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Abstract: Energy supply and information backhaul are critical problems for wireless sensor
networks deployed in remote places with poor infrastructure. To deal with these problems, this
paper proposes an airborne massive multiple-input multiple-output (MIMO) system for wireless
energy transfer (WET) and information transmission. An air platform (AP) equipped with a
two-dimensional rectangular antenna array is employed to broadcast energy and provide wireless
access for ground sensors. By exploiting the statistical property of air-terrestrial MIMO channels,
the energy and information beamformers are jointly designed to maximize the average received
signal-to-interference-plus-noise ratio (SINR), which gives rise to a statistical max-SINR beamforming
scheme. The scheme does not rely on the instantaneous channel state information, but still requires
large numbers of RF chains at AP. To deal with this problem, a heuristic strongest-path energy and
information beamforming scheme is proposed, which can be implemented in the analog-domain
with low computational and hardware complexity. The analysis of the relation between the two
schemes reveals that, with proper sensor scheduling, the strongest-path beamforming is equivalent
to the statistical max-SINR beamforming when the number of AP antennas tends to infinity. Using
the asymptotic approximation of average received SINR at AP, the system parameters, including
transmit power, number of active antennas of AP and duration of WET phase, are optimized jointly
to maximize the system energy efficiency. The simulation results demonstrate that the proposed
schemes achieve a good tradeoff between system performance and complexity.

Keywords: airborne massive MIMO; wireless energy transfer; energy and information beamforming;
spectral and energy efficiencies

1. Introduction

1.1. Motivations

In recent years, wireless energy transfer (WET) has been regarded as a promising technology to
increase the battery-lifetime of energy-constrained wireless sensor nodes [1,2]. The WET technology
allows sensor nodes to harvest energy from surrounding electromagnetic radiation instead of wired
energy sources. Many works investigated the WET networks where the traditional ground base station
(BS) or access point also acts as an energy station, which can charge the sensor nodes through WET [3].
However, such a configuration is still costly or even infeasible if the sensors are deployed in remote
places with poor infrastructure (that may be used for forest fire detection, climate monitoring, etc.).
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Deploying massive infrastructure in these areas is apparently cost inefficient due to the low population
density and hostile environment.

A hybrid air-terrestrial network, where air platforms (APs) are deployed for WET, is a novel
solution to deal with this problem. APs are aircraft such as balloons or unmanned aerial vehicles
(UAVs) that can broadcast energy and provide wireless access for ground sensors at low cost. Recently,
there has emerged a number of applications of AP in wireless networks, but mainly for information
transmission [4–7]. One example is Google Balloon [5], which employs high-altitude balloons to
create a hybrid air-terrestrial network with up to an LTE data rate. Another example is “Aquila”
proposed by Facebook. In this project, unmanned aerial vehicles are deployed to provide a novel and
efficient method of access [6] for ground users. Other than the high-altitude APs, the deployment of
low-altitude APs under 1 km for communications has also drawn much attention. In such applications,
APs are employed in the high-capacity hot-spot scenario, which is one of the main technical scenarios
for the fifth generation (5G) mobile communication systems [7]. In such a scenario, APs play the role
of temporary BSs to provide ultra-high data rates for hot-spot users.

Despite its successes in communication applications, AP is still difficult to apply in a WET system
directly. One important reason is that, conventionally, AP is equipped with directional antennas that
generate several spot beams toward the ground for data transmission [8]. However, when utilized for
WET, such an antenna configuration cannot focus the energy to the intended users efficiently [8], and
thus gives rise to poor energy efficiency (EE). A promising solution to this problem is to use massive
multiple-input multiple-output (MIMO) technology [9] at AP. Through coherent processing for signals
of large numbers of antennas, massive MIMO can concentrate the signal power to a compact area
around the user efficiently [9–13]. Therefore, a very large power gain can be obtained. This property
can be utilized to combat the path loss due to long-range propagation and greatly enlarge the wireless
charging distance.

1.2. Focus and Contributions

In this paper, to deal with the energy supply and information backhaul problems for wireless
sensor networks in remote places, we propose an airborne massive MIMO system for WET by
combining the AP with massive MIMO technology. The system consists of a low-altitude AP equipped
with a two-dimensional (2D) rectangular antenna array and a number of sensors on the ground, as
shown in Figure 1. The transmission phase is divided into a WET phase during which the AP charges
sensors through downlink WET and an uplink wireless information transmission (WIT) phase during
which the AP collects data sent by sensors.
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Figure 1. System model.

In the considered hybrid air-terrestrial network, the biggest challenge is the design of practical
energy and information beamforming schemes. Different from the BS of a terrestrial network, AP
is usually hardware- and computational complexity-limited due to the consideration of weight,
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fabricating cost and energy supply [8]. Traditional linear beamforming schemes, such as match filter
(MF) beamforming [10] and zero-forcing beamforming [12], require a large number of radio frequency
(RF) chains at AP and have high computational complexity. This may make them infeasible when
applied on AP. Another challenge lies in the acquisition of instantaneous channel state information
(CSI) at the AP. Due to the mobility of AP, the sensor must transmit the uplink pilot sequence
frequently, which causes high training overhead and energy consumption. This paper studies the
three-dimensional (3D) energy and information beamforming scheme for an airborne massive MIMO
system considering the above challenges. The main contributions are as follows.

• By exploiting the statistical property of air-terrestrial MIMO channels, the energy
and information beamformers are jointly designed to maximize the average received
signal-to-interference-plus-noise ratio (SINR), which gives rise to a statistical max-SINR scheme.
Although the scheme does not rely on instantaneous CSI, its implementation still requires large
numbers of RF chains at AP. When the number of RF chains is limited, a heuristic strongest-path
energy and information beamforming scheme is proposed. The scheme requires only virtual
angle of departure (AoD) information of sensors and can be implemented in the analog-domain
with low hardware complexity. The analysis of the relation between two schemes reveals that,
with proper sensor scheduling, the strongest-path beamforming is equivalent to the statistical
max-SINR beamforming when the number of AP’s antennas tends to infinity.

• Based on the asymptotic approximation of average received SINR at AP, the system parameters,
including transmit power, number of active antennas of AP and duration of the WET
phase, are jointly optimized to maximize the system EE under the proposed strongest-path
beamforming scheme.

• Numerical simulations are presented to evaluate the spectral and energy efficiency performances
of the proposed beamforming schemes under different system parameters. The results
demonstrate the superiority of the proposed schemes in the airborne massive MIMO systems.

1.3. Related Literature

The modeling and application of hybrid air-terrestrial networks for access of ground users
have drawn much research attention recently. A statistical propagation model has been introduced
in [14] to predict the air-to-ground path loss between AP and ground users based on ray tracing
simulation. The authors in [15] considered the modeling of small-scale fading for air-to-ground
channels, where both line-of-sight (LoS) and non-LoS (NLoS) channel environments were considered.
In [4], the authors discussed the basic networking architecture and major design challenges in
UAV-aided hybrid air-terrestrial networks. In [16], the authors investigated the 3D beamforming
design for a hybrid air-terrestrial network with a large-scale antenna array and analyzed the effect of
AoD imperfection on the system performance.

