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Abstract: The understanding of the fundamental properties and processes of chemoresistive
gas sensors based on semiconducting metal oxides is driven by the available characterization
techniques and sophisticated approaches used to identify structure-function-relationships. This article
summarizes trends and advances in the characterization of gas sensing materials based on
semiconducting metal oxides, giving a unique overview of the state of the art methodology used in
this field. The focus is set on spectroscopic techniques, but the presented concepts apply to other
characterization methods, such as electronic, imaging or diffraction-based techniques. The presented
concepts are relevant for academic research as well as for improving R&D approaches in industry.

Keywords: gas sensor; material characterization; in-situ/operando; complementary techniques;
active/inactive species

1. Introduction

The development of chemoresistive gas sensors based on semiconducting metal oxides (SMOX)
is driven by innovations in material science [1–6], miniaturization of sensor devices [7,8] and
understanding of the gas sensing process itself [9–11]. The advances in miniaturization strongly
decreased size, production costs and power consumption of SMOX gas sensors making SMOX-based
sensors attractive for mobile applications and technologies related to the Internet of Things [7,12,13].
Despite the large number of publications reporting the gas sensing properties of various SMOX-based
materials, the lack of selective gas sensing materials remains as a major challenge for many gas
sensor applications.

The development of gas sensors is still based on trial and error rather than on knowledge-based
approaches, which enable a rational design of sensing materials based on the understanding of
fundamental processes [14]. The fundamental understanding involves a detailed knowledge on the
relationship of structures, properties and functionality (structure-function-relationship) as well as
on the connection of synthesis routes and obtained structures. Thus, it is essential to determine
correctly structures and properties, and to associate these with gas sensing performance or synthesis
routes. This approach requires suitable materials characterization techniques. The large variety
of spectroscopic techniques allows assessing various structural, chemical and electrical properties.
Spectroscopic techniques therefore form a major part of the tool-box used to study SMOX-based
gas sensing materials [15,16]. To determine correctly structure-function-relationships attention
should be drawn to the most suitable approaches for material characterization by spectroscopic
and other techniques. Important aspects of the characterization of SMOX gas sensing materials
and the investigation of gas sensing mechanisms are summarized in the following sections with a
focus on experimental methodology, use of multiple and complementary techniques and appropriate
identification of species actively involved in the gas sensing process.
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2. In-Situ and Operando Methodology

An essential aspect of studying SMOX gas sensing materials is the question whether one
can relate the gained information to what is accentually happening during gas sensing in real
conditions. For decades, the fundamental processes of SMOX-based gas sensors were studied by
surface science techniques applied to idealized samples, such as single crystal surfaces [17,18]. The used
surface science techniques typically involve incoming and/or outgoing electrons and, thus, ultrahigh
vacuum conditions. Furthermore, most of these works were conducted at room temperature or even
below [19,20]. Although many of these methods allow the study of well-defined systems, the obtained
results are far from realistic conditions. This results in three major gaps between the experimental and
realistic operation conditions, namely in material, pressure and temperature [21].

The material gap arises from the fact, that single crystal surfaces may not adequately represent
actual sensing materials, which are typically pristine, doped or loaded nanoparticles forming a
porous layer. The properties of the nanoparticles as such may widely differ from the ones of a
certain single crystal surface. Furthermore, morphological properties of SMOX layers, such as
grain-grain-boundaries, are essential for the gas sensing process [9,22].

The pressure gap is described by two aspects. The most obvious one is the several orders of
magnitude difference between atmospheric pressure (1013 mbar) and high vacuum (10−7 mbar or
less), which has a major impact on adsorption and surface chemistry and, thus, especially on the gas
reception process. Related to this aspect is the partial pressure, i.e., the concentration, of the reactive
gases, which should be present in a realistic concentration. In ambient applications, gas sensors are
used to detect traces of analytes in the ppm and ppb range in the presence of around 20 vol% oxygen
and 20–80 %r.h. (absolute 0.5 to 2.5 vol% water vapor at 25 ◦C) [16,22]. These concentrations should be
considered when studying SMOX gas sensors, i.e., when measuring the gas sensing performance or
conducting further research, e.g., by spectroscopic techniques.

