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Abstract: Detecting and monitoring of abnormal movement behaviors in patients with Parkinson’s
Disease (PD) and individuals with Autism Spectrum Disorders (ASD) are beneficial for adjusting care
and medical treatment in order to improve the patient’s quality of life. Supervised methods commonly
used in the literature need annotation of data, which is a time-consuming and costly process. In this
paper, we propose deep normative modeling as a probabilistic novelty detection method, in which we
model the distribution of normal human movements recorded by wearable sensors and try to detect
abnormal movements in patients with PD and ASD in a novelty detection framework. In the proposed
deep normative model, a movement disorder behavior is treated as an extreme of the normal range
or, equivalently, as a deviation from the normal movements. Our experiments on three benchmark
datasets indicate the effectiveness of the proposed method, which outperforms one-class SVM and
the reconstruction-based novelty detection approaches. Our contribution opens the door toward
modeling normal human movements during daily activities using wearable sensors and eventually
real-time abnormal movement detection in neuro-developmental and neuro-degenerative disorders.

Keywords: novelty detection; deep learning; normative modeling; denoising autoencoders;
Parkinson’s disease; autism spectrum disorder; stereotypical motor movements; freezing of gait

1. Introduction

Recent advances in wearable sensor technology, and more specifically Inertial Measurement Unit
(IMU) sensors, have provided an effective platform for remote monitoring of patients with motor
malfunctions such as Parkinson’s Disease (PD) [1] and Autism Spectrum Disorder (ASD) [2]. IMUs
contain built-in accelerometers, gyroscopes and magnetometer sensors allowing one to measure the
angular velocity and linear acceleration of body parts during movement. IMUs—due to their small
size, high portability and light weight—have become some of the most popular devices in human
action recognition and abnormal movement detection. Especially in psychiatric clinical studies, IMUs
not only provide the possibility to measure the kinetic symptoms and phenotypes automatically, but
also, they enable caregivers to follow up on the progress of diseases and the quality of interventions
more frequently than the current clinical practices [3,4].

ASD and PD are respectively neuro-developmental and neuro-degenerative disorders, each
with different symptoms involving atypical motor movements. PD affects the motor system causing
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motor symptoms such as tremors, bradykinesia (slowness), Freezing of Gait (FOG), and muscle
rigidity [5]. These abnormal motor defects significantly impair patients” quality of life. Among
them, FOG increases the risk of falling generally in elderly PD patients. ASD has also some specific
motor behavior symptoms such as Stereotypical Motor Movements (SMMs) [6]. SMMs are the major
group of abnormal repetitive behaviors, e.g., hand flapping and body rocking, in children with ASD.
These atypical motor movements decrease the performance of children while learning new skills or
using learned skills. In addition, since these behaviors are socially abnormal, they cause difficulties in
social interaction with other peers. In the case of severity, SMMs can even lead to self-injury behaviors.

Recently, many research studies have focused on detecting abnormal movements in patients
with mental or brain disorders, such as SMMs in children with ASD and FOG in PD patients, using
wearable sensors [3,7-9]. These studies have mainly concentrated on applying supervised machine
learning algorithms to classify samples of abnormal movements from normal ones. There are three
main challenges in applying supervised approaches for abnormal movement detection: (i) they
generally rely on the availability of labeled data while, especially in this context, data labeling is an
expensive, time-consuming and subjective task [10-12], as it needs full monitoring of subjects during
the data collection phase; (ii) severe class distribution skewness, where samples in the normal class
severely out-represent abnormal samples in recorded data from patients with ASD and PD [13,14]; this
fact makes the classification techniques sub-optimal for these applications; (iii) the heterogeneity of
non-stationary patterns in normal and abnormal movements that makes the task of finding a separating
hyper-cube in classification scenarios even more cumbersome [15].

As an alternative for supervised approaches, novelty detection provides all the ingredients needed
for tackling the aforementioned challenges in an unsupervised fashion. In general, novelty detection is
defined as the task of learning the overall characteristics of available normal samples in the training
phase and then using these characteristics to recognize novel samples that differ in some respects
from the normal samples at test time [11,16]. Based on this definition, novelty detection approaches
naturally need only samples of the normal class in the training phase; hence, they do not need labeled
data and are immunized against highly imbalanced class distributions. More importantly, adopting
a probabilistic policy in novelty detection enables us to estimate the generative probability density
function of the normal data, which can cover a wide and heterogeneous spectrum of normal samples.
These advantages made novelty detection techniques very successful in many applications ranging
from fraud detection [17,18], medical diagnosis [19-21], fault detection [22,23], to anomaly and outlier
detection in sensor networks [24,25], video surveillance [26,27] and text mining [28,29].