On the other hand, the WET in terrestrial networks has also been extensively investigated for both
indoor and outdoor scenarios [17–27]. In [17,18], the authors investigated the outage performance of
the indoor WET system and showed that increasing the variance of the log-normal channel would
degrade the system performance. In outdoor scenarios, to combat the path loss due to the long charging
distance, a number of works considered the utilization of multi-antenna technologies in the WET
system. In particular, the benefits and challenges of combining WET with multi-antenna technologies
were discussed in [19,20]. The authors in [21] considered the EE optimization in a massive MIMO
system with WET and proposed an iterative algorithm to compute the optimal transmit power and
duration of the WET phase. The authors in [22] investigated the throughput optimization problem for
a WET-enabled massive MIMO system. In [23], an asymptotically optimal downlink power allocation
strategy was proposed to maximize the uplink sum rate in a WET-enabled massive MIMO system
with linear beamforming. In [24], the 3D massive MIMO was utilized for WET, where the BS applied
linear beamforming for energy broadcasting and the users applied power splitting for information
detection and energy harvesting. In [25], the energy and information beamforming design for a
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full-duplex massive MIMO system was investigated. The authors in [26,27] investigated the combined
benefits of WET and cooperative relaying systems with large-scale antenna arrays. Due to practical
constraints, [19–27] have assumed that the energy harvesters (e.g., sensors) are equipped with a single
antenna. Recently, several works began to drop this assumption and consider multiple-antenna
sensors [28–30]. It was shown that, by equipping more antennas at the sensor, the energy harvesting
and achievable rate performances can be improved through coherent processing at the sensor side.
However, the increase of antennas also incurs problems such as high circuit energy consumption and
hardware complexity, which may be unaffordable for sensors. Therefore, in this paper, we assume
a single-antenna sensor, and the general case with multiple-antenna sensors will be considered as
future work.

1.4. Organization and Notations

The rest of the paper is organized as follows. Section 2 presents the system model. Section 3
presents the energy and information beamforming design. Section 4 presents the EE optimization
scheme. Section 5 presents the simulation results. Section 6 draws the conclusions.

Notations: The symbol  denotes
√
−1. E(·) denotes the expectation. ⊗ denotes the Kronecker

product. (·)∗, (·)T and (·)H denote the conjugate, transpose and conjugate-transpose of the matrix,
respectively. umax(A) and λmax(A) denote the dominant eigenvector and eigenvalue of matrix A. || · ||
denotes the Euclidean norm.

2. System Model

2.1. Channel Model

Let hl ∈ CNx Ny×1 denote the channel vector between AP and sensor l. Using the air-terrestrial 3D
MIMO channel model in [15,31], hl can be expressed as:

hl = hLoS
l + hNLoS

l . (1)

In (1), hLoS
l ∈ CNx Ny×1 denotes the deterministic LoS channel component and hNLoS

l ∈ CNx Ny×1 is
the random vector characterizing the non-LoS channel component, which are given by:

hLoS
l =

√
βlKl

Kl + 1
b (ϕl , θl)⊗ a (ϕl , θl) ,

hNLoS
l =

√
βl

Kl + 1

ϕl+∆ϕl∫
ϕl−∆ϕl

θl+∆θl∫
θl−∆θl

rl (ϕ, θ)b (ϕ, θ)⊗ a (ϕ, θ)dϕdθ,

(2)

with:

a (ϕ, θ) =

[
1, exp

(

2πdy

λ
cos θ cos ϕ

)
, · · · , exp

(

2πdy

(
Ny − 1

)
λ

cos θ cos ϕ

)]T

,

b (ϕ, θ) =

[
1, exp

(

2πdx

λ
cos θ sin ϕ

)
, · · · , exp

(

2πdx (Nx − 1)

λ
cos θ sin ϕ

)]T
,

(3)

where βl and Kl denote the large-scale fading and Rician factor, respectively. ϕl ∈ [−π/2, π/2] and
θl ∈ (0, π/2] denote the AoDs of sensor l in the horizontal and vertical directions, and ∆ϕl and ∆θl
denote the corresponding angular spreads. Since AP is much higher than ground obstacles, there is
little scatter around it. In this case, the physical signal propagation paths are mainly caused by the
scattering process in the vicinity of sensors. This will result in very narrow angular spreads ∆ϕl and
∆θl [11]. dx and dy denote the antenna spacings along the x axis and y axis, respectively. λ denotes
the carrier wavelength, and rl(θ, ϕ) denotes the complex response gain associated with the direction
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(θ, ϕ). We assume that rl(θ, ϕ) has zero-mean, i.e., E[rl(θ, ϕ)] = 0, and the response gains for different
angles are uncorrelated, i.e.,

E
[
r∗l (ϕ, θ) rl

(
ϕ′, θ′

)]
= Sl (ϕ, θ) δ

(
ϕ− ϕ′

)
δ
(
θ − θ′

)
, (4)

where Sl (ϕ, θ) represents the channel power angle spectrum (PAS), which characterizes the channel
power distribution in the angular domain. Define ρx = dx

λ cos θ sin ϕ and ρy =
dy
λ cos θ cos ϕ. Using a

similar procedure as that in [16], the channel correlation matrix can be expressed as:

Cl = E
[
hlh

H
l

]
=

βlKl
Kl + 1

(
b (ρx,l)bH (ρx,l)

)
⊗
(

a
(

ρy,l

)
aH
(

ρy,l

))

+
βl

Kl + 1

ρmax
x,l∫

ρmin
x,l

ρmax
y,l∫

ρmin
y,l

Sl
(
ρx, ρy

) (
b (ρx)bH (ρx)

)
⊗
(

a
(
ρy
)

aH (ρy
))

dρxdρy

∆
= CLoS

l + CNLoS
l

(5)

with:
a
(
ρy
)
=
[
1, exp

(
2πρy

)
, · · · , exp

(
2π

(
Ny − 1

)
ρy
)]T ,

b (ρx) = [1, exp (2πρx) , · · · , exp (2π (Nx − 1)ρx)]
T ,

(6)

where ρx,l =
dx
λ cos θl sin ϕl and ρy,l =

dy
λ cos θl cos ϕl denote the virtual AoDs corresponding to the

sensors’ physical AoDs in the horizontal and vertical directions. Sl
(
ρx, ρy

)
denotes the PAS with

respect to the virtual AoDs ρx and ρy. The integral boundaries are given by:

ρmax
x,l = max

θ∈[θl−∆θl ,θl+∆θl ],ϕ∈[ϕl−∆ϕl ,ϕl+∆ϕl ]

dx

λ
cos (θ) sin (ϕ) ,

ρmin
x,l = min

θ∈[θl−∆θl ,θl+∆θl ],ϕ∈[ϕl−∆ϕl ,ϕl+∆ϕl ]

dx

λ
cos (θ) sin (ϕ) ,

ρmax
y,l = max

θ∈[θl−∆θl ,θl+∆θl ],ϕ∈[ϕl−∆ϕl ,ϕl+∆ϕl ]

dy

λ
cos (θ) cos (ϕ) ,

ρmin
y,l = min

θ∈[θl−∆θl ,θl+∆θl ],ϕ∈[ϕl−∆ϕl ,ϕl+∆ϕl ]

dy

λ
cos (θ) cos (ϕ) .

(7)

2.2. Energy Transfer and Information Transmission

We adopt frame-based transmission where the length of one frame is denoted by T. Each frame
consists of a WET phase and a WIT phase.

In the WET phase, the AP charges sensors via downlink energy beamforming. The duration of
WET phase is τT with 0 < τ < 1. According to the law of energy conservation, the harvested energy at
sensor l can be expressed as [21–23] (As in [21–23], we have neglected the non-linearity in the energy
harvesting process. This is a good assumption for long-range WET, as shown in [32].):

El = ητT
L

∑
j=1

pj

∣∣∣hH
l wE,j

∣∣∣2
= ητTpl

∣∣∣hH
l wE,l

∣∣∣2 + ητT
L

∑
j=1,j 6=l

pj

∣∣∣hH
l wE,j

∣∣∣2,

(8)

where wE,j denotes the energy beamformer for sensor j. η (0 < η < 1) denotes the energy conversion
efficiency, i.e., the ratio between the harvested energy and received energy. pj denotes the power
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allocated to the beamformer of sensor j, which satisfies ∑L
j=1 pj = psum. The first term of the right-hand

side indicates the expected energy that can be harvested at sensor l, and the second term indicates the
energy leakage from the signals sent to other sensors.