The temperature gap has a strong impact on the semiconducting properties and the
surface chemistry of the gas sensing material, as the ionization of defects [23,24], adsorption of
molecules [25,26] or chemical reactions [27,28] strongly depend on temperature. Heating the sample
to typical operation temperatures between 200 and 400 ◦C is possibly restricted by the spectroscopic
technique as such, e.g., requiring ultralow temperatures or by low pressures, which my trigger
unwanted changes in the sample due to heating in the absence of oxygen.

Studying gas sensing materials under realistic operation conditions is essential for understanding
their working principle but extending the experimental conditions beyond the actual application
conditions may provide additional insights, e.g., providing trends with temperature or gas
concentrations, or allow a better understanding of certain material aspects by studying a specimen
which is less complex than a porous layer of nanoparticles. Nevertheless, for establishing
structure-function-relationships is mandatory to obtain the anticipated information as close to real
operation conditions as possible, to determine correctly obtained structures or identify active centers.
For various functional materials, using so-called in-situ or operando methods is considered as state
of the art approach for gaining insights in fundamental working principles [15,16,21,29]. In the
early 2000s, various researchers in the field of catalysis coined the term operando. The details of
the definitions are still a matter of debate and vary for different functional materials. In general,
the following definitions can be considered [15,16]:

• Ex-situ studies may include all types of specimens and experimental conditions. However, in
many cases gaps in material, pressure and temperature are encountered. An example is the study
of sensing material as powders at room temperature by using typical vacuum techniques.

• In-situ studies are performed in more appropriate conditions, namely temperatures, pressures
and atmospheric compositions which match real operation conditions. These measurements
might be carried out on various types of specimens.
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• Operando studies are performed under application relevant conditions and involve the real-time
evaluation of the performance of the studied material. In case of a gas sensor the performance
evaluation is the sensor response/signal, while for a catalyst the performance in evaluated by
catalytic conversion. The real-time evaluation of the performance implies that the study is done
on a real device, e.g., a gas sensor. Thus, operando studies close the three gaps between laboratory
experiment and application as much as possible.

Studying gas sensors during operation by means spectroscopic methods emerged in late 1990s
and developed in the following decades [15,30]. As numerous as the processes related to gas
sensing with SMOX are, so versatile are the methods that are used to study gas sensing materials.
Structural properties are studied by X-ray diffraction (XRD) [31] or X-ray absorption (XAS) [32–34].
The electronic structures can be probed by UV/vis Diffuse Reflectance Spectroscopy (DRS) [35,36],
XAS and X-ray emission spectroscopies (XES) [34,37,38]. The surface chemistry is mainly investigated
by Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS) [28,39–41] and Raman
spectroscopy [27,42]. An overview of operando methods for SMOX gas sensors is given in Figure 1 [14].
A detailed discussion of in-situ and operando spectroscopic techniques is given elsewhere [15,30].
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Figure 1. Selection of available in-situ and operando methods for studying SMOX gas
sensors including different techniques ranging from spectroscopies over diffraction to electrical
measurements. The following techniques are shown (clockwise): XRD [31], microwave perturbation
measurements [43], simultaneous work function and DC resistance measurements [44–46], Hall effect
measurements [47–49], impedance measurements [22,39], UV/vis-DRS [35,36], DRIFTS [28,39–41],
XAS/XES [34,37,38]. The figure is reprinted from reference [14].

Operando spectroscopies are powerful tools for studying functional materials, such as gas sensing
materials, but there are limitations. If the changes caused by the interaction with a target gas are
rather small, the observable effects are possibly close to the noise level and the required signal to
noise ratio is not necessarily reached during an operando experiment. In many cases operando
spectroscopies provide a detailed picture of gas sensor during operation, however one major challenge
is to identify structures and spices that are actually related to the gas sensing process (see Section 4).
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Furthermore, the experiment itself can influence the materials or gas sensing process when using
radiation, which excites, changes or damages the material, e.g., electronic transitions excited by UV
and visible light or reduction of the sample by hard X-rays.