In this paper, we adopt a probabilistic novelty detection approach based on normative
modeling [30] in order to, first, model heterogeneous normal movements in PD and ASD and,
second, to use the resulting model in a novelty detection paradigm to detect FOGs and SMMs in
respectively PD and ASD patients. To this end, by assuming a multivariate normal distribution on
the collected accelerometer signals of normal movements and exploiting the underlying principles
of probabilistic deep neural networks [31], we extend the applications of normative modeling to
unimodal datasets. In general, a normative model is constructed in the training phase by estimating a
mapping function between two different data modalities, e.g., behavioral covariates and biological
measurements. In some applications, such as ours, only one modality of data is available. To overcome
this barrier, we use the denoising autoencoder (DAE) to reconstruct the original IMU signals of normal
movements from their noisy versions. In fact, the model implicitly learns the distribution of the
normal movements. Using dropout layers in the DAE architecture enables us to estimate also the
variance of predictions (which is necessary for normative modeling) in addition to mean predictions.
We compare the proposed method with state-of-the-art supervised approaches, as well as classic
one-class classification and reconstruction-based novelty detection. Our experimental results on three
benchmark datasets illustrate that the proposed method provides a reasonably close performance to
its supervised counterparts, whilst yielding the best performance among other competing novelty
detection approaches on three benchmark datasets.
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The rest of the paper is organized as follows. Section 2 briefly reviews the state-of-the-art of
novelty detection techniques for abnormal movement detection. Section 3 presents our proposed
unsupervised novelty detection approach based on normative modeling. The experimental materials
and the procedures are also described in this section. Section 4 compares our experimental results
versus other novelty detection and supervised methods. In Section 5, we discuss the advantages and
limitations of the proposed method and state the possible future directions.

2. Related Works

Recent studies on automatic SMM and FOG detection using wearable sensors have mainly focused
on applying supervised machine learning and deep learning approaches, such as Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM), to distinguish between the normal
and abnormal movements [9,32-37]. These methods are based on extracting or learning a set of
robust features from the original signals and then applying the supervised algorithms for abnormal
movement detection. The main drawback of these approaches, however, is their need for labeled
data. To overcome this problem, few studies have recently focused on using novelty detection
methods [38,39]. In a FOG detection application, Cola et al. [38] used a distance-based novelty
detection method on accelerometer signals to detect abnormal gait patterns. Their proposed method
consists of extracting a set of hand-crafted features and then applying a K-Nearest Neighbor (KNN)
method. The KNN approach assumes that normal gait samples are located at the close distance
from each other. Thus, a sample is determined as an abnormal sample if it is located far from its
neighbors. Their proposed method achieved on average 80% accuracy for detecting abnormal gait
samples. Despite the reported high accuracy rate, the high computational complexity of KNN at
the test time severely limits its application in real-time applications. Elsewhere, Nguyen et al. [39]
proposed a probabilistic novelty detection method for abnormal gait recognition in musculoskeletal
disorders using Microsoft Kinect® sensors. Their method was based on training a Hidden Markov
Model (HMM) to model the transition of human posture states in a gait cycle. Then, to distinguish
between the normal gait samples from the abnormal ones, a threshold was defined based on the mean
and standard deviation of the estimated log-likelihood on normal gait samples.

Recently, deep learning approaches were also used for novelty detection applications.
Erfani et al. [40] proposed a hybrid model of an autoencoder and one-class SVM for detecting
anomalies in high-dimensional and large-scale datasets including a daily activity dataset. A set
of learned features by autoencoders was fed to a one-class SVM in order to detect the abnormal
samples. Their experimental results showed the superiority of using one-class SVM in the learned
latent space rather than the original raw signal space. Autoencoders are also widely used for detecting
abnormal patterns in medical images through the reconstruction error between the output of the
model and the actual input [41,42]. Novelty detection based on reconstruction error was also used
by Khan and Taati [43] for fall detection using wearable sensors. The proposed approach was based on
using a channel-wise ensemble of autoencoders for data reconstruction and setting a threshold on the
reconstruction error to distinguish the falling instances.

3. Methods

In the context of abnormal movement detection using wearable sensors, novelty detection is
defined as detecting atypical movements in the test phase while only normal movements are available
in the training phase. In this study, we consider a probabilistic novelty detection approach consisting
of the following three steps: (1) learning the distribution of normal movements using a probabilistic
denoising autoencoder; (2) quantifying the deviation of each test sample from the distribution of
normal movements, the so-called Normative Probability Map (NPM), in the normative modeling
framework; (3) computing the degree of novelty of each test sample by fitting a generalized extreme
value distribution on summary statistics of its NPM.

We formalize these three steps in the next 3 subsections. Figure 1 also shows the proposed method.
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In this text, we use boldface capital letters to represent matrices, boldface lowercase letters to
represent vectors and italic lowercase letters to represent scalars.
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Figure 1. The proposed method for the abnormal movement detection in the test time.

3.1. Learning the Distribution of Normal Movements via the Denoising Autoencoder

As stated in the previous section, our method starts by modeling the normal movements. To do
this, we use convolutional neural networks, which are the state-of-the-art for activity recognition and
movement monitoring using wearable sensors. In particular, we train a Denoising Autoencoder (DAE),
which is a type of (autoencoding) neural network that aims to reconstruct (denoise) its inputs from
noisy samples.

More formally, given a training set Xy € R"N*? consisting of ny samples of normal movements
drawn from a distribution Py of normal movements, a trained DAE is a function fy that has the
property that fy(X +€) = X for X € Xy. Given sufficient training data, the network generalizes to
reconstruct any X € Py.

How well the autoencoder is able to denoise its input is proportional to how well that input
matches the distribution of the training data, in our case how well the input matches a normal
movement. Hence, we can use the distance between the reconstruction of DAE and the true sample,
the reconstruction error, as a measure of the likelihood Py (X) of the sample.