Note that the schemes in [19,21–30] assume that all harvested energy is used for the power
amplifier of the sensor during the WIT phase. Different from the previous works, in this paper, we
employ a more practical power consumption model for the sensor. In particular, after the WET phase,
a part of the harvested energy is used for necessary processing at the sensor to achieve its main task,
and the remaining energy is used for uplink transmission during the WIT phase. A similar model
has also been applied in [20]. Let Ep

l denote the processing energy, in the WIT phase of time period
(1− τ)T, the transmit power of sensor l can be expressed as:

Pl =
El − Ep

l
(1− τ) T

=
ητ

1− τ

L

∑
j=1

pj

∣∣∣hH
l wE,j

∣∣∣2 − Ep
l

(1− τ) T
.

(9)

Equation (9) has assumed that the harvested energy El is greater than the processing energy Ep
l .

Otherwise, Pl should be set to zero, and an outage occurs.
To simplify the problem, we assume that the energy leakage, i.e., the second term of (8), contributes

little to the total harvested energy. As will be seen later, this assumption is well satisfied under
the proposed sensor scheduling scheme. Therefore, the transmit power of sensor l in (9) can be
approximated as:

Pl ≈
ητ

1− τ
pl

∣∣∣hH
l wE,l

∣∣∣2 − Ep
l

(1− τ) T
. (10)

The received signal at AP during the WIT phase is:

y = HΛ1/2x + n, (11)

where H = [h1, h2, · · · , hL] and Λ = diag {P1, P2, · · · , PL}. x = [x1, x2, · · · , xL]
T , and xl denotes the

unit-power transmit signal of sensor l. n denotes the additive white Gaussian noise (AWGN) vector
with distribution CN

(
0, σ2INx Ny

)
. To decode the signal of sensor l, AP combines the received signal

by multiplying the information beamformer wD,l , i.e.,

yl =
√

Plw
H
D,lhl xl + wH

D,l

L

∑
j=1,j 6=l

√
Pjhjxj + wH

D,ln. (12)

For convenience, we normalize wE,l and wD,l as
∥∥wE,l

∥∥ =
∥∥wD,l

∥∥ = 1. The average received
SINR of the transmission from sensor l to AP can be expressed (since the proposed scheme does not
rely on the instantaneous CSI, we consider average received SINR as the performance metric):

E [SINRl ] = E

 PlwH
D,lhlhH

l wD,l
L
∑

k=1,k 6=l
PkwH

D,lhkhH
k wD,l + σ2


≈

E
[

PlwH
D,lhlhH

l wD,l

]
E
[

L
∑

k=1,k 6=l
PkwH

D,lhkhH
k wD,l + σ2

] .

(13)
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The approximation in the second line is based on the Mullens inequality [33], which is widely
employed in the literature of massive MIMO. The approximation has been proven tight when the
number of antennas (i.e., Nx and Ny) is large [10].

3. Energy and Information Beamforming

In this section, we consider the energy and information beamforming design with statistical CSI.
When large numbers of RF chains are available at AP, the energy and information beamformers are
designed jointly to maximize the average received SINR at AP, which we call the statistical max-SINR
beamforming. Although good performance is expected, the scheme causes high computational and
hardware complexity when the number of AP’s antennas becomes very large. To deal with this
problem, we then propose a heuristic strongest-path energy and information beamforming scheme,
which requires only virtual AoD information of sensors and can be implemented in the analog-domain
with low hardware complexity. Moreover, with strongest-path beamforming, a simple analytical
expression for average received SINR at AP, can be obtained. With this property, an efficient parameter
optimization scheme can be developed to further improve the system performance, as will be seen in
the next section. The analysis of the relation between two beamforming schemes reveals that, with
proper sensor scheduling, the strongest-path beamforming is equivalent to the statistical max-SINR
beamforming when the number of AP antennas tends to infinity.

In this section, for information beamforming design, we will assume that the harvested energy is
enough, and as a result, the transmit power of sensor given by (10) is positive. When this assumption
is not satisfied, the information beamforming problem becomes trivial since the received SINR at AP is
always zero.

3.1. Statistical Max-SINR Scheme

With only statistical CSI, the beamforming problem is formulated as follows:

max
wE,l ,wD,l

E [SINRl ] ,

s.t.
∥∥wE,l

∥∥ =
∥∥wD,l

∥∥ = 1.
(14)

Directly solving the above problem is difficult due to the lack of analytical expression of average
received SINR. Moreover, the energy beamforming designs for different sensors are coupled through
the multi-user interference (MUI) term (i.e., the first term on the denominator of (13)), which makes
the problem more challenging.

In this subsection, instead of directly solving the average SINR maximization problem, we first
propose a statistical signal-to-leakage-plus-noise ratio (SLNR) criterion to obtain a closed-form solution
for the energy beamformer. As its name suggests, the idea is inspired by the conventional SLNR
criterion based on instantaneous CSI (referred to as instantaneous SLNR), which has been proven near
optimal for the downlink MIMO beamforming problem [34,35]. Then, by exploiting the asymptotic
property of the channel covariance matrix, the information beamformer is obtained by solving the
problem (14) optimally. Note that in the above strategy, wE,l and wD,l are solved jointly since we have
not added any assumption to decouple the problem.

3.1.1. Energy Beamforming Design

Similar to the instantaneous SLNR [34,35], the statistical SLNR is defined as follows:

SLNRl =
E
[

PlwH
D,lhlhH

l wD,l

]
E
[

Pl
L
∑

k=1,k 6=l
wH

D,khlhH
l wD,k

]
+ σ2

, (15)
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where the first term on the denominator indicates the total power of interferences in the WIT phase
caused by the transmission of sensor l. For convenience, we define Gl,k = wH

D,khlhH
l wD,k as the

combining gain of information beamformer wD,k on the signal of sensor l. Substituting the expression
of Pl given by (10) into (15), the statistical SLNR can be rewritten as:

SLNRl

=

E
[(

ητ
1−τ plwH

E,lhlhH
l wE,l −

Ep
l

(1−τ)T

)
Gl,l

]
E
[(

ητ
1−τ plwH

E,lhlhH
l wE,l −

Ep
l

(1−τ)T

)
L
∑

k=1,k 6=l
Gl,k

]
+ σ2

≥
E
[

ητ
1−τ plwH

E,lhlhH
l wE,l −

Ep
l

(1−τ)T

]
E [Gl,l ]

E
[(

ητ
1−τ plwH

E,lhlhH
l wE,l −

Ep
l

(1−τ)T

)
L
∑

k=1,k 6=l
Gl,k

]
+ σ2

=
E [Gl,l ]wH

E,lKlwE,l

wH
E,l

(
Kl

L
∑

k=1,k 6=l
E [Gl,k] + σ2INx Ny

)
wE,l

∆
= SLNRLB

l ,

(16)

where Kl =
ητ

1−τ plCl −
Ep

l
(1−τ)T INx Ny . The second line follows from the inequality E [XY]−E [X]E [Y] =

cov (X, Y) ≥ 0 when X and Y are positive.
Based on (16), the energy beamformer is designed to maximize the lower bound of statistical

SLNR, i.e.,
max
wE,l

SLNRLB
l , s.t.

∥∥wE,l
∥∥ = 1. (17)

It is easy to see that (17) is the generalized Rayleigh quotient problem, which can be solved as:

wE,l = umax


(

Kl

L

∑
k=1,k 6=l

E [Gl,k] + σ2INx Ny

)−1

Kl

 . (18)

Note that the matrices Kl and
(

Kl ∑L
k=1,k 6=l E [Gl,k] + σ2INx Ny

)−1
have the same eigenvectors

with Cl . Let λi denote the i-th largest eigenvalue of Cl ; the i-th largest eigenvalue of(
Kl ∑L

k=1,k 6=l E [Gl,k] + σ2INx Ny

)−1
Kl can be expressed as:

λ̇i =

ητ
1−τ plλi −

Ep
l

(1−τ)T(
ητ

1−τ plλi −
Ep

l
(1−τ)T

)
L
∑

k=1,k 6=l
E [Gl,k] + σ2

. (19)

Therefore, (18) can be simplified as:

wE,l = umax {Cl} . (20)

As discussed in [22], the MF energy beamforming aims to maximize the harvested energy at
the intended sensor with instantaneous CSI. It is interesting that the energy beamformer (20) under
the statistical SLNR criterion gives rise to a similar interpretation in the sense of maximizing the
average harvested energy at the intended sensor. Moreover, it is seen that the solution of the energy
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beamformer is decoupled with the information beamformer. This makes the closed-form solution for
wD,l possible.