The operando methodology is commonly used to investigate structure-function-relationships,
but it is important to consider the pressure and temperature gaps when characterizing materials for
instance by means of transmission or scanning electron microscopies (TEM/SEM) or by photoelectron
spectroscopies. The pressure gap of several orders of magnitude can result in unwanted structural
changes directly or induced by the measurement itself. In case of Pt loaded SnO2, scanning
transmission electron microscopy (STEM) shows the presence of metallic Pt clusters on the SnO2

surface (Figure 2A,B), structural investigations by XAS indicated the presence highly oxidized Pt
(Figure 2C). Repeatedly measuring the same area by STEM showed a steady increase of the metallic Pt
clusters, indicating that they are formed during the measurement [32]. In addition to that, operando
XAS shows only the presence of oxidized Pt during sensor operation at 300 ◦C in synthetic air and
at normal pressure. The oxidized Pt loadings on SnO2, however, are easily reduced in the absence of
atmospheric oxygen [50]. Apparently, both methods yield quite different results and having STEM
results only, misleading conclusions about Pt structure would be obtained, since Pt is reduced due
to the vacuum and the electron beam. Both methods combined support the conclusion that oxidized
Pt forms surface clusters, which are easily reduced to metallic Pt. This example emphasizes two
important aspects for material characterization:

• The material characterization should be done as close as possible to real operation conditions,
by minimizing gaps in pressure and temperature. Even if the characterization is still considered
to be ex-situ, like in the shown example (Figure 2), minimizing these gaps provides more
accurate information.

• Using several techniques to assess similar aspects provides further advantages: Independent
results allow verifying the drawn conclusion, e.g., on the structure, and in many cases
complementary information is obtained, e.g., STEM offers spatial information on the distribution,
while XAS is feasible operando technique, which allows assessing the structure under
various conditions.
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Figure 2. Material characterization of highly Pt loaded SnO2 by high-angle annular dark-field STEM
(A,B) and X-ray absorption near edge structure (XANES) spectra of the differently concentrated Pt
loaded SnO2 samples and reference compounds (C). Both methods were applied to ex-situ samples at
room temperature, but at different pressure, i.e., vacuum for STEM and ambient air for XAS. Figures are
reprinted from reference [32], reproduced by permission of The Royal Society of Chemistry.

3. Complementary Techniques and Multi-Probe-Approach

A holistic picture of a gas sensing material is obtained by using multiple and complementary
techniques. The use of complementary techniques in a multi-probe-approach is commonly used for
the investigations of various catalysts. The information might be recorded in separate experiments
or at the same time [21,51–53]. For spectroscopic and other characterization techniques, the term
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‘complementary’ includes techniques, which probe different properties, a similar kind of property or
properties at different length or depth scales. Each of these aspects be relevant.

There are various examples for the study of different properties, e.g., the measurement of surface
species by DRIFTS, residual gas analysis of reaction products by photo-acoustic IR spectroscopy and
work function changes by a Kelvin probe setup during C3H6 sensing in two different experiments [54].
Such a multi-probe-approach is of fundamental importance when investigating the complex gas
detection mechanism of a material, which involves chemical and electrical processes, which cannot be
detected by a single method.

