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Abstract: In order to run a localization filter for parking systems in real time, the directional
information must be directly available when a distance measurement of the wheel speed sensor
is detected. When the vehicle is launching, the wheel speed sensors may already detect distance
measurement in the form of Delta-Wheel-Pulse-Counts (DWPCs) without having defined a rolling
direction. This phenomenon is particularly problematic during parking maneuvers, where many
small correction strokes are made. If a localization filter is used for positioning, the restrained DWPCs
cannot process in real time. Without directional information in the form of a rolling direction signal,
the filter has to ignore the DWPCs or artificially stop until a rolling direction signal is present. For this
reason, methods for earlier estimation of the rolling direction based on the pattern of the incoming
DWPCs and based on the force equilibrium have been presented. Since the new methods still have
their weaknesses and a wrong estimation of the rolling direction can occur, an extension of a so-called
Dual-Localization filter approach is presented. The Dual-Localization filter uses two localization
filters and an intelligent initialization logic that ensures that both filters move in opposite directions
at launching. The primary localization filter uses the estimated and the secondary one the opposite
direction. As soon as a valid rolling direction signal is present, an initialization logic is used to decide
which localization filter has previously moved in the true direction. The localization filter that has
moved in the wrong direction is initialized with the states and covariances of the other localization
filter. This extension allows for a fast and real-time capability to be achieved, and the accumulated
velocity error can be dramatically reduced.

Keywords: Bayes filter; driving state estimation; direction detection; pattern recognition;
equilibrium of forces; slope

1. Introduction

In order to achieve a robust and precise positioning of intelligent vehicle systems,
localization filters which connect different vehicle and sensor models were developed by multi-sensor
data fusion. In the literature, different sensor models of the wheel speed sensors [1–3], the steering
wheel sensors [2], and the yaw rate sensors [3,4] are used to model the vehicle’s motion. For parking
systems, the sensor models of the wheel speed sensors are particularly important, as parking faces the
challenges of rolling direction changes, which have to be detected through the wheel speed sensor
itself. Bayesian filters are used to fuse the different sensor information together. These filters use
the information in real time and react extremely sensitively to systematic and unsystematic errors.
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The structure of these filters by weighted average estimation means error reduction by fusion, but also
means that they react sluggishly. Problems arise when the filter uses an incorrect estimated rolling
direction because it is very expensive to perform the faulty calculation retroactively. The filter extension
introduced in this paper is intended to help in inaccurate rolling direction estimation. The importance
of the use of filter extensions and their continuous further development would be clearly demonstrated
by their application in modern and sophisticated filter techniques, using, for example, out-of-sequence
measurement filters [5], interacting parallel filters [6], particle learning filters [7], or group importance
sampling filters [8].

This paper introduces a Dual-Localization filter method that allows two filters to run in the
opposite rolling direction when they are put into operation to run in real time. When launching,
it happens that the wheel speed sensors already detect an information about the velocity in the form of
Delta-Wheel-Pulse-Counts (DWPCs) without having defined a direction. The localization filter cannot
process these DWPCs with an undefined rolling direction signal in real time and would ignore or
artificially stop these measurements until a valid rolling direction signal is present. For this reason,
in the patent application [9], a procedure for determining a rolling direction change based on the pattern
of the incoming DWPCs and in the patent application [10], a method for detecting the rolling direction
by a force equilibrium in the longitudinal direction of the vehicle is presented. Since the new methods
still have weaknesses and a wrong estimation of the direction can occur, an extension of the localization
filter that ensures that a continuous calculation of the position can take place by a localization filter
has been developed, even if the considered rolling direction has turned out to be wrong. This idea
of a so-called Dual-Localization filter has already been presented in patent application [11] and in
this paper a possible application and implementation is shown. The Dual-Localization filter uses two
localization filters and an intelligent initialization logic that ensures that both filters always move in
the opposite direction when launching. The first so-called primary localization filter uses the estimated
direction and the secondary one uses the opposite direction. As soon as a valid rolling direction signal
is present, an initialization logic is used to decide which localization filter has previously moved in the
true direction. The localization filter that has moved in the wrong direction is initialized with the states
and covariances of the other localization filter. The basic structure of the different rolling direction
estimations and the Dual-Localization filter is visualized in Figure 1.
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Figure 1. Rolling direction estimation and Dual-Localization filter concept.

