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Abstract: Adhesive bonded structure damage of hidden frame glass curtain wall will cause falling
glass, which threatens the security of people and property. Therefore, the damage detection of the
adhesive bonded structure of glass curtain wall has great significance. In this paper, active thermal
sensing technology for bonding structure damage detection was introduced. Firstly, the thermal
wave propagation of bonded structure was analyzed. Second, the simulated annealing algorithm
and TracePro simulation were utilized to design the heat source. Thirdly, the platform of active
thermal sensing was built, and experiments were conducted. Finally, image fusion enhancement
of Laplacian pyramid was utilized to the enhancement process of thermal images. The simulation
results showed that the irradiance of the cross-optimization was more uniform, and the uniformity
was 17.50% higher than the original design value. The experiments results showed that defects of
different sizes and depths can be distinguished. The gray differences of the damages on the depth
of 0 mm and 4 mm were 0.025 and 0.045, respectively. The thermal wave testing can detect damage
intuitively and rapidly, which is significant for the future research of unmanned detection of bonding
structure damage of hidden frame glass curtain wall.

Keywords: bonding structure damage; active thermal sensing; heating source; fusion enhancement;
thermal wave testing

1. Introduction

Hidden framing glass curtain wall is generally used in glass buildings, due to its architecturally
exterior and excellent seismic performance. However, safety problems threaten the security of people
and property, such as falling glass. Due to the abominable installation environment, the adhesive
bonded structure has various types of damage, such as aging and cracking, which will develop into
debonding. The mechanical balance of glass curtain wall with debonding defect is broken and the
glass is easy to fall off. Therefore, the damage detection of the adhesive bonded structure has great
significance for ensuring the safety of hidden frame glass curtain wall.

Researches on adhesive bonded structure damage detection of in-service glass curtain wall mainly
used dynamic methods [1-7]. For example, Miao Y. et al. provided a method based on FFT power
spectrum of pulse transient dynamic response to study the relationship between the proportion of
power spectral main peak frequency and the damage length of the bonded structure in hidden frame
supported glass curtain wall [1]. Gu J. et al. used Hilbert-Huang transform to identify the silicone
sealant damage of the glass curtain wall by analyzing the vibration transmissibility of vibration
response signal IMF [2]. Liu X. et al. proposed a method by using the dynamic measurement of the
natural frequency to evaluate the damage extent of curtain wall glass [3]. Hong X. et al. used nonlinear
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ultrasonic lamb wave and nonlinear ultrasonic modulation respectively to detect debonding defects in
hidden frame supported glass curtain walls [4,5]. Xu B. et al. used vibration displacement measurement
in damage detection for a frame structure model [8], and used wavelet packet analysis in debonding
detection [9,10]. Sethi V. et al. studied vibration control of model frame structure [11,12]. In addition,
adaptive algorithm [13], special sensor [14] and data fusion [15] had been used in health monitoring
of high-rise structure. The researches of dynamic measurement provided a practical direction for the
detection of in-service glass curtain wall. However, dynamic method requires vibrating glass wall,
which may cause the glass with adhesive bonded structure damage to fall off.

As a nondestructive sensing technique, thermal wave sensing has advantages of non-contact, fast
and effective. According to whether external thermal excitation sources are needed, thermal wave
sensing can be divided into passive thermal wave sensing and active thermal wave sensing [16]. Active
thermal wave sensing is mainly used for the detection of debonding of composite materials and surface
defects of parts when the thermal wave of tested objects is equivalent to the surrounding environment.
There are few studies focused on adhesive bonded structure damage detection of hidden framing
glass curtain wall using thermal method. Researches on active thermal wave sensing for damage
detection include thermal excitation and thermal image enhancement. In the studies of thermal
excitation, different thermal excitation sources and thermal excitation functions are used to detect
specific objects. The normal thermal excitation sources used in thermal wave testing include flash
lamp [17], light emitting diode (LED) [18], terahertz [19], microwave [20]. For example, Yang Z. et al.
improved the uniformity and energy utilization of pulsed flash lamp excitation by fabricating cover
and reflector [17]. Pickering S.G. et al. used high-power LED arrays as thermal excitation for long
pulsed and lock-in thermal excitation to detect carbon fiber-reinforced plastic with artificial defects [18].
Pulsed thermal excitation [21], pulsed phase thermal excitation [22], lock-in thermal excitation [23] and
modulation thermal excitation [24,25] are commonly used as thermal excitation functions. For example,
Tao N. et al. detected the glue faults between supporting spars and glass fiber-reinforced plastic shells
with different thickness by using pulsed thermography [21]. Brown J. et al. studied and compared
the phase images of lock-in thermal excitation and constant step thermal excitation on detection of
fiber-reinforced plastic strengthened bridge [23]. Guo X. et al. carried out modulated infrared thermal
wave nondestructive testing for cladding debonding detection of solid rocket motors by finite element
method [24]. A variety of thermal excitation sources are available in thermal wave testing, but have
disadvantages of uniformity of thermal excitation and high-power consumption. By optimizing
the thermal excitation source, the uniformity of thermal excitation and power consumption can be
improved. For different objects, different thermal excitation functions should be applied. For bonded
structures, pulsed thermal excitation is suitable for its simple thermal image sequence processing.