However, the neural network only produces a point estimate, that is a single possible
reconstruction given a noisy input. For some features or samples, this prediction might be very
accurate, while others can be much harder to reconstruct. The reconstruction error does not take this
prediction uncertainty into account.

To use the prediction uncertainty properly, we use the NPM, introduced in [30]. The original
NPM method used Gaussian processes to model the normal data, which also provide a variance as
a measure of uncertainty. To calculate the variance of the predictions in our denoising autoencoder
setup, we instead use dropout [31], to make the network nondeterministic. As shown by Gal
and Ghahramani [31], using Monte Carlo sampling by applying dropout at test time provides an
approximation of the posterior Py (60 | X). After drawing m samples from the predictive distribution,
we can calculate their empirical mean and variance,
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Here, f; indicates the different variations of the autoencoder network, which are formed by
applying dropout.

3.2. Quantifying the Deviation from Py

In this study, we adapt the normative modeling framework in order to quantify the deviation of
each newly-seen test sample from the distribution of normal movements Py. In this framework, the
mean and variance of the reconstruction are used to compute an NPM,

X* _ M*
z=" " @
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These NPM scores are in fact z-scores, quantifying the deviation of samples in X* from a
reconstructed normal sample under Py, in units of standard deviation of the predictive distribution [44].
It combines two sources of information: (1) the prediction error (difference between the true and
expected predicted responses) and (2) the predictive variance of the test points.

3.3. Computing the Degree of Novelty

The NPM score of each test sample is a p-dimensional multivariate measure of deviation.
It quantifies the deviation for each of the p responses of a test sample. In order to summarize these
deviations into a degree of abnormality, we follow [30] and employ the Generalized Extreme Value
Distribution (GEVD) [45,46] to model the samples in the extreme tails of Py (see Appendix A for more
details). In fact, we consider that abnormal motor movements may occur as an extreme deviation
from a normal pattern. As in [30], we adopt a “block maxima” approach where we compute the 90%
trimmed mean of the top 1% values in Z of each sample in order to summarize the deviations as a
single number. Then, to make probabilistic subject-level inferences about these deviations, we fit a
GEVD on the resulting summary statistics. The cumulative density function of the resulting GEVD at
a given test sample then can be used as the probability of each sample being an abnormal sample [47].

3.4. Experimental Materials

We compare the performance of the proposed probabilistic novelty detection approach with
reconstruction-based novelty detection [16,40], one-class Support Vector Machine (SVM) [48]
and supervised deep learning approaches on two datasets: (i) an SMM dataset collected in a
longitudinal study from children with ASD [3] (the SMM dataset and the full description of the
data are publicly available at https://bitbucket.org/mhealthresearchgroup/stereotypypublicdataset-
sourcecodes/downloads) and (ii) the Daphnet Freezing of Gait dataset collected from PD patients [49].
In the following, we detail the datasets and the preprocessing steps.

3.4.1. Datasets

The SMM dataset contains accelerometer recordings from 6 individuals with ASD who had a
significant score on the RSB-R [50] for body rocking and hand flapping. The data were collected in two
sessions from the same participants, here referred to as SMM-1 and SMM-2. During data collection,
participants wore three 3-axis accelerometer sensors on their torso, right wrist and left wrist. Data
for SMM-1 were collected using MIT sensors at a 60-Hz frequency rate. SMM-2 was recorded using
Wockets sensors with a sampling frequency of 90 Hz. The recordings were annotated offline by an
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expert using the recorded video. To equalize the sampling rate of two recordings, the signal in SMM-1
was resampled to 90 Hz using a linear interpolation. Then, the cutoff high-pass filter with 0.1 Hz was
applied to remove the DC components in the signal. Finally, the signal was segmented to 1 s-long
intervals with 0.87% overlap between consecutive windows.

The data in the Daphnet Freezing of Gait dataset [49], here referred to as FOG, were collected from
10 PD patients at a 64-Hz frequency rate while participants wore three 3-axis accelerometer sensors on
their shank, thigh and belt. During the experiment, participants were instructed to perform walking
tasks. The whole experiment was recorded with a digital video camera. Then, two physiotherapists
annotated the FOG episodes using the video recordings. Following the preprocessing stage in [8],
we first downsampled the accelerometer data to 32 Hz. The data were then segmented into 1 s-long
intervals using a sliding window. The sliding window was moved along the time dimension with
10 time-steps to make overlaps between consecutive windows.

In the segmentation phase, segments with normal movement samples were selected to train the
model. Other partial normal segments were removed from the training data. Table 1 summarizes the
number of normal and abnormal samples for each subject in the SMM and FOG datasets. The difference
in the number of samples in the abnormal and normal classes represents the unbalanced nature of data
where in the SMM-1 and SMM-2 datasets, 31% and 23% of samples are in the SMM class, and in the
FOG dataset, 11% of samples are in the FOG class.

Table 1. The class distribution of normal and abnormal samples and the gender of patients in three datasets.