The division of this work is organized as follows: In Section 2, the localization filter is briefly
introduced. Section 3 shows the different possibilities to detect the rolling direction. The evaluation of
the rolling directions and the initialization logic is presented in Section 4. Finally, experimental results
are shown in Section 5, where the performance is demonstrated in real test scenarios from parking
and real test scenarios on the reference gradient hill. For the following formulations, a time-discrete
description with the index k is selected. For all wheels of the vehicle, the index i ∈ {FL, FR, RL, RR} is
chosen. Sensor measurements or quantities derived from the sensor model are illustrated with × and
empirically corrected quantities are illustrated with ∗.
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2. Localization Filter

For vehicle localization, a filter merges different dead-reckoning models together. To enable
a robust and precise estimation of the vehicle position, the information from different sensor
measurements can be combined to obtain an exact estimate. The filter algorithms work as a kind of
weighted average estimator and calculate the states and covariances. The covariances are the estimated
errors of the states resulting from the possible errors of the measurements and inputs. The filters use
these as a kind of memory, so to speak, and are thus in a position to determine very precise states
even in the event of measurement errors. The filter delivers a trajectory consisting of the position
pk = [xk yk]

T and orientation θk in relation to a fixed starting point. In addition, the velocity angle βk,
the velocity vk, and the yaw rate ωk of the vehicle are delivered.

xk =
[

xk yk θk βk vk ωk

]T
. (1)

The measurements used in the filter zk include the individual wheel angles vector δk,
the individual wheel velocities vector ṽ×k (d

×
k ), which is dependent on the rolling direction, and

the yaw rate ω×k measured by the yaw rate sensor.

zk =
[
δk ṽ×k (d

×
k ) ω×k

]T
. (2)

The localization filter then solves the problem of fusing different measurements with different
models by using the Bayesian filter equations. There are several forms of Bayesian filter to choose
from. The Kalman filter is certainly the best known. It uses two phases in which a system model
performs a prediction of the state and in which the states are corrected by the measurement model in
the innovation phase. Another form is the Information filter, which uses an inverse form of equation in
the innovation phase and is advantageous if the system has more measurements than states. Both filters
can be applied to non-linear samples using the extended method which uses the 1st Taylor series
linearization or the unscented method which uses a linearization up to the 3rd Taylor series. In this
work, an extended information filter (EIF) is used, which is well suited for this system due to its
simplicity and fast calculation. The EIF calculating a new state x using the system model f and the
measurement model h:

x̂k = f (x̂k−1),

ẑk = h (x̂k) . (3)

However, the filter itself is not part of this work and is therefore assumed as given. A more
detailed description and application of the localization filter is discussed in the article [12].

3. Detection of Rolling Direction

In Figure 2, the time line of the different rolling direction signals is represented. Here, the test
vehicle was braked from a reverse drive to a standstill and accelerated forwards after a short time.
As can be seen, the two methods of pattern recognition d̂pattern and force equilibrium d̂force allow the
actual rolling direction to be recognized more quickly than with the DWPC signal d×.

In the following, the algorithms with their strengths and weaknesses will be described. A test
vehicle was equipped with a Dual-DGNSS-IMU reference system consisting of two Differential-Global
Navigation Satellite Systems (DGNSS) with RTK-differential data from ground-based reference stations
(communication via LTE) and an Inertial Measurement Unit (IMU), which provides an accuracy of the
measured velocity of 0.04 m/s.
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Figure 2. (Top): The rolling directions of the Delta-Wheel-Pulse-Counts (DWPCs) signal d×, the pattern
recognition method d̂pattern, and the force equilibrium method d̂force; (Bottom): Undefined and defined
DWPCs and velocity of the OdoFilter using the new rolling directions methods.