In the researches of thermal image enhancement, conventional image processing technologies
have been applied to thermal image enhancement, such as principal component analysis [26], signal
reconstruction [27], thermographic signal reconstruction (TSR) [28,29], wavelet transform [30] and
adaptive image enhancement [31]. For example, Zheng K. et al. proposed a mathematical morphology
for the analysis of geometrical structures to highlight the defects of carbon fiber reinforced plastics
by subtracting backgrounds [26]. Shepard S.M. used a logarithmic function to fit the temperature
curve and reconstructed temperature curve to reduce the influence of non-uniform emissivity [27].
Chapuis B. quantitatively assessed the improvement of the detectivity of defects in smart composite
repair patch using TSR approach [28]. Wang ]J. et al. put forward to an image denoising method based
on wavelet transform to reduce the noise of thermographic data [30]. Wu Y. et al. proposed an adaptive
thermal image enhancement method based on contourlet transform and adaptive chaotic variation
particle optimization to suppress noise and enhance details [31]. In conclusion, these conventional
image processing technologies get great results on the improvement of contrast ratio and highlighting
defect of thermal image. But, there is still little research of thermal image enhancement on adhesive
bonded structure damage of glass materials.
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Thermal wave testing uses a thermal excitation source to heat the object to be inspected.
The damaged region forms a significant temperature difference with the normal region. The application
of active thermal sensing to damage detection has advantages of intuitive, reliable, fast and effective.
Taking electromagnetic radiation as heat source has advantages of non-contact, good uniformity, and a
large detection area, which is suitable for adhesive bonded structure of glass curtain wall. In this
paper, the active thermal sensing is used to detect adhesive bonded structure damage. A mid and far
infrared (MFI) thermal excitation device with pulse function is designed and optimized for the testing
of adhesive bonded structure damage. Moreover, image fusion enhancement is used to highlight the
defects on thermal images.

This paper is organized as follows. Firstly, it introduces the principle of thermal wave testing on
glass curtain wall and image fusion enhancement of Laplacian pyramid. Secondly, it introduces the
design of thermal excitation. Thirdly, an experiment platform is set up and the experimental results
are presented. Finally, the conclusion is given.

2. Mechanism and Methodology

2.1. Principle of Active Thermal Sensing on Glass Curtain Wall

Most glasses of curtain wall have excellent absorption capacity in mid-infrared radiation segments
(3~6 pm) and far-infrared (6~15 pm) radiation segments. The MFI radiation is mostly absorbed by the
surface of the glass, which can be seen as a gray body with constant emissivity. Therefore, MFI radiation
is selected as heat source of the thermal wave detection, and glass is simplified as a gray body in
this paper. After glass curtain wall absorbs MFI radiation, the temperature of glass surface rises first.
The spectral radiance Ep) of glass curtain wall can be calculated according to the Planck’s law [32]:

Cl)\75

Epy = ng/ 1)

where T represents the absolute temperature; A is the radiation wavelength; C; and C, represent
the Planck’s first and second constant, respectively; &, is the curtain wall glass emissivity.
The full-wavelength integration of A on both sides of Equation (1) reveals the relationship between the
irradiance of glass and absolute temperature as follow:

5
E, = / EypdA = / sgecflj; dA = ego T, @)
where ¢ is the Stephen Boltzmann constant.

Equation (2) shows that the temperature of curtain wall glass will rise after receiving thermal
excitation radiation, and the irradiance of glass is proportional to the fourth power of the absolute
temperature. Thus, the temperature of glass can be detected by using infrared camera to capture the
irradiance. Compared with contact testing, thermal wave testing has the advantages of no influence
on the surface temperature distribution of the glass, short response time and being suitable for large
testing area, which greatly improve the efficiency of damage detection.

MFI radiation is mostly absorbed by the surface of the glass when it irradiates on the glass curtain
wall, causing the temperature rising of the glass surface. Then, heat transfers to the interior of the
glass in the form of direct thermal wave. The glass curtain wall can be approximated as an infinitely
large multi-layer board without an internal heat source. In the thermal wave testing for adhesive
bonded structure of glass curtain wall, the propagation of heat wave in adhesive bonded structure of
glass curtain wall can be regarded as a one-dimensional unsteady heat conduction without inner heat
source (Figure 1). The differential equations of one-dimensional unsteady heat conduction are shown
in Equation (3):
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where a1 and &, are the Stephen Boltzmann constant.
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Figure 1. The propagation of heat wave in adhesive bonded structure of glass curtain wall.