Data Subject #Normal #Abnormal All Abnormal/All  Gender

Subl 5714 334 6048 0.06 M

Sub2 3918 578 4496 0.13 M

Sub3 5488 912 6400 0.14 M

Sub4 6592 0 6592 0 M

Sub5 5139 1517 6656 0.23 M

FOG Subé6 5917 419 6336 0.07 F
Sub?7 4858 262 5120 0.05 M

Sub8 1812 620 2432 0.25 F

Sub9 4673 863 5536 0.16 M

Sub10 7104 0 7104 0 F

Total 50,482 6238 56,720 0.11 -

Subl 21,292 5663 26,955 0.21 M

Sub2 12,763 4372 17,135 0.26 M

Sub3 31,780 2855 34,635 0.08 M

SMM-1 Sub4 10,571 10,243 20,814 0.49 M
Sub5 17,782 6173 23,955 0.26 M

Sub6 12,207 17,725 29,932 0.59 M

Total 106,395 47,031 153,426 0.31 -

Subl 18,729 11,656 30,385 0.38 M

Sub2 22,611 4804 27,415 0.18 M

Sub3 40,557 268 40,825 0.01 M

SMM-2 Sub4 38,796 8176 46,972 0.17 M
Sub5 22,896 6728 29,624 0.23 M

Sub6 2375 11,178 13,553 0.82 M

Total 145,964 42,810 188,774 0.23 -

3.4.2. Network Architectures

Considering their different rhythmic characteristics, we used different network architectures for the
FOG and SMMs datasets. We adopted the CNN architecture that was proposed by Hammerla et al. [8]
for the FOG dataset and the CNN architecture proposed by Rad et al. [7] for the SMM datasets. In the
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following, we detail how these architectures are manipulated to serve our purpose explained in Section 3
(the Keras library [51] is used to implement DAE and CNN architectures).

DAE architecture for the FOG dataset: The original CNN architecture in Hammerla et al. [8] was
used for encoding the signal into a lower dimensional representation. This architecture contains
four convolutional layers alternating convolution, batch normalization, Rectified Linear Units
(ReLU) and max-pooling layers to map the large input space to a lower dimensional feature space.
A fully-connected layer is then stacked on top of the fourth convolution layer to form the encoder.
We concatenate a mirror reversal of the encoder network to the last encoder layer in order to
reconstruct the input signal in a DAE architecture. In the decoding part, we replace max-pooling
layers with up-sampling layers. In order to capture the model uncertainty, we placed a dropout
layer before every weight layer [31]. The resulting architecture is shown in Figure 2a.

DAE architecture for SMM datasets: Similar to [7], the encoder architecture consists of
three convolutional layers, which alternates convolution, batch normalization, ReLUs and
average-pooling layers to transform the raw feature space into a lower dimensional set of features.
A fully-connected layer is then stacked on top of the third convolution layer. The resulting latent
vector is then decoded in the decoder to reconstruct the input signal. Similar to the DAE architecture
for the FOG dataset, the architecture of the decoder network is a mirror reversal of the encoder,
and dropout layers are used before every weight layer. The architecture and the configuration of
each layer are depicted in Figure 2b.

(@)ammm e _Encoder_ _______ o _______
I §<I-I‘- «IA§<I<I-

____________________________________

Jjood-xe|\
Z-|ood-xe|n
nduj

4

«

z-9|dwesdn
z-9)dwesdn
9
4
inding

¢-|ood-a8esany
-|j0ood-a8eJan
€l 2% \'J
+
Ng
andu

ndino
*
4a
¢-a)dwesdn
g-a|dwesdn
z-9|dwesdn
uane|4
€-100d-a3eJany
Ng

Figure 2. The architecture of convolutional denoising autoencoder for (a) the FOG dataset and (b)
the SMM dataset. Each colored box represents one layer. The type and configuration of each layer
are shown inside each box. For example, Conv 64-5 denotes a convolutional layer with 64 filters and
5 kernel size.

3.4.3. Experimental Setups and Evaluation

We conducted four experiments to evaluate the performance of the proposed method against

three competing approaches:

Experiment 1, normative modeling: We followed the proposed procedure explained in Section 3,
using the DAE architectures described in Section 3.4.2 for learning the distribution of the normal
movements on the SMM-1, SMM-2 and FOG datasets. In this setting, models are trained in an
unsupervised manner and only on the samples of normal movements. For training the DAEs,
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we used the RMSprop optimizer to minimize the mean squared error loss function. To compute
M* and V*, we drew m = 50 MC samples from DAE predictions, and the mean and variance
across these 50 MC samples are used to compute the M* and V* matrices. In all experiments,
we fix the dropout level to 0.1. Later in order to investigate the effect of the dropout level on the
performance of the proposed novelty detection approach, we repeat this experiment for different
dropout probability levels § = {0.1,0.2,0.3,0.4,0.5} and compare the results.

e  Experiment 2, reconstruction-based: The goal of this experiment is to assess the effect of
incorporating prediction uncertainties, i.e., V¥, on the performance of the novelty detection
system. All the experimental settings in this experiment are similar to Experiment 1, except for
computing the NPMs, where we use Z = X* — M* instead of Equation (2). Since in this setting,
only the reconstruction error is used to construct a model of normal movements, we refer to this
experiment as “reconstruction-based”.