3.1. Roll Direction Detection via AMR+ Sensors

Wheel speed sensors are divided into active and passive sensors, but currently it is almost always
active wheel speed sensors that are installed for automotive applications. These sensors, with the
anisotropic magnetoresistive (AMR) effect, measure the orientations of a magnetic field of a pole wheel.
In the past, inductive passive sensors were also used to measure the magnetic field change over time.
Active wheel speed sensors have the advantage of measuring low velocities, and every magnetic field
change is detected [13].

3.2. Velocity Measurement

With the AMR sensors, the DWPC w×i,k can be determined for each wheel. The sensor counts the
counter value En×i,k continuously up to the maximum counter value Enmax = 255 and then starts again
from 1. To calculate the DWPC, the modulo operation (the modulo operation mod(x, y) will give the
rest after dividing x by y. It is assumed that, at a sampling interval of ∆t = 0.02 s, the counter value is
not more than Enmax = 254 (from 0–254 = 255 steps), which would mean 255 m/s = 918 km/h at a
rolling circumference of c = 2 m and a resolution of wmax = 100) is used:

w×i,k = mod
[(

En×i,k − En×i,k−1

)
, Enmax

]
. (4)

The maximum number of DWPCs per revolution results from the number of magnet pole pairs
nPol or the resolution of the wheel velocity sensor AWHL to

wmax = 2 · nPol =
1

AWHL
. (5)

The traveled path ∆si,k results from the rolled angle ∆φi,k and the radius ri of the wheel:

∆si,k = ∆φi,k · ri = 2π · w×i,k · AWHL ·
ci

2π
=

w×i,k · ci

wmax
. (6)
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Using the direction of rotation d×i,k and the constant sampling time ∆t = 1/ fS, the wheel
circumferential velocity ṽ×i,k can be calculated:

ṽ×i,k =
ds
dt

=
∆si,k

∆t
· vi,k =

w×i,k · ci · d×i,k
wmax · ∆t

. (7)

Since the AMR sensors detect every reversal of the direction of rotation of the magnet poles,
only the quantization error due to the resolution is decisive for the velocity measurement, which is
taken into account when tuning the localization filter.

Rotational Direction Measurement

Modified active wheel speed sensors can also detect the rolling direction. The direction of
rotation of these AMR+ sensors can be detected by a signal shift with two slightly twisted pole rings.
For vehicles with only one driven axle, only the non-driven axle is equipped with AMR+ sensors for
cost reasons. For vehicles with two driven axles, all four wheels are normally equipped with AMR+
sensors. The direction of rotation can be positive, negative, or undefined and is defined as follows:

d×i,k ∈ {−1, 0, 1}. (8)

AMR+ sensors can detect up to three magnetic field changes when the vehicle is started up before
it can provide a valid direction of rotation. As shown in Figure 2, there is only one valid rolling
direction signal after the DWPCs have been measured (4 to 6.1 s). During measurements, a value of up
to four DWPCs could be measured without the presence of a driving direction signal. An inaccuracy
or time delay of the speed signals cannot be taken into account when tuning the localization filter.
Therefore, the following methods were developed, which can determine a rolling direction with the
first DWPC.

3.3. Roll Direction Detection by Pattern Recognition

For an early recognition of a change of the rolling direction, a procedure that investigates the
chronological sequence of the DWPC of the individual wheels in pairs was developed. A detailed
description of the procedure with an example can be found in the patent application [9]. The principle
is similar to the direction recognition of the AMR+ sensors, where two encoder rings are used to detect
a phase shift of the signals. In Figure 3, one recognizes that the DWPC for the time range t = 1–2 s
alternate with the following scheme [..., RL, FR, RR, FL]. The schema [FL, RR, FR, RL, ...] is then
reflected, and the vehicle has changed its rolling direction. The first four DWPCs of the front left
and the rear right wheel and the three DWPCs of the front right and rear left wheel have thereby no
directional affiliation by the signal of the AMR+ sensors. It can also be seen that the direction of the
driving is maintained for 250 ms in order to prevent fast direction changes.