Another connotation of complementary is used for different spectroscopic techniques probing
similar properties but providing only a partial picture. IR and Raman spectroscopies are typical
textbook example; the different selection rules result in the measurement of different molecular
vibrations and thus different species [55]. When probing the electronic structure by X-ray spectroscopies,
the unoccupied states are probed by XAS, while the occupied states are probed by XES [56,57], i.e.,
XAS and XES provide complementary information on the electronic properties and combining results
in a complete picture of the electronic structure, e.g., as shown for La2O2CO3-based gas sensing
materials [38]. The complementary information of the X-ray emission and absorption spectra (Figure 3C)
show the oxidative character of CO2 ionosorption on La2O2CO3 by the decrease of the emission from
the highest occupied sates in the X-ray emission spectra (−10 eV) and by an increase of the transition
into unoccupied states, which is indicated by the whiteline in the XANES spectrum (0 eV).
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Figure 3. Operando spectroscopic study of La2O3CO3 during CO2 (10,000 ppm) sensing in 50 %r.h. at
250 ◦C: (A) Sensor signals, (B) schematics of the unit cell of La2O2CO3 (La = cyan, O = red, C = yellow)
and (C) XES and XAS spectra before (red) and during (yellow) CO2 exposure. Figure is reprinted from
reference [38].

Many material characterization techniques are complementary in terms of the length or depth scale
of the obtained information. This is of importance since gas sensing takes places on different length
scales, ranging from chemical processes on the atomic level over space charge layers in the nanometer
range to charge transport and diffusion processes on the micrometers scale [9,22]. Gas sensing materials
present structures of different sizes, such as SMOX based materials forming clusters typically between
10 and 100 nm [58] and additives forming clusters of a few nm or less [32,37] and even single atom/ion
sites [33,34]. Raman spectroscopy or XRD require large, crystalline and long-range ordered structures,
while XAS is already sensitive to short-range ordered and amorphous structures and, thus, can be used
to probe small clusters or incorporated atoms/ions, e.g., PdO clusters on SnO2 or Pd ions incorporated
in SnO2 [34,59]. Complementing methods which probe long-ranged ordered samples typically the
SMOX based material and unordered structures in many cases additives provides a full picture of the
material’s structure.

In addition to size and length scales, the surface and bulk properties and differences between
those properties play an important role for gas sensing. The gas reception by SMOX is mainly related
to surface processes [27,60,61], but bulk properties of the SMOX have a huge impact on the electronic
properties and charge transport within the material which has a strong impact on the transduction
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mechanism [9]. Despite the importance of properly characterizing surface and bulk properties, this
aspect is commonly not considered. Using complementary techniques providing mainly surface or bulk
information, would provide a more detailed picture and better understanding of gas sensing properties.

There are several reports that demonstrated to feasibility of probing surface and bulk properties of
the same material: A successful operando spectroscopic approach is the combination of bulk sensitive
Raman and surface sensitive DRIFT spectroscopy for the study of Pt-Ba/CeO2 during NOx storage
reduction [62]. Another interesting approach in the field of SMOX is recording Raman spectra with
different incident wavelengths, at energies below or above the optical band gap providing bulk or
surface information, respectively [63]. This approach can be used to determine differences in between
surface and bulk of nanoparticles, e.g., transitions of the crystal structure. Figure 4 shows a series
of Raman spectra of TiO2 calcined at different temperatures, which were recorded with an incident
wavelength of 325 and 532 nm, respectively. The Raman bands at 395 and 445 cm−1 correspond to
the anatase or rutile phase, respectively. With the bulk sensitive excitation wavelength (532 nm) one
observes the transition from anatase to rutile between 580 and 680 ◦C, while with the surface sensitive
excitation wavelength (325 nm) one observes this transition at 750 ◦C.

Figure 4. Raman spectra of TiO2 calcined at different temperatures. (A) The spectra were recorded
with an excitation at 325 nm, (B) with 532 nm. Reprinted with permission from The Journal of Physical
Chemistry B, reference [63]. Copyright 2006 American Chemical Society.