o  Experiment 3, one-class SVM: The goal in this experiment is to compare the proposed method for
novelty detection with one-class classification. To this end, we train a one-class SVM model in a
novelty detection setting [16,40,52,53]. One-class SVM fits a hyper-sphere decision boundary on
a nonlinearly-transformed feature space to include the majority of samples in the normal class
and detects anomalies as deviations from the learned decision boundary. In this experiment in a
similar setting used by Erfani et al. [40], we use the learned reduced-rank latent space via the DAE
model, i.e., Yy € R"™*9, to train a one-class SVM model. We use this model later to distinguish
the normal and abnormal movements on the samples. For the one-class SVM, we employed the
implementation available in the scikit-learn [54] package. We used the Radial Basis Function (RBF)
kernel with default hyperparameters, where v = 0.5 and v = % (Considering our assumption
that only normal movement samples are available during the training phase, fine-tuning these
hyperparameters is not possible. See Section 5.2 for the discussion.).

o  Experiment 4, supervised: To compare the performance of the proposed unsupervised novelty
detection technique with supervised classification, we used the CNN architecture proposed
in Hammerla et al. [8] and Rad et al. [7] on the FOG and SMM datasets, respectively, in a
fully-supervised scenario.

Note that since the samples for Subjects 4 and 10 in the FOG dataset only contain normal
movements (see Table 1), it is not possible to evaluate the benchmark approaches on these two subjects
in Experiments 1-3. Thus, in an extra setting, we repeat Experiments 1-3 when only these two subjects
are used in the training phase. This setting is even more close to the reality as only subjects with normal
movements are available during the training phase (in this case, there is no need for the additional
preprocessing procedure to select the normal segments).

In all experiments, the leave-one-subject-out cross-validation is used for the model evaluation,
and the area under the receiver operating characteristic curve (ROC), i.e., AUC, is computed as the
performance measure. The whole experimental procedures are repeated 5 times to report the standard
deviation over the mean AUC performances.

4. Results

Table 2 summarizes single-subject and average AUC measures for the four experiments that were
described in Section 3.4.3 on the FOG, SMM-1, and SMM-2 datasets.

On the FOG dataset, we observed a large variance of results across subjects. In particular, the
normative modeling and reconstruction-based methods achieved a much lower AUC performance
on Subjects 6 and 8 than on the other subjects. These two subjects were the only females in the
dataset exhibiting atypical movement behavior (see Table 1). A potential explanation for the lower
performance is that, when training on mainly male subjects, novelty detection models, which use the
reconstruction error, are unable to reconstruct normal female movement behavior correctly. On the
SMM datasets, the performance was more similar across subjects, notably on the SMM-1 dataset.
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This could be due to the controlled setting used to collect data: while wearing the sensors, participants
were observed in the lab, sitting in a comfortable chair with a familiar teacher [55]. Results on the
FOG dataset also indicated the presence of possible biases due to the limited size of the data from
normal subjects (see also the results reported in Section 4.4). The public availability of larger datasets
would allow a more thorough assessment of the methods for abnormal movement detection in PD and
ASD, which would be highly beneficial to advance patient care and research. The results are further
investigated in the following sections.

Table 2. The average of AUC results for novelty detection using normative modeling, reconstruction-based
and one-class SVM on three benchmark datasets.

Dataset Subject Normative Reconstruction 1C-SVM  Supervised

Sub1l 0.87 £0.01 0.64 +0.00 0.73+0.02 0.80+0.02
Sub2 0.80 £0.03 0.80 £0.00 0.54+£0.03 0.95+0.01
Sub3 0.87 £0.01 0.77 £0.00 0.43+0.06 0.90=+0.02
Sub5 0.83 £0.01 0.70 = 0.00 0.60+0.02 0.80+0.03
FOG Sub6 0.60 = 0.03 0.50 £0.00 0.70£0.05 0.80+0.04
Sub? 0.79 +£0.01 0.66 = 0.00 0.67+0.02 092+0.01
Sub8 0.64 +=0.01 0.48 - 0.00 0.70+£0.02 0.65+0.03
Sub9 0.77 £0.02 0.51 £0.00 0.62£0.05 0.9440.01
Mean  0.77 £ 0.01 0.63 +£0.00 0.62+0.01 0.84+0.01

Subl 0.86 £ 0.01 0.71£0.00 032+£0.01 0.89+0.01
Sub2 0.85+0.01 0.88 +0.00 023+0.03 0.83+0.02
Sub3 0.87 +£0.02 0.91 +0.00 022+0.03 093+0.01
SMM-1 Sub4 0.88 £0.03 0.81 £0.01 0.31£0.04 0.95+0.00
Sub5 0.76 £ 0.03 0.87 +£0.01 026+0.01 0.83+0.03
Sub6 0.88 +0.03 0.82 +0.00 030+0.02 0.93+0.01
Mean  0.85 + 0.01 0.83 £0.00 028+£0.01 0.89+0.01