During the thermal wave testing of glass curtain wall, the power of thermal excitation source is
far greater than the power loss to the environment. Ignoring the heat conduction of the environment
and the glass curtain wall, the glass is only affected by the MFI radiation source. The thermal excitation
can be express by the following equation:

D i) = s (1), @
X x=0
where A is the thermal conductivity of the curtain wall glass; ¢'(t) is the heat flux density of the thermal
excitation source, also known as irradiance; a is the absorption rate of glass; 4(t) is the irradiance
absorbed by the glass.

The glass is tightly bonded by the structural adhesive. Therefore, the thermal parameters on both
sides of the bonding interface are continuous. The continuous conditions are shown as follows:

Tl(dll t) = TZ (dl/ t)/ (5)
Y oT1(x, 1) _ _AzaTz(x, t) ©)
GRS P ox  |y_g

where A, is the thermal conductivity of structural adhesive; d; and d, are thicknesses of glass and
adhesive, respectively.
Setting the temperature of glass surface is T}.

Ti(x,0) = T2(x,0) = Ta(eo, t) = T, 7)

Tz(OO,S) =0. (8)

To simplify the subsequent analysis, detection temperature scale T = 0 was used in thermal wave
testing. The final temperature distribution of the glass needs to add the true temperature of the glass
curtain wall.

By using Equation (3) into (7), the one-dimensional unsteady Laplace equations can be obtained

as follow: -
9 J 7;19{(235,5) =sTq (x, s) (9)
27T, —
w2 Tazx(zx’s) =sTy(x,s)
The boundary conditions are shown as follows:
oTy(x,s) B
M| =) (10)
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_, 9Ti(x,s) _, 9Ta(x,s)
M—— =—A—— , (11)
ox xedy ox vedy
T1<d1,5) = Tz(dl,s) (12)

where T (x, s), Ta(x, s) and Q(s) are the Laplace transforms of Ty (x, t), T2(x, ) and g(t), respectively.

When there is a damaged in adhesive bonded structure, the heat wave is blocked to the deep layer
of the structural adhesive. Reflected heat wave is formed at the damage interface, which is reflected
again when it propagates to the surface of the glass [33]. As shown in Figure 2, the thermal wave is
composed of direct thermal wave from the thermal excitation and reflected heat wave, causing the
temperature of glass rising. Due to the rapid attenuation of reflection thermal wave, the reflected heat
wave on the surface of glass is neglected. A heat conduction differential equation system of reflected
heat wave, which is similar to the Equations (3) to (7), can be constructed. The derivation process is
omitted. However, it will cause complex formulas and solving processes. The system theory is utilized
to simplify the process. Analyzing the differential equations in the s-domain, theoretical relationships
can be obtained as follow:

(13)

Ti(x,5) = Q(s)Ga [l (a1, a2, A1, A2), fi(d1, ), %, 5]
T2(x,5) = Q(s)Ga[ha (&1, &2, A1, A2), fo(dy, ), x,5]

where G; and G, are functions of heat conduction system of glass and structural adhesive, respectively.
hy and h;, are materials modulation functions of glass and structural adhesive, respectively. f1 and f5
are structure modulation functions of glass and structural adhesive, respectively.

The infrared (IR) camera can only capture the surface temperature of the glass. The transfer
function of the glass surface temperature Ty(0, s) is called the thermal response of glass, showed
as follow:

Ty(s) = Q(s)Gi [fi (da, ), . (14)

When there is a damaged in adhesive bonded structure, the thermal wave is composed of direct
thermal wave from the thermal excitation and reflected heat wave. Therefore, the transfer function of
the glass surface temperature with damaged bonded structure can be expressed as follow:

Ta1(s) = Q(s)Gan[fa1 (d1, d2), 5], (15)

where Gg4; is the function of heat conduction system of damaged adhesive bonded structure. f;; is the
structure modulation function of damaged adhesive bonded structure.

For composite thermal excitation formed by linear superposition of Ny, thermal excitation sources,
theoretical relationships can be obtained as follow:

Ti(s) = Gi [fl(dlfdz)fs}l\]’hil Qi(s) = NhZ_l Qi(s)Gi1[f1(dr, d2), 5]
_ Nyt Ny 1 . (16)
Ta1(s) = Ga1lfa1(d, d2), 5] E’o Qi(s) = Eo Qi(s)Ga1[fa1(d1,d2), 5]

The thermal response of composite thermal excitation is a linear superposition of the multiple
thermal excitation responses. The Laplace inverse transformation is performed on both sides of the
Equation (16). Considering the initial temperature, the actual temperature of glass surface is as follows:

Ta(t) =Ti(t) + To = ]%Z_lfii(t) -81lf1(d1, d2),t] + To

=0
0 , (17)

Toa1(t) = T () + To = Eo 9i(t) - ga1[fa1(d1,d2),t] + To

117

where represents the convolution operation; g;(t) is the impulse response function of the i-th



Sensors 2018, 18, 3594 6 of 19

thermal excitation; g; and g4; are the impulse response functions of heat conduction systems of
adhesive bonded structure with no-damage and damage, respectively.