The procedure is implemented by an algorithm which stores and evaluates the sequence of the
DWPCs. For this purpose, six wheel pairs are formed, and a feature vector Fpattern,j,k is determined.
The system then checks, for each pair of wheels, whether the feature vector has been mirrored.
If a reflection is detected for more than two wheel pairs, a change in the rolling direction is assumed.
The chronological sequence results from a random rotation of the encoder rings of the wheels against
each other. In the unlikely event that all DWPCs occur simultaneously because the encoder rings are
perfectly aligned, the algorithm cannot detect any change in the rolling direction. With a change of the
wheel angle by steering at standstill, it can also come to the detection of DWPCs. In this case only the
wheel pair of the rear axle should be used. The rolling circumference difference between the wheels
has a negligible influence on the sequence. The procedure can only detect a change in rolling direction,
and there is no indication of the absolute rolling direction. The algorithm has its weakness when the
roll circumference is very different or when it is steered at a standstill and the order changes.
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Figure 3. (Top): Undefined (blue) and defined (black) DWPCs using the pattern recognition method
for detection of rolling directions; (Bottom): The rolling directions of the DWPC signal d× and the
pattern recognition method d̂pattern.

3.4. Rolling Direction Detection by Force Equilibrium

By force equilibrium in the longitudinal direction of the vehicle, a rolling direction and a safe
standstill can be determined. A detailed description of the procedure including algorithm with an
example can be found under the patent application [10]. In the procedure described above, a velocity
is derived from the force equilibrium:

∑
veh

Fx,veh(vx) = Fdrive − Ffric(vx) = m · v̇x. (9)

The sign of the velocity determines the rolling direction. If the velocity is 0 and the braking force
is high enough, a safe standstill can also be determined. Longitudinal forces consist of quantities with
known sign Fdrive and quantities with velocity-dependent sign Ffric(vx). The following torques and
forces are taken into account on the vehicle:

Fengine: engine force on the wheel Tengine → Fengine = Tengine/rD;
Fbrake: brake force on the wheel Tbrake → Fbrake = Tbrake/rD;
Fdrag: engine drag force on the wheel Tdrag → Fdrag = Tdrag/rD;
Froll: rolling friction force Froll = µroll ·m · g · cos(φ);

Fslope: slope downforce Fslope = m · g · sin(φ).

The frictional forces act against the velocity and can be calculated by the sign function of the
velocity, the braking force, the engine drag force, and the rolling friction force:

Ffric,abs = Fbrake + Fdrag + Froll,

Ffric(vx) = sign(vx) · Ffric,abs. (10)

The driving force consists of the engine force and the inclination and depends on the direction of
the velocity:

Fdrive = Fengine + Fslope. (11)

In Figure 4 the driving force Fdrive and the positive or negative value of frictional force Ffric from
the force equilibrium are represented. As soon as the driving force Fdrive exceeds the friction force Ffric
a rolling direction is defined and the line in the top figure changes from blue to black. As soon as the
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driving force Fdrive is smaller in amount than the frictional force Ffric and there is no DWPC for 200 ms
a save standstill is defined.

Figure 4. (Top): Calculated forces for the force equilibrium method for detection of rolling directions;
(bottom): the rolling directions of the DWPC signal d× and the force equilibrium method d̂force.

This approach uses the slope that is not directly available on the vehicle bus, which is why it must
be calculated. In the following, the method with which slope can be calculated is explained briefly.

3.5. Slope and Cross-Slope Calculation

The slope and cross-slope can be determined by an adjustment of the acceleration sensors with a
calculated acceleration through the vehicle model [14]. The vehicle longitudinal acceleration ax can be
determined by deriving the vehicle velocity:

a∗x =
dvx

dt
= v̇x. (12)

The vehicle transverse acceleration ay can be determined by using the Single-Track Model from the
tangential velocity vx and the instantaneous pole distance rRM or the yaw rate ω:

a∗y =
v2

x
rRM

=
vx

ω
. (13)