4. Identifying Active and Inactive Species

Establishing structure-function-relationships for SMOX gas sensors requires the identification of
active sites and active species. During an operando experiment, one detects various surface species and
changes of the material, but not all detected species are actively involved in the gas sensing process.
For example, the decrease of surface hydroxyl groups on SnO2 during the exposure of reducing gases
(CO, H2), which is not directly caused by an interaction of the reducing gas with the hydroxyl groups
but rather related to a subsequent rearrangement between the equilibrium of surface oxygen and
hydroxyl groups [41,60]. Another example is the formation of carbonate species on SnO2 during CO
sensing, which are assumed to be intermediates of the gas reception mechanism, e.g., formed by the
reaction with molecular oxygen (Reaction (1) and Reaction (2)) [64]:

CO + (O2)
α−
ads → (CO3)

α−
ads (1)

CO + (CO3)
α−
ads → 2·CO2 + α·e− (2)
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Recent theoretical and experimental works show that the CO reception on SnO2 takes place by a
reaction of CO with surface lattice oxygen, which creates an oxygen vacancy and releases electrons
into the conduction band (Reaction (3)) [60,65,66]. The formation of carbonates was found be related
by the subsequent reaction of CO2, which is formed by the oxidation of CO, with surface oxygen
(Reaction (4)) [60]. While the reaction of CO with surface oxygen releases electrons to the conduction
band, i.e., including changes in the surface charge, the reaction of CO2 does not change the surface
charge and, thus, the latter reaction is an inactive spectator species.

CO + OO → CO2 + Vα+
O + α·e− (3)

CO2 + OO � (CO3)O (4)

The challenge of identifying active species is well-known from catalysis research, since not all
detected surface species contribute to the catalytic process and often correspond to slowly reacting
or completely inactive spectators [21,67–69]. In the case of gas sensing, similar considerations can
be made:

• Active species and processes change the concentration of surface charge as a result of changes in
the atmosphere;

• Inactive species do not change the surface charge or are not involved in processes changing the
surface charge.

The reaction rate as such does not necessarily indicate whether a species is active or inactive for
gas sensing, but for an active species the reaction rate will strongly influence response and recovery
time. Properly conducted in-situ and operando experiments will provide a picture of all present
species or changes in properties during gas sensing. As indicated in Figure 5A, in a realistic situation
many active and inactive species are found and a clear assignment is limited by different factors,
such as noise or low resolution [70]. Using more sensitive methods will help to improve obtained data
(Figure 5B) and using selective techniques or sophisticated approaches one increases the selectivity of
assessing active species (Figure 5C).
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There are various approaches to increase the sensitivity and selectivity of experimental techniques.
Most of the methods involve time-resolved measurements, which allow correlating of the observed
species with the performance of the material, e.g., formed products (catalysis) or electrical response (gas
sensing). However, already selecting a suitable experimental technique or improved approach offers
various possibilities. If the site of interest is related to one specific element, e.g., a noble metal additive
in a gas sensing material, element selective techniques such as XPS, XAS or XES can provide site
selective information [38,71]. In case of vibrational spectroscopies, using isotopically labelled analyte
gases (H/D, 12C/13C, 14N/15N, 16O/18O) allows an improved identification of surface species related
to the analyte [41,60]. Still, using the most suitable technique as does not ensure a proper identification
of active species. The identification is strongly improved, if one is able to compare the evolution
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of surface species with the sensor signal, i.e., in case measurements are done with sufficient time
resolution. Using a combination of time resolved DRIFTS and impedance measurements, conductivity
changes in ZSM-5-based catalysts during the selective catalytic reduction of nitrogen oxides were
successfully assigned to a certain adsorbed NH3 species, by comparing the time constants of the
electrical response and the different adsorbed NH3 species [39]. Other approaches using time-resolved
methods are Modulation Excitation Spectroscopy (MES) [70,72–74], Steady State Isotopic Transient
Kinetic Analysis (SSITKA) [68,75] and the evaluation of time-resolved data by Multivariate Curve
Resolution (MCR) [76,77]. These rather sophisticated approaches are applied by various authors to
study catalysts, but today there is just a small number of articles dedicated to the investigation of gas
sensing materials [28,39,73,78]. A good example is the investigation of the NO2 detection of In2O3,
using MCR to analyze time resolved DRIFT spectra [28].