For a specific glass curtain wall, the surface temperature of the glass is only related to the thermal
excitation, time and structural modulation function. The structural modulation function can be
identified from the temperature change of the surface of the glass, thereby making it possible to detect
the damage of adhesive bonded structure.

Taking the temperature change of the surface of the glass as a self-reference, the differential
operation of the Equation (17) is performed to obtain the surface temperature difference, that is the
temperature difference caused by the reflected heat wave.

ATlU) = al(t) - Tadl(t)
= [T1(t) + To] — [T (t) + To]
Ny—1
= ;O qi(t) - {g1lf1(d1, d2), t] — gar[far(d1, d2), 1]}

(18)

The influences of the initial temperature on the detection result can be eliminated while the
interference of common mode and noise are reduced after differential operation. Moreover, it is not
necessary to use the standard test block for calibration. As for thermal images, the shape of the bonded
structure damage can be measured by the different result of each pixel.

Glass  Adhesive Damage . Surfacte
emperature
—> a az distribution
—> —
q'(t) —» — Reflect Glass
— L heat \ X ‘
H K— T, wave \ \ \
eat Z Adhesive Damage SR
wave O d1 da X & alloy frame

(@) (b)

Figure 2. Thermal wave propagation and temperature distribution of damaged bonded structure.
(a) Heat wave propagation in damaged bonded structure; (b) temperature distribution of damaged
bonded structure.

2.2. Active Thermal Sensing Framework of Damage Detection

The accuracy of identification results of the structure modulation function is closely related to
thermal excitation. The bandwidth of the thermal excitation function must be larger than the frequency
bandwidth of heat conduction system. Moreover, the optimal excitation function of the thermal
excitation is required to be a time domain autocorrelation function with a correlation peak and a salient
pulse. To ensure the thermal wave can propagate inside the glass curtain wall sufficiently, continuous
excitation or high-power density excitation is adopted. However, excessive time or excessive power
density of excitation may cause adhesive bonded degenerative aging, which increases the risk of the
curtain wall glass falling. Pulse and white noise are the optimal excitation functions of which the
autocorrelation functions have ideal bandwidth and only one prominent main pulse. However, white
noise is difficult to generate and its time domain length is less than pulse. Therefore, pulse is selected as
the excitation function of the thermal wave testing for adhesive bonded structure of glass curtain wall.

In this paper, carbon fiber radiator is selected as the key component of the thermal excitation
device for its high energy density. The radiation segment of carbon fiber radiator covers visible light
to far infrared, but the radiation segment of which the wavelength is less than 3 pm can be ignored.
Short thermal response time is beneficial to the design of the control system and generation of the
pulse thermal excitation function.
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According to the selection of the thermal excitation function and the radiation device, the active
thermal sensing platform for adhesive bonded structure damage detection is set up, as shown in
Figure 3a, and framework of the platform is shown in Figure 3b.

[
IR camera
MFI thermal
excitation device
—= =

Sample

Computer

Controller of MFI thermal excitation device

(a)

***********

| Image | R
|l acquisition

| camera
| card !
. PC

|
‘ [
| .
| Serial ‘ Heat
| port 1—>‘ Controller 9 source
|

(b)
Figure 3. Schematic diagram of active thermal sensing platform for bonded structure damage detection.
(a) Active thermal sensing platform for bonded structure damage detection; (b) framework of active
thermal sensing platform for bonded structure damage detection. MFI, mid and far infrared. IR, infrared.

The pulse thermal excitation function from the MFI thermal excitation device excites the glass
curtain wall, causing the surface temperature of damage area higher than the non-damage area.
IR camera is used to capture the surface temperature of the curtain wall glass. The information of
damage such, as area and depth, can be determined by using image fusion enhancement to analyze
the thermal images.

2.3. Principle of Laplacian Pyramid Image Fusion Enhancement

The thermal image sequence has a large amount of redundant information and is low contrast.
Therefore, a fusion enhancement algorithm of thermal image sequence is put forward to in this paper.
First, a Gaussian pyramid is built. Then a Laplacian pyramid is built on the basis of the Gaussian
pyramid to separate the shape and detail of the thermal images. Finally, fusion enhancement rules on
pixel layer are used to analyze the thermal image sequence.

In Gaussian pyramid decomposition, fuzzy processing and down sampling are used to obtain a
series of thermal image sequences with different sizes and clarity, which simulate the detection results
of thermal images at different scales and resolutions. The thermal image after pretreatment, named
I, is placed at the bottom of the Gaussian pyramid. The image at the I-th layer is named ;. A5 x 5
Gaussian kernel function W(m, n) is used to analyze the image convolution algorithm of the I-1-th layer.
The results of convolution operation are subjected to down sampling to obtain the thermal images of
the I-th layer. The number of Gaussian pyramid layers is named N. The column number of the /-th
layer thermal images is named Cj, and the row number of the [-th layer thermal images is named R;.