3.1.2. Information Beamforming Design

By substituting (20) into (14), the information beamforming problem can be expressed as follows:

max
wD,l

wH
D,lE

[
PlhlhH

l
]

wD,l

wH
D,l

(
L
∑

k=1,k 6=l
E
[
PkhkhH

k
]
+ σ2

)
wD,l

,

s.t.
∥∥wD,l

∥∥ = 1.

(21)

Again, (21) is in the form of generalized Rayleigh quotient problem, which can be solved as:

wD,l = umax


(

L

∑
k=1,k 6=l

E
[

PkhkhH
k

]
+ σ2INx Ny

)−1

E
[

Plhlh
H
l

] . (22)

Since the transmit power Pl is correlated with the channel hl , there is no closed-form expressions
for the expectations in (21). Therefore, the information beamforming based on (22) requires numerical
evaluation with high computational complexity.

To overcome this challenge, below, we propose a closed-form solution for wD,l based on the
asymptotic property of the sensor’s transmit power Pl .

Lemma 1. When the number of AP antennas tends to infinity, i.e.,
{

Nx, Ny
}
→ ∞, the transmit power of

sensor l converges to:

Pl ≈
ητ

1− τ
pl

βlKl
Kl + 1

Nx Ny −
Ep

l
(1− τ) T

. (23)

Proof. See Appendix A.

Inserting (23) into (22), we get a closed-form solution for wD,l as follows:

wD,l = umax


(

L

∑
k=1,k 6=l

(
ητ

1− τ
pk

βkKk
Kk + 1

Nx Ny −
Ep

k
(1− τ) T

)
Ck + σ2INx Ny

)−1

Cl

 . (24)

Even if closed-form expressions are available, the computation of beamformers in (20) and (24)
has complexity O

(
N3

x N3
y

)
, which becomes challenging when the number of AP antennas grows large.

Moreover, to implement the beamforming scheme, the required number of RF chains at AP is equal
to Nx Ny. Since AP is hardware complexity limited, it is very important to reduce the number of
required RF chains at AP for energy and information beamforming. This will be considered in the
next subsection.

3.2. Strongest-Path Beamforming Scheme

In this subsection, we present a two-step heuristic approach to obtain a low-complexity
beamforming scheme. In the first step, we design the energy and information beamformers jointly
to maximize the average power of useful signal (i.e., the numerator of (13)), without considering the
power of MUI (i.e., the first term on the denominator of (13)). In the second step, we propose an
MUI-aware sensor scheduling scheme to mitigate the MUI under the beamforming scheme obtained
in the first step.
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3.2.1. Average Useful Signal Power Maximization

According to (13), the average power of useful signal can be expressed as:

QU
l = E

[
Plw

H
D,lhlh

H
l wD,l

]
. (25)

Directly maximizing QU
l with respect to wE,l and wD,l is still difficult. By using the inequality

E [XY]−E [X]E [Y] = cov (X, Y) ≥ 0 for positive {X, Y}, a lower bound on QU
l can be obtained as:

QU
l ≥ E [Pl ]E

[
wH

D,lhlh
H
l wD,l

]
= wH

E,lKlwE,lw
H
D,lClwD,l

∆
= QU,LB

l .
(26)

Since Kl has the same eigenvectors as Cl , designing the energy and information beamformers to
maximize the lower bound gives rise to the solution as follows:

wE,l = wD,l = umax {Cl} . (27)

By exploiting the asymptotic property of the channel covariance matrix, we can further
approximate the energy and information beamformers using the virtual AoD information of the
sensor. This is stated in the following theorem.

Theorem 1. When the number of AP antennas tends to infinity, i.e.,
{

Nx, Ny
}
→ ∞, the energy and

information beamformers converge to:

wE,l = wD,l =
1√

Nx Ny
b (ρx,l)⊗ a

(
ρy,l

)
, (28)

and the lower bound of average useful signal power can be expressed as:

QU,LB
l =

{
ητ

1− τ
pl

(
βlKl

Kl + 1
Nx Ny +

βl
Kl + 1

Sl

(
ρx,l , ρy,l

))
−

Ep
l

(1− τ) T

}(
βlKl

Kl + 1
Nx Ny +

βl
Kl + 1

Sl

(
ρx,l , ρy,l

))
.

(29)

Proof. This can be readily proven using the asymptotic expressions for the dominant eigenvector and
eigenvalue of Cl , presented in (A6) of Appendix A.

From Theorem 1, it is seen that the beamformers are designed to match the LoS path of the
channel, i.e., to ensure that the largest beamforming gain is achieved at the LoS path. Moreover, for
the commonly-used models, the PAS of NLoS channel Sl

(
ρx, ρy

)
achieves the maximum at {ρx, ρy} =

{ρx,l , ρy,l} [15,36], i.e., the virtual AoDs corresponding to the sensors’ physical AoDs in horizontal
and vertical directions. As a result, the proposed beamformers also match the strongest NLoS path
in the angular domain. Therefore, this scheme is named the strongest-path energy and information
beamforming. On the other hand, it is seen that both the energy and information beamformers have
a constant envelope, which can be realized using phase shifting networks in the analog-domain.
The total number of required RF chains at AP can be reduced to L, which is equal to the number of
sensors [37].

Another important observation from Lemma 1 is that, if we neglect the processing energy Ep
l , the

average useful signal power decays with the squared path loss. Thus, a low altitude of AP is preferred
to improve the efficiencies of WET and WIT of the single sensor. However, with the decrease of altitude,
the number of covered sensors by AP is reduced as well, which may degrade the performance of
the whole hybrid air-terrestrial network. Therefore, the planning of AP’s altitude is an interesting
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and important research topic. If the prior of sensor density is available, a raw idea to solve this
problem is presented as follows. Note that for the given altitude of AP, the uplink achievable rate
region of the sensor can be predicted based on (29) or the analytical SINR expression presented in
Section 4. Moreover, the performance metric of the network, e.g., system spectral efficiency (SE), can
be estimated using the sensor density information. With these in the hand, the altitude optimization
can be formulated as a network performance maximization problem subject to the sensor quality of
service (QoS) constraint, e.g., a threshold on the uplink achievable rate.

3.2.2. MUI Mitigation

According to (13) and Lemma 1, the power of MUI can be expressed asymptotically in the large
{Nx, Ny} limit as:

QMUI
l =

L

∑
k=1,k 6=l

E
[

PkwH
D,lhkhH

k wD,l

]
=

L

∑
k=1,k 6=l

(
ητ

1− τ
pl

βlKl
Kl + 1

Nx Ny −
Ep

l
(1− τ) T

)
E
[
wH

D,lhkhH
k wD,l

]
.

(30)

By exploiting the channel covariance matrix (5) and the expression of wD,l given by Theorem 1,
QMUI

l can be rewritten as:

QMUI
l =

L

∑
k=1,k 6=l

(
ητ

1− τ
pk

βkKk
Kk + 1

Nx Ny −
Ep

k
(1− τ) T

)

× βk
Kk + 1

 1
Nx Ny

∏
i∈{x,y}

sin2 (Nxπ (ρi,l − ρi,k))

sin2 (π (ρi,l − ρi,k))
+

1
Nx Ny

×

ρmax
ck ,x∫

ρmin
ck ,x

ρmax
ck ,y∫

ρmin
ck ,y

Sk
(
ρx, ρy

)
∏

i∈{x,y}

sin2 (Nxπ (ρi,l − ρi))

sin2 (π (ρi,l − ρi))
dρxdρy

 .