Sub1l 0.69 £ 0.05 0.76 £0.01 037+0.04 0.79+0.07
Sub2 0.61 £0.04 0.58 £0.00 046 £0.02 0.53+0.03
Sub3 0.62 +0.02 0.63 £0.02 042+0.02 0.63+0.05
SMM-2 Sub4 0.74 £ 0.09 0.42 +0.02 0.49+0.05 0.88+0.06
Sub5 0.65 £ 0.09 0.77 £0.03 045+£0.03 0.78 +£0.04
Sub6 0.65+0.03 0.73 +£0.02 044 +0.02 0.74+0.11
Mean  0.66 £ 0.02 0.65+0.01 044 +0.01 0.73+0.03

4.1. Normative Modeling Outperforms Reconstruction-Based and One-Class SVM in Novelty Detection

The comparison between results achieved by our normative modeling method and its
reconstruction-based variant indicate the beneficial effect of incorporating the uncertainty of the
predictions in the NPM scores for the FOG dataset. In this context, for all subjects, the normative
modeling method outperformed the reconstruction-based one. On this dataset, normative modeling
also outperformed one-class SVM on all except one subject. These results illustrate the effectiveness of
normative modeling method for detecting movement disorder behavior in PD patients.

On the SMM-1 and SMM-2 datasets, normative modeling and reconstruction-based modeling
methods achieved similar performance. This indicates that the uncertainty of the prediction did not
significantly affect the ranking of the samples obtained using the reconstruction-error scores. On this
dataset, the performance of one-class SVM was not very satisfactory. This result can be explained by the
fact that one-class SVM does not rely on the properties of the distribution of the training data; rather, it
fits a decision boundary on a nonlinearly-transformed feature space to include the majority of samples
in the normal class and detects anomalies as samples falling outside the learned decision boundary.
Therefore, the performance of this method is highly dependent on selecting proper parameters to
control the size of the boundary.
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4.2. Novelty Detection Methods vs. Supervised Learning Methods

Our experimental results in Table 2 demonstrate that our normative modeling method provided a
reasonably close performance to its supervised counterpart on the SMM-1 dataset and a relatively close
performance to the supervised method for the SMM-2 and FOG datasets. In particular, on the FOG
dataset, in two cases (Subjects 1 and 5), the normative modeling method outperformed the supervised
method (with a 7% and 3% improvement, respectively). Furthermore, on the SMM-1 dataset, the
reconstruction-based method outperformed the supervised method in two cases, Subjects 2 and 5,
with a 5% and 4% improvement, respectively.

To get a summarized demonstration of the performance of different novelty detection methods,
we consider the best and the worst normative modeling results on the FOG dataset, i.e., Subjects 1
and 6. ROC curves for these subjects are depicted in Figure 3. In Figure 3a, we can see that both
the reconstruction-based and normative modeling methods were able to identify the most normal
(negative) data for Subject 1 correctly. However, the reconstruction-based approach was not able to
find the most likely abnormal movement (positive) samples. Figure 3b shows the results for Subject 6.
Here, around 1/4 of the samples were clearly identified as normal by most methods; however, the
other samples could not be distinguished. In the normative modeling method, both positive and
negative samples were assigned a high likelihood of being abnormal, perhaps because the normal
movements for this subject differed too much from those in the training data.

(a) Subjectl (b) Subjecté
1.0

1.0 A

0.8 1

0.8

0.6 1

0.6

0.4 4 0.4

True Positive Rate
True Positive Rate
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P —— Normative medeling
4 Reconstruction-based

—— Normative medeling
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—— Supervised
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0.0 4 —— Supervised 0.0
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
False Positive Rate False Positive Rate

Figure 3. ROC curves corresponding to the reported AUCs for Subjects 1 and 6 (a,b) of the FOG dataset in Table 2.

Since the datasets presented in this paper are highly skewed, especially the FOG dataset, in
addition to AUC, we also evaluated the performance of the methods using the Area Under the PRC
curve (AUPR) [56]. Compared to AUC, the AUPR score places more weight on the highly ranked
predictions by each method. As is shown in Table 3, on the FOG dataset, the normative modeling
method achieved a higher average AUPR than other novelty detection methods. For some subjects, in
particular Subject 6, all of the novelty detection methods showed low performances. We believe this is
because this subject was too different from the training data, and hence, none of the methods found
clear FOG signals, which can also be seen in Figure 3b. On the SMM datasets, normative modeling
and reconstruction-based methods achieved comparable performance in terms of AUPR, while both
clearly outperformed one-class SVMs. The AUPR scores for the autoencoder-based methods were
quite high on this dataset, which indicates that they were able to find clear instances of SMM behaviors
in all subjects correctly.
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Table 3. The average AUPR for novelty detection using normative modeling, reconstruction-based and

one-class-SVM on three benchmark datasets.