2 2
L= Y Y W(mn)_1(2i+m2j+m)0<I<N0<i<C,0<j<R (19)

m=—2n=-2
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Magnification by interpolation is used on the I-th layer images in the Gaussian pyramid to obtain
magnified thermal images, which have the same size with the I-th layer images. The equations of
magnification are shown as follows:

2 2 . .
=4y Y W(m,n)l/l_1<lzm,]zn>,0<lSN,O<i§C1,O§j<Rl, 20)
m=—2n=-2
r 1<i+m j—|—n> _ Il_l(”Tm,HT") , HTmandHTnareinteger ‘ 1)
2 "2 0 , other

I" is called the scale operator and is noted as follow:
I = Expand(1;). (22)

The differences between I; and I, are calculated to obtain the difference images. A Laplacian
pyramid with the same number of layers as the Gaussian pyramid is built by stacking the difference
images. The [-th layer of the Laplacian pyramid is defined as follow:

LP, =1, — Expand(l;;1) , 0<I<N (23)
Lp =] , =N

Compared with the Gaussian pyramid, the images of the Laplacian pyramid include more details
in different dimensions. The process of Laplacian pyramid thermal images separates the shape and
details of the thermal images. Fusion enhancement rules include rules based on pixel layer, regional
layer and feature layer. The rules of pixel layer are suitable for the images with similar property
obtained by the same type of detectors. The pixel layer rules are adopted as the fusion enhancement
rules of the thermal image in this paper.

Construct a Laplacian pyramid with N layers from the Ny thermal images. The strategy of
minimum fusion on pixel layer is used on the N-th layer images of the Laplacian pyramid, which reflect
the shapes of the thermal images to increase the images contrast. The strategy of maximum fusion on
pixel layer is used on the other layer, which reflect the details of the thermal images to highlight the
details. FI; is the [-th layer of the fusion enhancement of the Laplacian pyramid. LPy; is the I-th layer of
the k-th image of the Laplacian pyramid.

Ni—1
Z min[LPkl(i,]’)} ’ l =N

FI, = Ak]j_ol , (24)
Z max[LPkl(i,j)} , 0Sl<N,0<i§Cl,O<j§Rl
k=0

where min[ ] represents taking the minimum value and max[ ] represents taking the maximum value.
Figure 4a shows the process of the fusion on pixel layer [34]. The images of each layer of the

Laplacian pyramid are subjected to the magnification operation, and then being summed to get a
fusion-enhanced Laplacian pyramid, showed as Figure 4b. FG is the result of the fusion enhancement.
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Figure 4. The process of the fusion enhancement. (a) The process of Laplacian pyramid; (b) the process
of Gaussian pyramid.

3. Design of MFI Thermal Excitation

3.1. Irradiance Distribution of MFI Thermal Excitation Device

Carbon fiber radiator is selected as the thermal excitation source for its high energy density.
In order to get a uniform irradiance of the MFI thermal excitation, multiple carbon fiber radiators are
required and their arrangement should be optimized.
As shown in Figure 5a, the irradiance of the X-point can be calculated as follow [35]:
negP

Fo = 5,37, (24 + 2sin2a), (25)

where 7 is the conversion rate of electro-thermal radiation; P is the power of carbon fiber radiator; [ is
the length of carbon fiber radiator; & is the distance between the carbon fiber radiation source and the
glass. As shown in Figure 5b, the Y-point irradiance can be obtained by Equation (26):

negP : 1 1
E{ = Egcost = 200 + 2sin 2w =K . 26
e 271210< ) VL2 Ny (26)

AVVWWWWWWWWWWIWH- E

N | 7
\\ | // ,
\ I h / Y, 0
\\a | // Y, h
Qs /
X Y x X >x
(@) (b)

Figure 5. X-point and Y-point of carbon fiber radiator. (a) X-point of carbon fiber radiator; (b) Y-point
of carbon fiber radiator.

An MFI thermal excitation device formed by N, carbon fiber radiators distributed in parallel is
shown in Figure 6. The distance of two adjacent carbon fiber radiators is w. Rough infrared reflector is
produced by sand-blasting process of quartz sand on the inner surface of the case to form uniform
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diffuse reflection of the thermal excitation. The irradiance of the Z point is composed of the reflector
reflection and the direct radiation, which can be calculated as follow:

Nc 1
E(w,h,x) = E; + K} | :
i=1 1/ (x — iw)?* + h2

(27)

In the thermal wave testing for adhesive bonded structure damage of glass curtain wall, the more
uniform the irradiance is, the less interference is. The uniform of the irradiance can be improved by
optimizing the w and the /.

To measure the range of thermal excitation, the effective area (EA) of radiation for the infrared
thermal excitation device is defined as the maximum distance of the irradiance inflection points.
Uniformity (UN) is the standard deviation of the irradiance within the effective range of radiation,
which is taken as the index to measure the uniformity.