(31)

A short derivation of (31) is presented in Appendix B.
Before proposing the MUI-aware sensor scheduling scheme, we first present the following lemma,

which determines the scaling behavior of MUI with respect to {Nx, Ny}.

Lemma 2. Consider the following two conditions on the virtual AoDs of sensors: (a)
[
ρmin

x,l , ρmax
x,l

]
∩[

ρmin
x,k , ρmax

x,k

]
= ∅, ∀l 6= k, which indicates that the virtual AoD regions along the x-direction of any two

sensors are non-overlapping. (b)
[
ρmin

y,l , ρmax
y,l

]
∩
[
ρmin

y,k , ρmax
y,k

]
= ∅, ∀l 6= k, which indicates that the virtual

AoD regions along the y-direction of any two sensors are non-overlapping. In the large {Nx, Ny} limit,

• if the virtual AoDs of sensors satisfy only one of Conditions (a) and (b), the interference-to-useful signal
ratio scales at most with O

(
N−2

x
)

(if Condition (a) holds) or O
(

N−2
y

)
(if Condition (b) holds).

• if Conditions (a) and (b) are satisfied simultaneously, the power of MUI scales with O
(

N−1
x N−1

y

)
.

Proof. See Appendix C.

Lemma 2 indicates that: (1) in the low received SNR scenario, the effect of MUI can be efficiently
mitigated if the sensors are scheduled to make Condition (a) or Condition (b) satisfied; (2) whereas in
the high received SNR scenario, a good sensor scheduling scheme should make Conditions (a) and (b)
hold simultaneously.
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Based on Lemma 2 and the above discussion, we can build an MUI-aware sensor scheduling
scheme as follows.

• In the first step, we divide the whole region of virtual AoD along the x-direction into Bx disjoint
blocks, and the length of each block is much larger than max

l

{
ρmax

x,l − ρmin
x,l

}
. Similarly, the whole

region of virtual AoD along the y-direction is divided into the By disjoint blocks, and the length of

each block is much larger than max
l

{
ρmax

y,l − ρmin
y,l

}
, as shown in Figure 2.

• In the second step, the sensors whose virtual AoDs
{

ρx,l , ρy,l

}
lie in the same small rectangular

region in Figure 2 are gathered into one group. In this way, we will have at most BxBy

sensor groups.
• In the third step, for the low received SNR scenario, we pick one sensor from each group to serve

a particular time-frequency resource. Thus, the maximum number of simultaneously served
sensors is equal to BxBy. In the high received SINR scenario, the scheduled sensors are selected
in the same way, but further divided into two clusters, as shown in Figure 2, where the sensors
from red regions are assigned to Cluster 1 and those from white regions are assigned to Cluster 2.
Each cluster is served on different time-frequency resources. Thus, the maximum number of
simultaneously served sensors is equal to 1

2 BxBy. To ensure the fairness between all sensors,
the remaining sensors in each group can be served on the other time-frequency resources using
the same scheduling procedure.

Since in the first step, we have made the length of each block much larger than the spread of
virtual AoD of each sensor, i.e., ρmax

x,l − ρmin
x,l and ρmax

y,l − ρmin
y,l , the proposed scheme can make Condition

(a) and/or (b) satisfied approximately. In this case, the power of MUI is greatly mitigated. From
the first and third steps, Bx and By can be viewed as the parameters that give a tradeoff between
the allowed residual MUI and the number of simultaneously served sensors. Thus, considering the
constraint in the first step, Bx and By should be designed to maximize some performance metric
(e.g., the system SE). In practical application, since the feasible sets Bx and By are discrete and finite,
this task can be completed by simple off-line searching algorithms based on the analytical results in
Theorem 1 and (31).

xd



y
d 

y
d 



xd




x

y

Block 1

B
lock 1

 Block xB

B
lock 

y
B

Figure 2. Illustration of the MUI-aware sensor scheduling scheme.

Remark 1. Note that both the strongest-path beamforming and sensor scheduling require the knowledge of
virtual AoDs of sensors. By using the class of estimation methods based on discrete Fourier transform with zero
padding [38], the virtual AoDs can be estimated at AP from the pilots transmitted by sensors with a certain
quantification error.

Remark 2. If the remaining battery power of a sensor is not enough to transmit the pilot signal, AP cannot
obtain its AoD estimation. In this case, this sensor becomes a “dead sensor”, which can no longer be severed.
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To deal with this problem, the common signal of AP can be exploited. Usually, AP will broadcast periodically
some common signals within its coverage region for the purpose of synchronization, access control, etc. The
sensor with low battery power can harvest energy from these common signals until it has enough battery power
to access the network actively. Some methods of designing an omnidirectionally common signal in a massive
MIMO system can be found in [39].

3.3. Relation between Two Beamforming Schemes

According to (20) and (27) and Theorem 1, we can see that the energy beamformer of the statistical
max-SINR scheme converges to that of the strongest-path beamforming in the large

{
Nx, Ny

}
limit.

Moreover, if Conditions (a) and/or (b) are satisfied after the MUI-aware sensor scheduling, we can

neglect the term incurred by MUI, i.e., ∑L
k=1,k 6=l

(
ητ

1−τ pk
βkKk
Kk+1 Nx Ny −

Ep
k

(1−τ)T

)
Ck, in the information

beamformer given by (24), and rewrite (24) as:

wD,l = umax {Cl}
Nx ,Ny→∞

=
1√

Nx Ny
b (ρx,l)⊗ a

(
ρy,l

)
. (32)

Therefore, we can conclude that, under the MUI-aware sensor scheduling, the strongest-path
beamforming is equivalent to the statistical max-SINR beamforming when the number of AP antennas
tends to infinity.

4. Energy Efficiency Optimization

In this section, the transmit power, number of active antennas of AP and duration of the WET
phase are jointly optimized to maximize the system EE. It is assumed that the low-complexity
strongest-path beamforming scheme is employed at AP. Based on the theoretical analysis in Section 3.2,
an approximate expression of average received SINR at AP can be obtained as:

E [SINRl ] ≈
QU,LB

l
QMUI

l + σ2
, (33)

where the expressions of QU,LB
l and QMUI

l are given by (29) and (31), respectively.
We assume that the MUI is effectively mitigated after the proposed MUI-aware sensor scheduling

scheme, and as a result, the system is noise-limited (if the effect MUI is not negligible, by exploiting the
analytical expression in (31), the EE optimization problem can be solved efficiently using the geometric
programming based procedure developed in [40]). Thus, by substituting (29) into (33) and neglecting
the low-order terms, the average received SINR can be further simplified as:

E [SINRl ] ≈
τN2

x N2
y

1− τ
αl pl −

Nx Ny

1− τ
γl , (34)

where αl =
η

σ2

(
βl Kl
Kl+1

)2
and γl =

Ep
σ2T

βl Kl
Kl+1 .

The EE is defined as the SE divided by the AP’s total energy consumption, that is:

EE =
SE

τT ∑L
l=1 pl + TPc

, (35)

where the SE is defined as the sum of all sensors’ uplink achievable rates, that is:

SE = (1− τ)
L

∑
l=1

log

(
1 +

τN2
x N2

y

1− τ
αl pl −

Nx Ny

1− τ
γl

)
, (36)
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and Pc denotes the circuit power consumption of AP. According to [21,41], it is reasonable to assume
that the circuit power consumption increases linearly with the number of the AP’s active antennas.
Thus, Pc can be expressed as:

Pc = Ñx Ñy pant, (37)

where Ñx and Ñy denote the numbers of active antennas along the x axis and y axis, respectively,
which satisfy Ñx ≤ Nx and Ñy ≤ Ny. pant denotes the power consumption introduced by each
active antenna.

