussion

An estimation of the cost of the system (for medium–large quantities) is given in Table 2. The price
of the tablet, smartphone, or PC for data acquisition has not been included, because the software
(i.e., SDRsharp) can run on different platforms and does not have specific requirements. The cost of
the reader is around two hundred dollars and the tag is about four dollars. The cost of the reader is
significantly lower than a UHF reader (between $1000 and $2000). The cost of a tag is comparable to
a UHF tag for metallic applications, however, specific Integrated Circuit (IC) should be designed in
order to improve the integration and reduce cost.
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In order to compare the proposed solution with the state-of-art, Table 3 compares several
techniques proposed in the literature for buried utility localization. The proposed system is easy
to use and the cost is significantly lower than that of GPR systems used for pipe localization that,
in addition, require specialized operators to interpret the measurements. In order to improve the
resolution, GPR systems for pipe detection commonly use antennas between 900 MHz and 2000 MHz,
therefore, the detection depth depends on soil losses and water content as in the proposed system.
An enhancement system based on resonators has been proposed in the literature [5], obtaining a
detection depth of 0.6 m at around 900 MHz. Enhancement techniques for improving the detection of
GPR signals based on antennas loaded with delay lines are proposed in the works of [17,18], obtaining
detection depths of 1.1–1.2 m in dry soils. Recently, surface acoustic wave (SAW) RFID tags at 915 MHz
have been proposed in the literature [51], obtaining a detection depth of 1.3 m. In the work of [24],
UHF RFID metal tags are used for manhole detection. The highest depth underground that is detected
is 10 cm. Also, depths of about 10 cm are reached for tags embedded in bricks and mortar in the
work of [29]. Special antenna designs for buried tags using air spacers as proposed iin the work
of [23], or antenna designs used in this work can reduce the detuning effect due to the soil. However,
the higher receiver sensitivity in the harmonic system allows the detection at higher depths compared
with UHF systems. Few experimental results have been found in the literature employing buried
harmonic tags. Experimental results with a harmonic tag buried at 3 cm under the sand are given in
the work of [42], transmitting 7 dBm at a 2.4 GHz ISM band. In the work of [17], a harmonic tag based
on silicon PN diode at 150 MHz is proposed for detection of buried object, but only experiments in
free space are presented. Harmonic tags based on a varactor diode at 400 MHz have been proposed
for the underground detection in the work of [43], but again experimental results in free space have
only been presented up to 76 cm. Several low-frequency (LF) RFID systems (125–135 kHz) have been
investigated for the underground detection in the work of [52,53]. However, their detection depths are
often far from the 1.5 m obtained with the commercial system of 3M [20] at LF. This system exploits
the noticeably less attenuation at LF compared with that at UHF or microwave systems to achieve this
depth. In order to obtain higher detection depths or detection under ice, an active transponder must
be used [14]. The main drawback of an active transponder is the finite lifetime of the batteries and
the cost of the tag compared with passive RFID tags. Another potential application of the proposed
sensor is smart floor applications for indoor mapping, localization, and guidance [29]. Both UHF [29]
and High Frequency (HF) RFID [28] are often proposed for smart floor applications. However, in the
work of [27], passive reflectors buried under the tiles and semipassive ultra-wide-band (UWB) tags
are detected with a low-power Impulse Radio-UWB (IR-UWB) radar using a time-domain analysis
similar to the one used in GPR systems. In smart floor applications, the tag is often under tiles in
indoor environments and the depth of the buried tag is from a few millimeters to 1 cm. Therefore,
the attenuation introduced by these materials is lower than that due to tags underground, especially if
the soil is not dry.

Table 2. Estimated cost of different parts of the system. SDR—software defined radio.

Parameter Cost ($)

RTL–SDR 20
Reader Antennas 100

Filters 10
Amplifiers 10

Power Supply 20
Connectors and box 20

Trolley 50
Tag 4
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Table 3. Comparison of different techniques for detecting underground objects. GPR—ground
penetrating radar.

Reference Technique Deep Underground Comments

[5] GPR (time domain) 0.6 m Detection of pipes using tag resonators with GPR
(GSSI model) at 900 MHz with tag resonators.

[17] GPR (time domain) 1.1
Detection of a dipole antenna with a delay line
buried using GPR (Sensors model) operating at a
center frequency of 900 MHz in a dry sand.

[18] GPR (time domain) 1.2 Detection of FAT dipoles with delay lines at
900 MHz with VNA in dry soil.

[19] GPR (time domain) 0.45 m Detection of resonant tags with GPR (GEOTCH
OKO-3 model) at 700 MHz in dry sand

[51] SAW RFID 915 MHz 1.3 m SAW RFID at 443 MHz and 915 MHz in dry soil
transmitting 30 dBm.

[20] LF RFID 1.5 m Electronic marking system (EMS) by 3M.

[52] LF RFID (134.2 kHz) 0.24 m Passive integrated transponder (PIT) for tracking
soil movements.

[53] LF RFID (135 kHz) NA Underground pipeline location.

[28] HF RFID 8 mm Smart floor application with standard 13.56 MHz
tags under the tiles.

[24] UHF RFID 10 cm UHF RFID metal tags are used for
manhole detection.

[29] UHF RFID 10 cm Metal UHF tags embedded in bricks and mortar.

[27] IR UWB radar 1 cm Detection of metallic reflectors under the floor for
smart floor application with UWB radar.

[42] Harmonic tag at 2.4
GHz 3 cm Harmonic tag with a reader transmitting 7 dBm.

[43] Harmonic tag at 400
MHz NA Experimental results in free space up to 0.76 m at

400 MHz using a varactor based harmonic tag.

[17] Harmonic tag at 150
MHz NA Harmonic tag at 150 MHz (preliminary

experiments in free space).

This work Harmonic UHF 30–60 cm Harmonic tag with harvester and modulator.

[14] Active tag at 315 MHz NA 500 mW transmitter under the ice.

6. Conclusions

A passive harmonic tag has been presented for buried assets localization. In order to identify
different utility services underground and facilitate the detection, the tag is modulated using a
low-power oscillator that is fed from RF energy harvesting. The theoretical read range is estimated
from the attenuation model found in the literature. The experimental results show that the harmonic
tag reaches read ranges up to 60 cm under the soil with a 25% water content. A low-cost harmonic
reader prototype based on an inexpensive SDR receiver was also developed.
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