When the vehicle is on a slope or cross-slope, the acceleration sensors measure vehicle acceleration
relative to the road and induced downhill acceleration due to gravity g = 9.81 m/s2. It is assumed that
the acceleration in the z-direction is a∗z = 0, since it is assumed that the vehicle does not drive in a loop
or a steep curve when parking. With the help of the rotating matrix Tφ,ψ the correlation results:

a× =

a×x
a×y
a×z

 =

a∗x
a∗y
a∗z

+ Tφ,ψ ·

0
0
g

 =

a∗x
a∗y
a∗z

+

1 0 0
0 c φ s φ

0 −s φ c φ


︸ ︷︷ ︸

Tφ

·

c ψ 0 −s ψ

0 1 0
s ψ 0 c ψ


︸ ︷︷ ︸

Tψ

·

0
0
g



=

 v̇x + g · sin(φ)
vx
ω + g · sin(ψ) cos(φ)

g · cos(ψ) cos(φ)

 . (14)
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If the equation is solved, the tilt angle is φ and the tilt angle is ψ:

φ = arcsin
(

ax − v̇x

g

)
, ψ = arcsin

(
ay − vx

ω

g · cos(φ)

)
. (15)

With the conversion for the slope slope and cross-slope crossslope, one can obtain the following:

slope = tan (φ) · 100,

crossslope = tan (ψ) · 100. (16)

The slope slope is required for estimating the rolling direction. The cross-slope crossslope is no
longer important in this work.

3.6. Result of Slope Calculation

To validate the slope calculation, test drives were performed on a test hill with a defined gradients
of 15% and 20%. In front of and behind the hill, the ground is flat. It is assumed that the zero-point
error has already been corrected by a sensor calibration at the start of the vehicle in the flat plain.
Figure 5 (left) shows the results for the first measurement on the hill. Here, the gradient hill was
crossed faster and not stopped within the gradient. The dashed lines indicate the areas with 15% and
20% gradients, respectively.

Figure 5. Slope estimation on the gradient hill. (Left): During the measuring run without standstill;
(Right): with standstill. (Top): calculated slope slope; (Middle): measured acceleration of the IMU a∗x
and acceleration of the filtered signal of the wheel speed sensors a∗x; (Bottom): vehicle velocity v.

Due to the faster gradient changes, the actual gradient is only reached very briefly or not
completely. A glance at the individual accelerations shows that the filtered signal of the wheel speed
sensors a∗x can hardly follow the measured acceleration signal. In the 2nd measurement, the gradient
hill was slowly crossed over and stopped within the gradient. Figure 5 (right) shows the measured slope
slope. It is conspicuous that the signal swings out before reaching the provided gradient values, which
is due to the fact that the longitudinal acceleration calculated by the wheel speed sensors is already
fixed to 0, but the acceleration sensor still measures the pitching of the car body. These vibrations
have subsided after 3 s at the latest, but cannot be avoided due to the position of the IMU in the
vehicle. Further sources of error are a permanent pitching of the vehicle on the runway, which leads to
an unintentional alignment of the sensor and inaccurate sensor correction values. Sensor errors
can cause a zero-drift error at an angle of φ = 11.31 ◦ and sensitivity errors of ∆φ = 4.09◦ and
∆φ = 0.34◦. The linearity and hysteresis errors are not taken into account due to the small deflections
and the lack of dynamics when starting from standstill for the detection of the rolling direction due to
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the force equilibrium in the longitudinal direction of the vehicle. New inertial sensors usually provide
a value for the zero-point drift correction, which is required for an accurate slope estimation.

4. Initialization Logic of the Dual-Localization Filter

When the AMR+ rolling direction indicates a driving direction, the primary (1st) localization
filter follows the estimated direction and the secondary (2nd) localization filter follows the opposite
direction. If the AMR+ rolling direction is defined, both localization filters follow the same direction.
The system determines which localization filter has previously moved in the correct direction and
describes the initialization state in more detail at all times. In total, seven different initialization states
(Init) can be assumed (see Table 1).