Let the h be a fixed value and the uniformity can be optimized by using simulated annealing
algorithm. After optimization, the relationship between w and / can be obtained by a suitable fitting
function to get an optimal w.

The number of carbon fiber radiator is 2, and K is normalized to IW/m. h =0.1,0.2, ..., 1.0.
The optimization results are shown in Figure 7.

According to the simulated annealing algorithm result, the relationships in the SI system by curve
fitting is obtained as follow:

w = 2.535h
EA =3950h . (28)
UN,, = 0.066h~!

The optimization results show that the w and i have obvious linear relationship. From Figure 7,
under a rise of h, the effective area increases, but the uniformity decreases. In a specific testing, it is
necessary to consider the h according to the detected object.

Infrared refléctor

Figure 6. Irradiance of infrared thermal excitation device.

O L L L
0 0.2 0.4 0.6 0.8 1

h(m)
(@)

Figure 7. Cont.
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Figure 7. Optimization results of simulated annealing algorithm. (a) Optimization results of tube
spacing w; (b) optimization results of effective radiation range effective area (EA); (c) optimization
results of normalized uniformity UNj,.

3.2. Simulation Experiment of Thermal Excitation Source

To verify the effectiveness of the design for thermal excitation source, the design of irradiance
distribution is simulated by TracePro 7.0. The parameters of carbon fiber radiators and curtain wall

glass are shown in Table 1.

Table 1. Parameters of carbon fiber radiator and curtain wall glass.

. Electro-Thermal = Radiant Rate of
Length Iy (mm) Diameter R (mm) Power P (W) Radiation 7 (%) Glass e

240 10 600 98 0.94

According to the optimization result Equation (28), the optimized parameters of thermal excitation
source can be obtained, as shown in Table 2. The simulation parameter settings are shown in Table 3.

Table 2. Optimization parameters of thermal excitation source.

Radiation Distance Distance of Adjacent Carbon = Normalized Uniformity . . 2
h (mm) Fiber Radiators w (mm) UN;, (W/m?) Uniformity UN (W/m?)

76 192 0.87 983

Table 3. TracePro simulation parameter settings.

Luminous o The Optical Properties of the .
Flux (W) Radiation Type Inner Surface of the Reflector The Number of Lights
588 Lambertian Diffuse reflection 200,000

The irradiance distribution obtained by the simulation is shown in Figure 8a. The irradiance
distribution of the sampling lines of Figure 8a are shown in Figure 9. In the irradiance distribution of
the transverse sample lines, with the distance between symmetry axis and sample lines increasing,
the irradiance decreases. In the irradiance distribution of the longitudinal sample lines, with the
distance between symmetry axis and sample lines increasing, the irradiance increases first and
then decreases.

The irradiance distributions in transverse and longitudinal direction forms an approximate
complementary relationship. Therefore, four carbon fiber radiators are arranged in a square
shape, called cross-optimization arrangement, and the optimization results are shown in Figure 8b.
Six sampling lines of Figure 8b are taken to get the irradiance distribution of the sample lines, as shown

in Figure 10.
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Figure 8. TracePro simulation irradiance distribution map. (a) Uncrossed; (b) cross-optimization.
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Figure 9. Irradiance distribution of sample line. (a) Transverse sampling line; (b) longitudinal sampling line.
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Figure 10. Irradiance distribution and uniformity of sample line. (a) Irradiance distribution; (b) uniformity.

The uniformity after cross optimization arrangement is 2310 W/m?. Considering four carbon
fiber radiators, the uniformity of two carbon fiber radiators is 1155 W/m?, which is 17.50% higher than
the design value. As shown in Figure 10a, the irradiance of the sample line after cross-optimization
become more uniform. The irradiance distribution of sample line 1 to line 4 are approximately uniform,
which therefore can be taken as detection area.

4. Experiments and Results

4.1. Experiment Platform

An active thermal sensing platform of adhesive bonded structure damage detection of glass
curtain wall was built, as shown in Figure 11. The platform is composed of the MFI thermal excitation
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device, FLIR SC660 IR camera and PC. The MFI thermal excitation device heats the sample and raises
the surface temperature of the glass. Thermal IR camera collects the irradiance of the glass surface
periodically, and reconstructs the surface temperature in the form of thermal image sequence. Finally,
Fusion enhancement algorithm is used to highlight the damage. Figure 11c shows the distributions
of carbon fiber radiators. The crossed arrangement can offer a uniform irradiance in central region.
The infrared reflector is produced by sand-blasting process of quartz sand on the inner surface to form
uniform diffuse reflection of the thermal excitation. The actual size of the curtain wall glass is great.
To meet the requirements of laboratory research, glass curtain wall samples in a size 30 x 55 mm are
produced, as shown in Figure 12.

IR camera

Infrared
reflector

Computer

MFI
thermal
excitation

device g Carbon fiber
radiators

(b)

Figure 11. Active thermal sensing platform of glass curtain wall bonding structure damage detection.
(a) Complete platform; (b) thermal imager; (c) crossed distribution of carbon fiber radiators.