We consider the EE optimization problem with the per sensor achievable rate constraint, which is
formulated as:

max
τ,{pl}L

l=1,Ñx ,Ñy

EE,

s.t



C1 : (1− τ) log

(
1 +

τN2
x N2

y

1− τ
αl pl −

Nx Ny

1− τ
γl

)
≥ rT ,

l = 1, · · · , L,

C2 :
L

∑
l=1

pl ≤ pmax, pl ≥ 0, l = 1, · · · , L,

C3 :Ñx ≤ Nx, Ñy ≤ Ny, and Ñx, Ñy ∈ N+,

C4 :τ ∈ (0, 1) .

(38)

where rT denotes the minimum data rate requirement of each sensor. pmax denotes the maximum
transmit power constraint of AP. Note that the constraint C1 implicitly enforces the harvested energy to
be greater than the processing energy. Thus, no additional constraint is needed. Due to the tremendous
gain of a large-scale antenna array in a massive MIMO system, it is reasonable to assume that the uplink
received SINR given by (34) is much greater than one. Thus, at a good operating point, the increase of
Nx, Ny and pl will result in the decrease of EE since the achievable rate grows logarithmically with Nx,
Ny and pl . In this case, the constraint C1 will satisfy with equality at optimal Nx, Ny and pl . Therefore,
by substituting (35) and (37) into (38) and exploiting the definition of SE, the EE optimization problem
can be rewritten as:

min
τ,{pl}L

l=1 Ñx ,Ñy

τ
L

∑
l=1

pl + Ñx Ñy pant,

s.t.


(1− τ) log

(
1 +

τN2
x N2

y

1− τ
αl pl −

Nx Ny

1− τ
γl

)
= rT ,

l = 1, · · · , L,

C2 ∼ C4.

(39)

By rearranging the constraint C1, we can obtain:

pl =
1− τ

ταl Ñ2
x Ñ2

y

{
exp

(
rT

1− τ

)
− 1 +

Ñx Ñy

1− τ
γl

}
. (40)

With this equality, we can rewrite the problem (39) as:

min
τ,Ñx ,Ñy

L

∑
l=1

1− τ

αl

{
exp

(
rT

1− τ

)
− 1
}

1
Ñ2

x Ñ2
y
+

L

∑
l=1

γl
αl

1
Ñx Ñy

+ Ñx Ñy pant,

s.t.


L

∑
l=1

1− τ

ταl Ñ2
x Ñ2

y

{
exp

(
rT

1− τ

)
− 1 +

Ñx Ñy

1− τ
γl

}
≤ pmax,

C3, C4.

(41)



Sensors 2018, 18, 3540 15 of 25

With a few algebraic manipulations, we can see that the inequality constraint in (41) gives rise to
a lower bound on Ñx Ñy, that is:

Ñx Ñy ≥

L
∑

l=1

γl
ταl

+

√(
L
∑

l=1

γl
ταl

)2

−4pmax
L
∑

l=1

1−τ
ταl

{
exp

( rT
1−τ

)
−1
}

2pmax
∆
= NLB.

(42)

Moreover, setting the first-order derivative of the target function with respect to Ñx Ñy to zero,
we can obtain:

−
2

L
∑

l=1

1−τ
αl

{
exp

( rT
1−τ

)
− 1
}

Ñ3
x Ñ3

y
−

L

∑
l=1

γl
αl

1
Ñ2

x Ñ2
y
+ pant = 0. (43)

Since (43) is a monotonically increasing function of Ñx Ñy, it has a single solution (denoted as
Ñx Ñy = N †) when Ñx Ñy > 0. Therefore, the target function achieves its minimum at Ñx Ñy = N †.
Note that N † can be simply obtained using the method of bisection. Considering the lower bound
in (42), if we discard the integer constraints on Ñx and Ñy, the optimal Ñx and Ñy satisfy:

Ñx Ñy = max
{
NLB,N †

}
. (44)

When the right-hand side of (44) is greater than Nx Ny, the problem is infeasible. As long
as the problem is feasible, Ñx and Ñy can be selected as arbitrary positive integers, which can
make (44) satisfied.

After determining the number of active antennas, the optimal transmit power of AP can be
derived directly using (40). Finally, the optimal τ can be obtained by one-dimensional search over the
interval (0, 1).

From the above solutions, we can obtain two important observations on the design of
system parameters.

• First, for the above EE and widely-investigated SE optimization problems [12], we note that the
optimal transmit powers derived have distinct scaling behaviors with respect to the number of
the AP’s (active) antennas. According to (40), the optimal transmit power that maximizes the
EE reduces approximately with Ñ2

x Ñ2
y if the processing energy Ep is negligible and reduces with

Ñx Ñy if the processing energy is significant. In contrast, in SE optimization, the optimal transmit
power is independent of the number of AP antennas [12].

• In EE optimization, the optimal number of active antennas, i.e., Ñx Ñy, is a non-increasing function
of transmit power constraint pmax and the circuit power consumption pant. In particular, when the
circuit power consumption is dominant, (44) reduces to Ñx Ñy = NLB, which becomes independent
of pant. In this case, by substituting (40) into the constraint C2 of (38), we can see that the sum
transmit power constraint of AP holds with equality. This means that, to control the total circuit
power consumption, AP should use its maximum transmit power to reduce the number of
active antennas.

5. Simulation Results and Discussion

This section evaluates the performance of the proposed beamforming scheme via MATLAB
simulations. It was assumed that there are 100 sensors randomly located in the coverage area of AP.
The sensors were grouped based on the MUI-aware scheduling scheme in Section 3.2. For the sake of
illustration, the numbers of blocks along the x-direction and y-direction were fixed at Bx = By = 5.
One sensor was picked randomly from each group, and the number of total selected sensors was
L = 20 (five sensor groups were empty). The large-scale fading was modeled using the statistical
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propagation model for air-terrestrial transmission with low-altitude AP, which was proposed in [14].
In particular, the path loss was modeled as the summation of the free space path loss (in dB) and
an extra path loss term (in dB). According to Figure 3 [14], it was assumed that the extra path loss
term for each sensor varied randomly from 0 dB to 10 dB. The PAS of the channel was modeled as
S (ϕ, θ) = Sh (ϕ) Sv (θ), where Sh (ϕ) and Sv (θ) denote the PASs in horizontal and vertical directions,
respectively. As in [15,31], Sh (ϕ) and Sv (θ) were modeled using the von Mises distribution and
truncated Laplacian distribution, respectively. The simulation parameters are summarized in Table 1.
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Figure 3. The SE performance as a function of AP’s altitude. The number of AP antennas is
Nx = Ny = 25. The total transmit power of AP is set to ∑L

l=1 pl = 40 dBm. The processing energy of
sensor is set to Ep

l = 10−10 J.

Table 1. Simulation parameters.

Parameter Value

System bandwidth 1 MHz
Thermal noise floor −100 dBm
Central frequency 1.2 GHz

Rician factor 0 dB
The number of AP antennas Nx = Ny = 25

Angular spread ∆ϕl = 5◦, ∆θl = 2.5◦

Energy conversion efficiency η = 0.6 [42]
Duration of each frame T = 500 symbol times

We first compare the SE performance of proposed beamforming schemes with MF
beamforming [10] and DFT beamforming [13] in Figures 3 and 4. Note that the MF beamforming
required the instantaneous CSI and full number of RF chains (equal to Nx Ny) at AP. The requirement on
CSI and the number RF chains for DFT beamforming was the same as the strongest-path beamforming.

Figure 4 simulates the SE performance as a function of the duration of WET phase τ. With
the full number of RF chains, it was seen that the proposed statistical max-SINR beamforming
achieved a similar performance with MF beamforming at the optimal τ. This makes the statistical
max-SINR beamforming attractive, since it did not need the estimation of instantaneous CSI. With the
limited number of RF chains, the strongest-path beamforming outperformed the DFT beamforming
considerably, since it focused the signal power on the sensor’s direction in a more effective way. When
comparing with the MF beamforming, the strongest-path beamforming suffered from an SE loss of
11% due to the lack of instantaneous CSI.
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Figure 4. The SE performance versus τ. The number of AP antennas is Nx = Ny = 25. The total
transmit power of AP is set to ∑L

l=1 pl = 40 dBm. The altitude of AP is 100 m. The processing energy
of the sensor is set to Ep

l = 10−10 J.