Dataset Subject Normative Reconstruction 1C-SVM  Supervised
Subl 0.48 +0.02 0.11£0.00 011+£0.02 0.38+0.02

Sub2  0.32£0.03 0.514+0.01 0.134+0.01 0.79+0.03

Sub3 0.51+0.01 0.3540.00 0.12+£0.02 0.55+0.02

Sub5  0.54+£0.01 0.36 +0.00 0.284+0.02 0.59 +0.03

FOG Sub6  0.08 £0.01 0.06 £ 0.00 0.10+0.02 0.33+0.06
Sub7  0.22+0.01 0.09 £+ 0.00 0.09+0.01 0.49+0.04

Subs 0.38 +0.01 0.26 +0.00 0.43+£0.05 0.34+0.04

Sub9 0.424+0.03 0.19 +0.00 0.214+0.05 0.71+0.05

Mean  0.37 £0.01 0.24 4+ 0.00 0.18+£0.01 0.5240.01

Sub1 0.69 +0.01 0.56 £ 0.00 0.154+0.00 0.76 +0.02

Sub2  0.63+£0.02 0.76 +0.00 0.174+0.01 0.72+0.03

Sub3 0.57 +0.03 0.60 +0.01 0.05+0.00 0.70+0.04

SMM-1  Sub4  0.86+0.02 0.78 +0.01 0.394+0.02 0.93+0.00
Sub5  0.50 £0.05 0.7540.01 0.184+0.00 0.67+0.04

Sub6  0.90 £0.02 0.81+0.01 0.47£0.01 0.95+0.01

Mean  0.69£0.01 0.71 £ 0.00 0.234+0.00 0.79+0.01

Sub1 0.56 +0.05 0.65+0.01 0.33+0.03 0.714+0.08

Sub2  0.23+0.02 0.20 £0.00 016+£0.01 0.224+0.01

Sub3 0.01 4+ 0.00 0.02 4+ 0.00 0.014+0.00 0.02+0.01

SMM-2  Sub4  0.37£0.07 0.20 4+ 0.00 0.18+£0.02 0.66+0.16
Sub5  0.33+0.10 0.42 £0.04 022+0.02 048+0.07

Sub6  0.87£0.01 0.90 +0.01 0.784+0.01 0.914+0.04

Mean  0.40 £ 0.02 0.40+0.01 0.284+0.01 0.50+0.03

4.3. Effect of Dropout Level

Figure 4 depicts the effect of different dropout probabilities on the performance of the normative
modeling method on the SMM-1, SMM-2 and FOG datasets with the leave-one-subject-out scheme. As is
shown in Figure 4, using the different dropout probabilities had a negligible effect on the performance
of the normative modeling method for the SMM and FOG datasets. Thus, a value between 0.1 and 0.4

can be used as the dropout probability level without a significant drop in the performance.
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Figure 4. The effect of different dropout probabilities on the performance of the normative modeling method.

4.4. Training Only on Normal Subjects

It is interesting to investigate how our novelty detection methods perform when only data from
subjects without atypical movement behavior are present in the training set. In this setting, the
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expert interaction and preprocessing time were reduced. Therefore, in this experiment, we trained the
considered novelty detection models only on two normal subjects, i.e., Subjects 4 and 10 in the FOG
dataset (see Table 1). Results of this experiment are shown in Table 4. As expected, there is a drop in the
average performance compared to the results of Experiment 1 (see the FOG results in Table 2), which is
likely due to the limited training data with just two subjects. Interestingly, in this setting, the normative
modeling method improved its performance on Subject 2 (0.92 average AUC), showing that the normal
movement behavior of this subject was closer to that of Subjects 4 and 10 than to that of the other
subjects. Overall, the results of normative modeling and reconstruction-based methods decreased
when using less data, while the results of one-class SVM did not change significantly, indicating that
the latter method is incapable of exploiting information from more subjects.

Table 4. The average of AUC results for novelty detection using normative modeling, reconstruction-based
and one-class-SVM trained only on the two available normal subjects (Subjects 4 and 10) of the FOG dataset.

Dataset Subject Normative Reconstruction 1C-SVM

Subl 0.81 £0.01 0.63 £ 0.00 0.76 £ 0.00
Sub2 0.92 +£0.00 0.81 £ 0.00 0.65 +0.02
Sub3 0.75 £ 0.08 0.67 £0.01 0.41 +£0.05
Sub5 0.82 £0.01 0.69 £ 0.00 0.63 £0.02
FOG Sub6 0.51 +£0.05 0.41+0.01 0.77 £0.03
Sub? 0.67 £0.03 0.53 £0.00 0.65+0.01
Sub8 0.41+£0.03 0.41£0.01 0.71£0.03
Sub9 0.58 +£0.09 0.44 +0.01 0.67 +£0.04
Mean  0.68 + 0.02 0.57 £0.00 0.65+0.01

5. Discussion

5.1. Estimating the Prediction Uncertainty: Deep Learning vs. Gaussian Processes

Considering our multi-variate Gaussian assumption on the distribution of the IMU signal of
normal movements, Multi-task Gaussian Process Regression (MTGPR) [57] seemed to be a natural
choice for estimating the structured prediction uncertainty in normative modeling. However,
MTGPR comes with extra computational overheads in time and space (O(n3;p®) and O(n3%;p?))
when computing the inverse cross-covariance matrices in the optimization and prediction phases.
This problem is even more pronounced when dealing with multi-subject IMU-based abnormal
movement detection when generally ny is in order of 10° to 10°. Despite extensive studies to reduce
these computational barriers [21,58-60], the overall efficiency of the proposed approaches remained
far below the minimum requirements in our target applications. To overcome this problem, in this
study, we proposed to replace the MTGPR with a probabilistic DAE architecture for estimating the
prediction uncertainties in the normative modeling framework. As supported by our experimental
results, the estimated prediction uncertainties via DAE edged the novelty detection performance in
comparison with the reconstruction-based approach. Our contribution facilitates the application of
normative modeling on the large datasets (with large ny or p) in the big-data era.