Damage

Glass Adhesive

" Rubber
seal strip

Aluminum
alloy frame

Figure 12. Sample for thermal wave detection of glass-curtain wall bonded structure damage.

4.2. Experiment of Damage Detection

The high-power MFI thermal excitation source in this paper can increase the temperature
difference between the damage and non-damage area of the glass surface. To Verify the effect of active
thermal sensing platform, the experiments of the damage detection for adhesive bonded structure of
the glass curtain wall were carried out.

Five samples with same damages were taken in the experiments. The width of damages is 6 mm,
and length is 30 mm, and thickness is 1 mm. The depths of damages locations were 0 mm, 1 mm,
2 mm, 3 mm and 4 mm, respectively (Figure 13). The 0 mm damage is surface damage of adhesive
and the others is internal damages. In the experiments, sunshine was taken as a contrast to the MFI
thermal excitation source. Environmental data is shown in Table 4.

Table 4. Environmental data of sunshine experiment.

Temperature (°C) Humidity (%) Weather Solar Incident Angle (°)
3002 84 +5 Sunny day 90
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Figure 13. Depth of damages location.

In the comparative experiment, the sampling rate of the IR camera was one frame per minute
and the sampling time was 142 min. The thermal image of 30 min is shown in Figure 14. As Figure 12,
both sides of damage area are the non-damaged area. The central axis was taken as sampling line and
the temperature difference is obtained by subtracting the maximum and minimum of the sampling
line. The curves of surface temperature differences between damaged area and non-damaged area
are shown in Figure 15. The difference of grayscale between damaged area and non-damaged area is
extremely insignificant. Therefore, sunshine is not suitable as heat source in the damage detection.

Omm Imm 2mm 3mm 4mm

Sampling
lines

Damaged
area

I

31 315 32 325 33 335 34
T(C)
Figure 14. The thermal image of 30 min of sunshine excitation.
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— - 2mm

_ _ 3mm
0.6 | 4mm
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20 40 60 80 100 120 140
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Figure 15. The surface temperature difference curves of sunshine excitation.

In the experiment of the MFI thermal excitation, the thermal excitation time was 20 s and then
the MFI thermal excitation device was removed. The sampling rate of the IR camera was 1 frame
per second and the sampling time was 142 s. The thermal image of 30 s is shown in Figure 16.
The defects can be distinguished on the thermal image, for the differences in gray scale at defects
are apparent. With the depth of damages increases, the color of the damaged area becomes darker
and the contrast between damaged area and non-damaged area becomes smaller. But the effect of
deep defect (more than 4 mm) is not obvious. The maximum and minimum temperature of the 0 mm
and 4 mm depth damaged are showed in Figure 17. The curves of surface temperature difference
between damaged area and non-damaged area are shown in Figure 18. The surface temperature
differences are in the range of 0.02 °C to 0.64 °C. The curve of 0 mm increases to the apex and decreases
in higher rates compared with the deeper damages. The maximum temperature difference appears
near 15 s. Therefore, the temperature difference of 15 s can be used as an index to measure damage.
The relationships between the surface temperature difference curves and the depth of damages location
are shown in Figure 19. The maximum value of the temperature difference has an approximate linear
relationship with the depth of the damage location. The maximum temperature difference of 0 mm is
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0.64 °C while the 4 mm is smaller than 0.1 °C. With the depth of damages location increasing, the time
of the maximum value of the temperature difference is delayed, and the maximum value is lower.

Omm Imm 2mm 3mm 4mm

29 30 31 32 33 34
T(C)

Sampling

lines

Figure 16. The thermal image of 30 s of the MFI thermal excitation.
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Figure 17. The maximum and minimum temperature of the 0 mm and 4 mm depth damaged.
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Figure 18. The surface temperature difference curves of the MFI thermal excitation.
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Figure 19. The relationships between the surface temperature difference curves and the depth of
damages location. (a) The relationships between time of maximum surface temperature difference and
the depth of damages location; (b) the relationships between maximum surface temperature difference

and the depth of damages location.
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When there is a damage in adhesive bonded structure, the heat wave is blocked to the deep layer
of the structural adhesive. Reflected heat wave is formed at the damage interface and propagates to the
glass surface leading to the temperature difference with non-damaged area. With the depth of damage
increasing, there is less reflected heat wave propagating to the glass surface and the temperature
difference becomes smaller. In conclusion, under the MFI thermal excitation, with the depth of
damage increasing, the surface temperature difference between damaged area and non-damaged
area decreases.

4.3. Experiment of Image Fusion Enhancement

In the fusion enhancement, the more the Laplacian pyramid decomposition layers of the thermal
image are, the more thorough separation of detail and shape will be got, and the finer the detail
distinction is. Taking the speed of fusion enhancement processing into account, the thermal image is
decomposed into four layers in this paper. To speed up the progress of the experiment, the distribution
of samples is shown in Figure 20. Each small rectangle represents a sample and the gray area in the
rectangle indicates the damage position. The depths of damages are 0 mm, 1 mm, 2 mm, 3 mm and
4 mm, and the widths of damages are 2 mm, 4 mm, 6 mm, 8 mm and 10 mm.