Figure 5 simulates the SE performance for different AP transmit powers, where ∑L
l=1 pl increases

from 28 dBm to 48 dBm. The duration of the WET phase was optimized with respect to SE. It is seen
that the SE loss of strongest-path beamforming to the widely-used MF beamforming was quite small
(about 6%) for large transmit SNR. However, the SE loss to the statistical max-SINR scheme became
larger with the increase of transmit power. This was because the effect of residual MUI was dominant
in the large SNR region.
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Figure 5. The SE performance versus AP transmit power. The number of AP antennas is Nx = Ny = 25.
The altitude of AP is 100 m. The processing energy of sensor is set to Ep

l = 10−10 J.

Figure 6 shows the effect of sensor’s processing energy Ep
l on SE performance, where we assumed

that the processing energies for all sensors are the same and vary from 10−11 J to 10−8 J, as suggested
in [42]. The duration of the WET phase was optimized with respect to SE. As expected, the SEs of all
schemes approached zero with the increase of Ep

l since the energy and time resources left for the WIT
phase became less. In this case, AP must increase the transmit power or equip more antennas in order
to maintain the system performance. Figure 3 shows the effect of AP’s altitude on the SE performance
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of proposed beamforming schemes. The duration of the WET phase was optimized to maximize the
SE. It is seen that the SE performances of all schemes degraded with the altitude of AP since more path
loss was introduced. At last, it is noted from Figures 3 and 4 that the analytical SE based on (33) gave a
good approximation to the Monte Carlo result.
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Figure 6. The SE performance versus processing energy of sensor Ep
l . The number of AP antennas is

Nx = Ny = 25. The total transmit power of AP is set to ∑L
l=1 pl = 40 dBm. The altitude of AP is 100 m.

Figure 7 shows the EE performance of the strongest-path beamforming as a function of per
antenna circuit power consumption pant. The proposed EE optimization scheme was compared with
that in [21] where the maximum number of antennas was used at AP (i.e., Ñx = Ñy = 25). The figure
shows that the EE performance was greatly improved by optimizing the number of the AP’s active
antennas, especially when the per antenna circuit power consumption pant was large. In particular,
it is seen that the performance gain increased from 1.9 times to 5.2 times when pant varied between
10 dBm and 30 dBm.
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Figure 7. The EE performance versus per antenna circuit power consumption of AP. The maximum
number of AP’s antennas is Nx = Ny = 25. The altitude of AP is 100 m. The processing energy of
sensor is set to Ep

l = 10−10 J. The maximum transmit power of AP is set to pmax = 46 dBm. The data
rate requirement of each sensor is rT = 1 nat/s/Hz.
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Figure 8 simulates the effect of processing energy of sensor Ep
l on the proposed EE optimization

scheme. It is seen that, for small Ep
l , the proposed optimization scheme can provide considerable

gain. When Ep
l was greater than 10−9 J, the EE performance under the proposed optimization scheme

converged to that of [21]. This is because in this case, AP must utilize the maximum number of
antennas in order to meet the achievable rate constraint and processing energy consumption of the
sensor. As a result, the same solution was obtained by the two optimization schemes. Figure 9 shows
the effect of AP’s altitude on the proposed EE optimization scheme. Similarly, we can see that the two
optimization schemes gave rise to the same EE performance for a large altitude of AP.
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Figure 8. The EE performance versus processing energy of sensor Ep
l . The altitude of AP is 100 m.

The per antenna circuit power consumption pant is set to 15 dBm. The maximum transmit power of AP
is set to pmax = 46 dBm. The data rate requirement of each sensor is rT = 1 nat/s/Hz.
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Figure 9. The EE performance versus the altitude of AP. The per antenna circuit power consumption
pant is set to 20 dBm. The maximum transmit power of AP is set to pmax = 46 dBm. The data rate
requirement of each sensor is rT = 1 nat/s/Hz.
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6. Conclusions

This paper studies the 3D beamforming for an airborne massive MIMO system with WET. When
large numbers of RF chains are available at AP, a statistical max-SINR beamforming scheme is proposed
to maximize the average received SINR at AP. A heuristic strongest-path beamforming scheme is
also proposed when the number of AP RF chains is limited. Under the strongest-path beamforming
scheme, the transmit power, number of active antennas of AP and duration of the WET phase are
jointly optimized to maximize the system EE. The simulation results show that the statistical max-SINR
beamforming scheme can achieve similar SE performance with MF beamforming. The strongest-path
beamforming outperforms the DFT beamforming considerably, but suffers from a small SE loss when
compared with MF beamforming. Moreover, the proposed EE optimization scheme outperforms the
traditional scheme that does not consider the circuit power consumption significantly.
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Abbreviations

The following abbreviations are used in this manuscript:

MIMO Multiple-input multiple-output
AP Air platform
SINR Signal-to-interference-plus-noise ratio
WET Wireless energy transfer
BS Base station
5G Fifth generation
EE Energy efficiency
2D Two-dimensional
3D Three-dimensional
WIT Wireless information transmission
LoS Line-of-sight
NLoS Non-LoS
MF Match filter
RF Radio frequency
CSI Channel state information
AoD Angle of departure
PAS Power angle spectrum
AWGN Additive white Gaussian noise
MUI Multi-user interference
SLNR Signal-to-leakage-plus-noise ratio
SE Spectral efficiency
QoS Quality of service

Appendix A. Proof of Lemma 1

To prove Lemma 1, we first consider the asymptotic property for dominant eigenvector and
eigenvalue of channel covariance matrix Cl .

According to (5) and the equality (A⊗ B)(C⊗D) = (AC)⊗ (BD), we have

CLoS
l =

βlKl
Kl + 1

(
b (ρx,l)⊗ a

(
ρy,l

)) (
b (ρx,l)⊗ a

(
ρy,l

))H
. (A1)
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From (A1), it is easy to verify that

umax

(
CLoS

l

)
=

1√
Nx Ny

b (ρx,l)⊗ a
(

ρy,l

)
,

λmax

(
CLoS

l

)
=

βlKl
Kl + 1

Nx Ny.
(A2)

Moreover, using the equality (A⊗ B)(C⊗D) = (AC)⊗ (BD) on (5) repeatedly, we can obtain

1√
Nx Ny

CNLoS
l b

(
ρ′x
)
⊗ a

(
ρ′y

)

=
1√

Nx Ny

βl
Kl + 1

ρmax
x,l∫

ρmin
x,l

ρmax
y,l∫

ρmin
y,l

Sl
(
ρx, ρy

)
b (ρx)⊗ a

(
ρy
)

bH (ρx)b
(
ρ′x
)

aH (ρy
)

a
(

ρ′y

)
dρxdρy

=
1√

Nx Ny

βl
Kl + 1

ρmax
x,l∫

ρmin
x,l

ρmax
y,l∫

ρmin
y,l

Sl
(
ρx, ρy

)
b (ρx)⊗ a

(
ρy
) Nx−1

∑
i=0

exp
(

2πi
(
ρ′x − ρx

)) Nx−1

∑
i=0

exp
(

2πi
(

ρ′y − ρy

))
dρxdρy

=
1√

Nx Ny

βl
Kl + 1

ρmax
x,l∫

ρmin
x,l

ρmax
y,l∫

ρmin
y,l

Sl
(
ρx, ρy

)
b (ρx)⊗ a

(
ρy
) exp (π (Nx − 1) (ρ′x − ρx))

exp
(

π
(
1− Ny

) (
ρ′y − ρy

)) sin (Nxπ (ρ′x − ρx))

sin (π (ρ′x − ρx))

×
sin
(

Nyπ
(

ρ′y − ρy

))
sin
(

π
(

ρ′y − ρy

)) dρxdρy.