1. Initial state: no DWPC and no estimated direction.
2. Active state: there is no DWPC yet, but there is already an estimated direction. Both localization

filters move in opposite directions.
3. Passive state: no DWPC and no estimated direction. Before, however, there was an initial direction.
4. Ideal state: there is DWPC and the AMR+ roll direction immediately recognizes a rolling direction.
5. Secondary initialization state: there is DWPC and the estimated direction was correct. The 2nd

localization filter is initialized with the values of the 1st localization filter.
6. Primary initialization state: there is DWPC and the estimated direction was wrong. The 1st

localization filter is initialized with the values of the 2nd localization filter.
7. Error state: DWPC appears and the AMR+ roll direction immediately changes the sign.

Table 1. Initialization states of the initialization logic of the Dual-Localization filter.

Init DWPC d× d∗ True/False

1 0 - - -
2 0 0 1 -
3 0 0 0 -
4 1 1 - -
5 1 1 1 true
6 1 1 −1 false
7 1 −1 0 false

Figure 6 shows the procedure of the Dual-Localization filter and the change of the initialization
states. The figure above shows the rolling direction signals of the Dual-Localization filter for a
complete parking process consisting of a parking in and parking out process. The middle figure shows
the directional estimation. The figure below shows the time course of the initialization state signal
from Table 1.

In the first seconds, the vehicle is stationary and all rolling direction signals are 0 or point in the
initial forward direction, the initial state (Init 1) prevails. From 2 s, a backward estimation direction is
estimated and the AMR+ rolling direction is still 0. The active state (Init 2) prevails, the 1st localization
filter takes the estimated direction, and the 2nd localization filter the opposite direction. From 3 s,
an AMR+ rolling direction is detected, so the 2nd initialization state (Init 5) is selected and the 2nd
localization filter is initialized with the values of the 1st localization filter. From 18 s, the AMR+ rolling
direction jumps to 0, and the direction estimation returns the value −1, so the active state (Init 2)
is activated again and the 2nd localization filter takes the opposite direction of the 1st localization
filter. From 19 s, the direction estimate returns the value 0 and the vehicle is at a standstill. Since the
AMR+ rolling direction and the direction estimation are set to 0, it is not possible to evaluate which
localization filter has moved in the true direction because the passive state (Init 3) is present. After that,
the pattern for the forward movement is exactly the same.
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Figure 6. Procedure of the Dual-Localization filter for a complete parking process. (Top): The rolling
directions of the DWPC signal d×, the pattern recognition method d̂pattern, and the force equilibrium
method d̂force; (Middle): rolling directions of the 1st and the 2nd localization filter, the fused estimated
rolling direction of the new methods d∗, the rolling direction of the DWPC signal and the reference
direction; (Bottom): Initialization states.

5. Results

5.1. Assessment of the Concept during Parking

To test the performance of the Dual-Localization filter, a localization filter that always uses the
estimated direction and one that uses the AMR+ rolling direction are used. Figure 7 shows the time
line of the velocity.

Figure 7. Velocities of the Dual-Localization filter during parking. (Top): The velocity of the 1st and the
2nd localization filter, the velocity of the localization filter using the fused estimated rolling direction of
the new methods, the velocity of the localization filter using the rolling direction of the DWPC signal,
and the reference velocity; (Bottom): Rolling directions.
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It can be seen that the 2nd localization filter is initialized after each start-up because the estimated
direction was correct. Here, one sees the performance of the methods presented in Section 3 for
faster detection of rolling direction. In addition, the accumulated velocity error is considered for the
evaluation, since the assessment criteria of comparison of the position gives an incorrect impression,
as they do not explicitly consider the rolling direction. An incorrectly assumed rolling direction
signal can compensate for the position error. Figure 8 shows the accumulated velocity error. Here,
the 1st localization filter and the comparison filter with the estimated direction achieve the same very
good performance.

Figure 8. Accumulated velocity errors of the Dual-Localization filter during parking. (Top): The accumulated
velocity errors of the 1st and the 2nd localization filter, of the localization filter using the fused estimated
velocity of the new methods, and of the velocity of the localization filter using the rolling direction of the
DWPC signal; (Bottom): Initialization states.