Width of damage(mm)
2 4 6 8 10
0
)
e
EE !
=
T8 2
£%
i
4

Figure 20. The distribution of samples.

Gray scale of thermal image has a one-to-one correspondence relationship with temperature.
The reference of temperature is floating during the enhancement process. To assess the enhancement
effect of fusion enhancement, the surface temperature difference is replaced by the gray scale difference.

Two thermal images are taken as a thermal images-set for image fusion enhancement of the
Laplacian pyramid. The thermal images of 15s and 15s,12sand 18s,9sand 21s,6 s and 24 s, 3 s and
27 s are taken as samples in this experiment respectively. The results of the image fusion enhancement
of the Laplacian pyramid are shown in Figure 21. With the depth of damages increasing, the contrast
of damage gradually decreases. The contrast of damages of 4 mm is small, but can be distinguished
by the naked eye. From the results of fusion enhancement, with the time interval of the two thermal
images increases, the damages become more obvious. For example, in the fusion enhancement results
of the 15 s thermal images, the color of non-damaged area is French grey and the contrast between
damaged area and non-damaged area is inconspicuous. In the fusion enhancement results of the 3 s
and 27 s thermal images, the color of damaged area is brighter and the color of non-damaged area is
darker than the 15 s. Therefore, the contrast is higher and damage is more obvious.

In quantitative analysis of the enhancement effect of the fusion enhancement, the gray differences
of damages which is 6 mm in width were taken as examples to obtain the relationship between the
number of gray linear transformation and the gray difference. Five relationship curves of different
damage depths are shown in Figure 21f. With the time interval of the two thermal images increasing,
the gray difference also increases. Comparing the curves of different depths, the increased value of
the gray scale differences is similar. For example, the gray differences of the damages at 0 mm depth
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increases from 0.029 to 0.070 and the growth value is 0.040, while the gray differences of the damages
at 4 mm depth increases from 0.004 to 0.025 and the growth value is 0.021.

 0.08
[
£0.06
o)
=0.04
>
5'0.02

(e)

Figure 21. Results of fusion enhancement. (a) Results of fusion enhancement (thermal images of 15 s
and 15 s); (b) results of fusion enhancement (thermal images of 12 s and 18 s); (c) results of fusion
enhancement (thermal images of 9 s and 21 s); (d) results of fusion enhancement (thermal images of 6 s
and 24 s); (e) results of fusion enhancement (thermal images of 3 s and 27 s); (f) relationship between
the number of fusion enhancement and the gray scale difference.

From the above analysis, the image fusion enhancement increases the damage contrast obviously
which is effective for shallow damages and deep damages. Moreover, as the time interval of the two
thermal images increasing, the increased values of gray differences are at the same order of magnitude.

5. Conclusions

As anondestructive technology, the active thermal sensing technology is proposed for the damage
detection of adhesive bonded structure of glass curtain wall. The effectiveness of the method is verified
by studying the principles and experimental verification. Moreover, a special thermal excitation device
and the process of image fusion enhancement based on Laplacian pyramid decomposition are carried
out to improve the effect of detection.

In the design of MFI thermal excitation device, the optimization results of simulated annealing
algorithm show that carbon fiber radiators distance w and excitation distance & have obvious
linear relationship, and under a rise of k, the effective area increases, but the uniformity decreases.
The uniformity after cross optimization arrangement improves 17.50% comparing with the design value
of simulated annealing algorithm. The irradiance of middle area is approximately uniform, which can
be taken as detection area. Using the MFI thermal excitation device on experiment, the results
showed that the defects can be distinguished on the thermal image, but the effect of deep defect
(more than 4 mm) is not obvious. With the depth of damage increasing, there is less reflected heat wave
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propagating to the glass surface and the temperature difference becomes smaller. The maximum value
of the temperature difference has an approximate linear relationship with the depth of the damage
location. The maximum temperature difference of 0 mm is 0.64 °C while the 4 mm is lower than
0.1 °C. In the process of image fusion enhancement, with the time interval of the two thermal images
increasing, the contrast is higher and damage is more obvious. The fusion enhancement results of
3 s and 27 s thermal images are the optimal in the experiment. The damages can be distinguished
by naked-eye, which is effective for shallow damages and deep damages. The gray differences of
6 mm-wide damages are 0.070 at 0 mm and 0.025 at 4 mm.

The thermal wave testing can detect the damage of the adhesive bonded structure of glass curtain
wall directly and visually, which provides a new vision and a new path for further research on damage
assessment and online monitoring of glass curtain wall. With the development of the technology,
the damage detection system of hidden frame glass curtain wall bonding structure can be mounted on
unmanned aerial vehicle or wall climbing robot and used in actual damaged detection in the future.
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