(A3)

According to [43], the function 1
N

sin(Nπx)
sin(πx) (this function is called aliased sinc function in [43])

converges to standard sinc function sinc(Nx) as N → ∞. Therefore, using the limit 1
a sinc

( x
a
) a→0→ δ (x),

we can obtain 1
N

sin(Nπx)
sin(πx)

N→∞→ δ (x). With the above result, in the large
{

Nx, Ny
}

limit we can
rewrite (A3) as

1√
Nx Ny

CNLoS
l b

(
ρ′x
)
⊗ a

(
ρ′y

)
=

1√
Nx Ny

βl
Kl + 1

Sl

(
ρ′x, ρ′y

)
b
(
ρ′x
)
⊗ a

(
ρ′y

)
.

(A4)

Note that in (A4), if ρ′x /∈
[
ρmin

x,l , ρmax
x,l

]
or ρ′y /∈

[
ρmin

y,l , ρmax
y,l

]
, we can simply set Sl

(
ρ′x, ρ′y

)
to zero. Equation (A4) indicates that 1√

Nx Ny
b (ρ′x) ⊗ a

(
ρ′y

)
is the eigenvector of CNLoS

l , and the

corresponding eigenvalue can be expressed as βl
Kl+1 Sl

(
ρ′x, ρ′y

)
. For the commonly used PAS models,

Sl
(
ρx, ρy

)
achieves the maximum at {ρx, ρy} = {ρx,l , ρy,l} [15,36], i.e., the virtual AoDs corresponding

to sensors’ physical AoDs in horizontal and vertical directions. Therefore, we can conclude

umax

(
CNLoS

l

)
=

1√
Nx Ny

b (ρx,l)⊗ a
(

ρy,l

)
,

λmax

(
CNLoS

l

)
=

βl
Kl + 1

Sl

(
ρx,l , ρy,l

)
.

(A5)

Combining (A2) and (A5), in the large
{

Nx, Ny
}

limit, we have

umax {Cl} =
1√

Nx Ny
b (ρx,l)⊗ a

(
ρy,l

)
,

λmax (Cl) =
βlKl

Kl + 1
Nx Ny +

βl
Kl + 1

Sl

(
ρx,l , ρy,l

)
.

(A6)
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With the channel model in (1) and (2), the harvest energy at sensor l can be written as

Pl =
ητ

1− τ
plw

H
E,lhlh

H
l wE,l −

Ep
l

(1− τ) T

=
ητ

1− τ
pl

wH
E,lC

LoS
l wE,l +

βl
Kl + 1

∣∣∣∣∣∣∣
ϕl+∆ϕl∫

ϕl−∆ϕl

θl+∆θl∫
θl−∆θl

rl (ϕ, θ)wH
E,lb (ϕ, θ)⊗ a (ϕ, θ)dϕdθ

∣∣∣∣∣∣∣
2− Ep

l
(1− τ) T

(A7)

Substituting (20) and (A6) into (A7), and using a similar procedure as that in (A3), Pl (in the large
{Nx, Ny} limit) can be expressed asymptotically as

Pl =
ητ

1− τ
pl

(
βlKl

Kl + 1
Nx Ny +

βl
Kl + 1

∣∣∣rv
l

(
ρx,l , ρy,l

)∣∣∣2)− Ep
l

(1− τ) T
, (A8)

where rv
k

(
ρx,k, ρy,k

)
denotes the complex response gain with respect to the virtual AoDs {ρx, ρy},

which can be simply derived by using the formula of integration by substitution. Note that the term
βl

Kl+1

∣∣∣rv
l

(
ρx,l , ρy,l

)∣∣∣2 becomes negligible in the large {Nx, Ny} limit since rv
l

(
ρx,l , ρy,l

)
is independent

with {Nx, Ny}. This completes the proof.

Appendix B. Proof of (31)

According to (5), we have

wH
D,lCkwD,l = wH

D,lC
LoS
k wD,l + wH

D,lC
NLoS
k wD,l , (A9)

where wH
D,lC

LoS
k wD,l can be further expanded as

wH
D,lC

LoS
k wD,l

=
1

Nx Ny

βkKk
Kk + 1

∣∣∣∣(b (ρx,l)⊗ a
(

ρy,l

))H (
b (ρx,k)⊗ a

(
ρy,k

))∣∣∣∣2

=
1

Nx Ny

βkKk
Kk + 1

sin2 (Nxπ (ρx,l − ρx,k))

sin2 (π (ρx,l − ρx,k))

sin2
(

Nyπ
(

ρy,l − ρy,k

))
sin2

(
π
(

ρy,l − ρy,k

)) .

(A10)

Similarly, wH
D,lC

NLoS
k wD,l can be expanded as

wH
D,lC

NLoS
k wD,l =

1
Nx Ny

βk
Kk + 1

ρmax
ck ,x∫

ρmin
ck ,x

ρmax
ck,y∫

ρmin
ck ,y

Sk
(
ρx, ρy

)

×
∣∣∣∣(b (ρx,l)⊗ a

(
ρy,l

))H (
b (ρx)⊗ a

(
ρy
))∣∣∣∣2dρxdρy

=
1

Nx Ny

βk
Kk + 1

ρmax
ck ,x∫

ρmin
ck ,x

ρmax
ck,y∫

ρmin
ck ,y

Sk
(
ρx, ρy

)
∏

i∈{x,y}

sin2 (Nxπ (ρi,l − ρi))

sin2 (π (ρi,l − ρi))
dρy.

(A11)

Inserting (A9)–(A11) into (30), we obtain (31).
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Appendix C. Proof of Lemma 2

We first prove the first part of the lemma. Without loss of generality, we assume that only
condition (a) is satisfied. From (31), the power of MUI can be rewritten as

QMUI
l =

L

∑
k=1,k 6=l

PkwH
D,lC

LoS
k wD,l +

L

∑
k=1,k 6=l

PkwH
D,lC

NLoS
k wD,l

= QMUI
l,LoS + QMUI

l,NLoS.

(A12)

The first and second terms of right-hand side represent the MUIs contributed by the LoS and
NLoS channels, respectively. By using the expression of Pk in Lemma 1 and (A10), we can obtain
(in the large {Nx, Ny} limit)

QMUI
l,LoS

QU
l
≤ 1

Nx Ny

L

∑
k=1,k 6=l

Pk
Pl

sin2 (Nxπ (ρx,l − ρx,k))

Nxsin2 (π (ρx,l − ρx,k))

sin2
(

Nyπ
(

ρy,l − ρy,k

))
Nysin2

(
π
(

ρy,l − ρy,k

)) . (A13)

Note that the function 1
N

sin(Nπx)
sin(πx) converges to standard sinc function sinc(Nx) as N → ∞ [43].

Thus, when condition (a) is satisfied, i.e.,
[
ρmin

x,l , ρmax
x,l

]
∩
[
ρmin

x,k , ρmax
x,k

]
= ∅, ∀l 6= k, we can obtain

sin2 (Nxπ (ρx,l − ρx,k))

Nxsin2 (π (ρx,l − ρx,k))
= Nx

sin2 (Nxπ (ρx,l − ρx,k))

N2
x π2(ρx,l − ρx,k)

2

≤ 1

Nxπ2(ρx,l − ρx,k)
2 = O

(
N−1

x

)
,

(A14)

where the second step follows from the inequality | sin x| ≤ 1. Moreover, the function 1
N

sin(Nπx)
sin(πx)

achieves its maximum at point x = 0, thus, we have

sin2
(

Nyπ
(

ρy,l − ρy,k

))
Nysin2

(
π
(

ρy,l − ρy,k

)) ≤ Ny. (A15)

Substituting (A14) and (A15) into (A13), we can obtain
QMUI

l,LoS
QU

l
≤ O

(
N−2

x
)
. Using a similar

procedure as that in the appendix of [44], we can prove
QMUI

l,NLoS
QU

l
≤ O

(
N−2

x
)
. This completes the proof

for the first part of Lemma 2.
When both conditions (a) and (b) are satisfied, the proof is similar with that in appendix of [44].

Thus, it is omitted.
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