The DRIFT spectra recorded during NO2 sensing at 300 ◦C with pristine In2O3 (Figure 6, left)
show a series of bands, which respond to the presence of NO2 (1221 and 1520 cm−1), and bands,
which remain at the surface after the first NO2 pulse and increase with each NO2 pulse (1313 and
1260 cm−1). Already the visual inspection of the spectra suggests the presence of active species, i.e.,
species causing a resistance change, and spectator species. The bands at 1221 cm−1 and the ones at
1313 and 1260 cm−1 correspond to nitrite and nitrate species, respectively. The band at 1520 cm−1 can
be assigned to both nitrites and nitrates. The component spectra (Figure 6, center) and concentration
profiles (Figure 6, right) obtained by MCR show a clear difference for the nitrite and nitrate species:
The nitrite species correlate with the electrical response, while the nitrates accumulate over time.
Based on these findings it is concluded, that the ionosorption of NO2 on In2O3 (Reaction (5)) changes
the surface charge, i.e., is actively involved in gas sensing, while the formation of nitrates is related to
a subsequent reaction of ionosorbed NO2 with surface lattice oxygen (Reaction (6)):

NO2 + S + e− � (NO2)
−
S (5)

(NO2)
−
S + OO � (NO3)

−
S (6)
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from the time-resolved operando DRIFTS experiment. A further explanation of the component spectra
and concentration profiles is given in the original publication. Reprinted with permission from ACS
Sensors, reference [28]. Copyright 2017 American Chemical Society.

The example of the NO2 detection mechanism on pristine In2O3 shows, that an appropriate
assignment of active species and spectator species is possible based on time resolved spectroscopy and
chemometric data analysis. With increasing complexity of sensing materials, e.g., doped and loaded
SMOX, a more complex chemistry of analyte gases, e.g., oxidation of volatile organic compounds,
and more complex atmospheric compositions, the identification of active species will be more and
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more difficult, but essential for determining structure-function-relationships. Thus, advanced methods
and well-planned experiments will play an increasingly important role for the understanding of
SMOX-based gas sensing materials.

5. Conclusions

Understanding the relationship of structures, properties and gas sensing performance is essential
for the knowledge-based design of new, tailor-made gas sensing materials. The methods available
for the investigation of SMOX-based gas sensors reached an unprecedented variety, which allows
to probe various structural, electrical and chemical properties of SMOX gas sensing materials in
realistic conditions and in real-time. Simply reporting the sensing response and ex-situ material
characterization is an insufficient basis for the understanding of the gas sensing process. The advanced
material characterization techniques allow a much more reliable and detailed study of SMOX-based
gas sensing materials. The key aspects presented in this article can be summarized as follows:

• A proper material characterization should be done as close as possible to the real
operation conditions, i.e., preferentially during sensor operation, and involve several
complementary techniques.

• Mechanistic studies of the gas sensing process should be based on in-situ and operando methods,
minimizing the effect of the material, pressure and temperature gaps. Special attention should be
drawn to atmospheric compositions, which should match the ones in real application, especially
in case of gas concentrations and interfering compounds, such as water vapor.

• Using complementary techniques in a multi-probe-approach allows to probe various properties,
processes or species within the same experiment or a series of similar experiments. This involves
techniques being complementary in information depth or in the nature of the probed properties.

• Determining structure-function-relationships requires to differentiate between active and inactive
species. A proper design of the experiment, using selective techniques or time-resolved methods
strongly enhances the ability to correctly identify active species.

The increasing knowledge on structure-function-relationships of SMOX-based gas sensing
materials is ultimately driven by the continuously improving experimental methods available,
which provide a more and more detailed picture of the various aspects of the gas sensing process.
Further improving the available methods and systematically using state of the art approaches will allow
to extent the understanding of SMOX-based gas sensors from a limited number of well-established
model materials to a general understanding of fundamental properties and processes of SMOX gas
sensing materials.
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