5.2. Normative Modeling vs. One-Class Classification

One-class classification [61] and more specifically one-class SVM is a common choice for solving
novelty detection problems [16,52,53]. It is shown that one-class SVMs achieve poor performance on
high-dimensional datasets, while a combination of a feature extraction method such as deep belief
networks with one-class SVM enhances the performance of such novelty detection methods [40].
However, the prediction performance of one-class SVM is highly sensitive to its hyperparameters
(e.g., in the case of RBF kernel v and ), especially on noisy data. This fact is well demonstrated
in our experiments, where one-class SVM performed better when trained only on normal subjects;
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data, i.e., less noisy data (compare the results in Tables 2 and 4). Therefore, fine-tuning of one-class
SVM hyperparameters is necessary; however, this is only possible if we have access to the labeled
validation data during the model selection phase. This limitation leaves the only option of using
default parameters when dealing with non-labeled data, which results in sub-optimal performances.
The proposed deep normative modeling approach for novelty detection overcomes this barrier, as our
experiments on three benchmark datasets show that its only hyperparameter, i.e., the dropout level,
can be set to 0.1-0.4 without a significant drop in the prediction performance.

5.3. Toward Modeling Human Normal Daily Movements Using Wearable Sensors

The majority of research studies in detecting human pathological movements using wearable
sensors is mainly focused on classifying the normal movements from the abnormal ones.
These approaches suffer from major deficits in supervised learning such as the lack of labeled samples
and lack of generalization to newly-unseen movements. A possible turn around is to define the
problem in an unsupervised framework and try to assemble a probabilistic model of human normal
daily movements. If successful, then in, for example, a novelty detection scenario, any large deviation
from this model can be considered as an abnormal movement for the diagnosis and treatment of
patients with motor deficiencies. Of course, learning a realistic representation of all possible human
movements is very challenging due to the large set of possible movements, inter- and intra-subject
heterogeneity and the prevalence of noisy samples. The proposed deep normative modeling method
provides an early, but effective step toward this direction as it provides all the needed ingredients for
modeling heterogeneous normal human movements in an unsupervised fashion.

5.4. Limitations and Future Work

Using DAE for learning Py limits the application of the proposed method only to distance-based
novelty detection approaches in the original and latent space; hence, it is not applicable in the
density-based novelty detection [41]. This is because the DAE model is by nature unable to determine
the density of normal data in the latent space. To address this problem, one possible future direction is
to use generative alternative models instead of DAE such as variational autoencoders [62], adversarial
autoencoders [63] or generative adversarial networks [64]. Another future direction is to use the
proposed framework for implementing a real-time mobile application for abnormal movement
detection. The proposed DAE-based normative modeling approach, unlike its MTGPR-based
alternatives, does not need to store huge inverse covariance matrices at the test time. Adding to
this the low computational complexity of DAE at the prediction phase (just matrix multiplications
and summations) and high potential for parallel programming (for computing MC repetitions), the
proposed method offers a very well-suited approach for online mobile novelty detection applications.

6. Conclusions

In this study, we addressed the problem of automatic abnormal movement detection in ASD and
PD patients in a novelty detection framework. In the normative modeling framework, we used a
convolutional denoising autoencoder to learn the distribution of the normal human movements from
the accelerometer signals. We showed how the normative modeling framework can be employed to
quantify the deviation of each unseen sample from the normal movement samples. We demonstrated
empirically that our proposed method outperforms two other baseline novelty detection methods
on the SMM and FOG datasets. Our method: (i) overcomes the high computational complexities
of estimating the prediction uncertainties in multi-task normative modeling, thus facilitating its
application to large datasets in the big-data era; (ii) unlike the common one-class classification setting,
our method relaxes the need for having access to the labeled validation data during the model selection
phase; and more importantly, (iii) our method provides the first step toward modeling human normal
daily movements using wearable sensors. The proposed approach gathers all the required ingredients
for implementing a real-time mobile application for abnormal movement detection in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

IMU Inertial Measurement Unit
PD Parkinson’s Disease
ASD Autism Spectrum Disorder

FOG Freezing Of Gait
SMM Stereotypical Motor Movements

DAE Denoising Autoencoder
GEVD Generalized Extreme Value Distribution
CNN Convolutional Neural Network

ReLU Rectified Linear Units

SVM Support Vector Machine

RBF Radial Basis Function

ROC Receiver Operating Characteristic

AUC Area Under the Curve

AUPR Area Under the Precision-Recall Curve
MC Monte Carlo

MTGPR  Multi-Task Gaussian Process Regression

Appendix A. Generalized Extreme Value Distribution

For a random variable x € R, the cumulative distribution function of the GEVD, i.e., F(x), is
defined as below [46]:

e 1+8—w) /el e w4

F(x) = { e,e[f(xfy)/a] C -0 s (Al)

u € Rand ¢ > 0 are the location and scale parameter, respectively. ¢ € R is the shape parameter
and depending on whether § < 0, { = 0 or ¢ > 0 the distribution follows the special cases of GEVD,
namely Weibull, Gumbel and Fréchet, respectively.
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