The 2nd localization filter shows the largest accumulated velocity error. However, this is always
initialized with the states of the 1st localization filter, so both filters have the same initialization
state values when the AMR+ rolling direction is present. The accumulated velocity error built up
previously with an unavailable AMR+ rolling direction cannot be reduced. The accumulated error of
the 1st localization filter is lower compared to the localization filter with the AMR+ rolling direction.
This confirms that the directional estimation, as far as it corresponds to the true direction, makes sense
and leads to a more accurate modeling of the localization filter.

5.2. Assessment of the Concept on the Hill

As described in Section 3.5, problems with the estimated slope can occur especially on a hill if
the acceleration sensor is not sufficiently calibrated. In order to ensure that both approaches reach
their limits for estimating the rolling direction, multiple starts are made on the incline or fast rolling
direction changes are induced. In Figure 9 the velocity progression and the rolling directions are
shown again.
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Figure 9. Velocities of the Dual-Localization filter on the slope hill. (Top): The velocity of the 1st
and the 2nd localization filter, the velocity of the localization filter using the fused estimated rolling
direction of the new methods, the velocity of the localization filter using the rolling direction of the
DWPC signal, and the reference velocity; (Bottom): Rolling directions.

It can be seen that the 2nd localization filter usually uses the right direction here, since the
estimated rolling direction is wrong. Especially the approach with the force equilibrium seems to
be erroneous here, because in some cases it is approached backwards and the incline is difficult to
determine. Figure 10 shows again the accumulated velocity error. This is as expected the smallest for
the 2nd localization error, since it always uses the opposite rolling direction.

The investigations have shown that the rolling direction recognition in the flat plane estimates the
direction well, but if there is a slope, the estimated direction might be wrong. Therefore, the approach
to the force equilibrium is strongly dependent on the gradient. Figure 11 shows the slope estimation.

At the beginning of the measurement, the vehicle stands still. Due to the reference measurement
system, a negative zero offset of −1.3◦ can be detected, since an acceleration is measured at standstill,
which one can read at 0 s. In the first 3 s, the vehicle drives up the 20% gradient hill at about 2 m/s,
which can be seen from the increasing angle of inclination and the increasing vehicle speed. From
5 s upwards, the maximum gradient angle of 20% is reached (see reference curve). The vehicle
is then braked to a standstill. As the process continues, the vehicle is continuously started and
braked. In addition, the vehicle can also roll back easily from time to time, which can be deduced
from the negative velocities. The maximum value here is 28%, and the minimum value is 12%.
Since the estimated slope changes with permanent starting and braking, this also has an influence
on the estimated direction. The estimated direction is determined by the sign of the resulting force
equilibrium. As a result, the constantly changing force direction can lead to an error in the estimated
direction. The Dual-Localization filter structure counteracts this, since the evaluation logic detects the
wrong estimated direction as soon as an AMR+ rolling direction is present again.
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Figure 10. Accumulated velocity errors of the Dual-Localization filter on the slope hill. (Top): The accumulated
velocity errors of the 1st and the 2nd localization filter, of the localization filter using the fused estimated velocity
of the new methods, and of the velocity of the localization filter using the rolling direction of the DWPC signal;
(Bottom): Initialization states.

Figure 11. Slope estimation on the gradient hill during the measuring run with special driving style. (Top):
Calculated slope slope; (Middle): Measured acceleration of the IMU a∗x and acceleration of the filtered signal
of the wheel speed sensors a∗x; (Bottom): Vehicle velocity v.

6. Conclusions

In this paper, an extension for a Bayesian localization filter, which calculates a lower speed error
with unclear direction signals, is presented. New methods have been introduced to detect the rolling
direction more quickly. To manage the localization filter in real time without a signal, a dual localization
filter was additionally developed, which operates the localization filter in real time if direction signals
are wrongly estimated. The results show the special feature on the reference gradient hill, and in
the case of increased requirements, the double filter approach brings advantages in reducing the
velocity error.
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