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Abstract: Variational Mode Decomposition (VMD) can decompose signals into multiple intrinsic
mode functions (IMFs). In recent years, VMD has been widely used in fault diagnosis. However,
it requires a preset number of decomposition layers K and is sensitive to background noise. Therefore,
in order to determine K adaptively, Permutation Entroy Optimization (PEO) is proposed in this
paper. This algorithm can adaptively determine the optimal number of decomposition layers K
according to the characteristics of the signal to be decomposed. At the same time, in order to solve
the sensitivity of VMD to noise, this paper proposes a Modified VMD (MVMD) based on the idea of
Noise Aided Data Analysis (NADA). The algorithm first adds the positive and negative white noise
to the original signal, and then uses the VMD to decompose it. After repeated cycles, the noise in
the original signal will be offset to each other. Then each layer of IMF is integrated with each layer,
and the signal is reconstructed according to the results of the integrated mean. MVMD is used for the
final decomposition of the reconstructed signal. The algorithm is used to deal with the simulation
signals and measured signals of gearbox with multiple fault characteristics. Compared with the
decomposition results of EEMD and VMD, it shows that the algorithm can not only improve the
signal to noise ratio (SNR) of the signal effectively, but can also extract the multiple fault features of
the gear box in the strong noise environment. The effectiveness of this method is verified.

Keywords: gearbox; multiple fault features; permutation entropy optimization; Variational
Mode Decomposition

1. Introduction

Gearbox is widely used in many mechanical equipment, and is the key component of equipment
operation [1]. However, due to the complicated working environment and improper maintenance of
the gearbox, the gearbox is prone to malfunction during its working process [2]. Due to the complexity
of the internal structure of the gearbox, when a fault occurs, the fault type is mostly complex, and its
fault features are often drowned in the strong background noise. Therefore, an effective feature
extraction method is needed [3–5].

In 2014, Dragomiretskiy proposed a new signal processing algorithm, namely Variational Mode
Decomposition [6]. Compared with EMD and EEMD, the algorithm has a solid theoretical foundation
and high resolution accuracy [7]. Yet, the algorithm needs to set the number of decomposition
layers K in advance, and the K values are often determined only by personal experience [8].
Therefore, the decomposition results are easily affected by human factors and the phenomenon
of over-decomposition or under-decomposition occurs easily. That is, when K is too high, it will cause
over-decomposition and decompose abnormal white noise components. Nevertheless, when the K
value is too small, the phenomenon of under-decomposition will occur and some of the fault features
cannot be extracted [9,10]. In addition, VMD is sensitive to noise [11], that is, the decomposition results
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are easily affected by the background noise, especially in the strong background noise environment, it is
easier to produce false components caused by noise [12]. While for subsequent fault identification [13],
the generation of false components can easily lead to misdiagnosis [14].

For the adaptive determination of the decomposition layer number K, Yi, and Lv are using the
Particle Swarm Optimization (PSO) [15] to determine the decomposition level of K in VMD. Zhang and
others optimize the parameters of the algorithm by using the Grasshopper Optimization Algorithm
(GOA) [16]. In addition, other scholars use the ant colony algorithm (ACO) [17], artificial fish swarm
algorithm (AFSA) [18], and other optimization algorithms to optimize the parameters in the VMD.
Compared to the K value determined by personal experience, these optimization algorithms can
automatically determine the K value based on the original signal, and have good adaptability, and the
effect of human factors on the decomposition results is excluded. However, all of these algorithms are
Meta-heuristic algorithms. The principle of these algorithms is a parameter optimization algorithm
designed by simulating the foraging behavior of the cluster animals. In order to ensure the precision
of optimization, a large population density is usually required [19].

Based on the randomness detection of the permutation entropy, this paper proposes a Permutation
Entroy optimization (PEO) in order to adaptively determine the parameter K in VMD. The principle of
the algorithm is to calculate the entropy of each intrinsic modal function decomposed by the original
signal. As the anomalous component is random, its permutation entropy is much larger than the
normal component [20]. Thus, after setting the threshold of the permutation entropy, whether the
permutation entropy of each layer of IMF is greater than the threshold value is judged, so as to
determine whether there is an abnormal component in the decomposition result, that is, whether
there is an over decomposition at this time. VMD is used to decompose the original signal, until the
decomposition results have abnormal components, it shows that the decomposition occurs right now,
and then the K value at this time is reduced by one as the final optimization value.

In order to improve the signal to noise ratio(SNR) and reduce the sensitivity of VMD to noise,
the author draws inspiration from the idea of Noise Aided Data Analysis (NADA) [21], and proposes
a method of reducing noise based on VMD, that is, the Modified VMD (MVMD). At the same time,
in order to reduce the reconstruction error and make the white noise to be completely neutralized,
this algorithm uses the idea of adding white noise pairs in the Complete Ensemble Empirical Mode
Decomposition (CEEMD) [22]. In each cycle, two white noises with equal amplitude and opposite sign
are added to the original signal. Then the VMD is used to decompose it, and the noise in the original
signal will offset each other after repeated cycles. The IMF of each layer of each cycle is integrated,
and then the signal is reconstructed according to the result of the integrated mean. The reconstructed
signal is decomposed by MVMD. The analysis results of simulation and experimental signals show
that the decomposition result of the algorithm is better than that of VMD.

2. Principles of the Algorithm

2.1. The Principle of Permutation Entropy Algorithm

Permutation Entropy (PE) [23] is a method proposed by Bandt et al. to detect the randomness
and dynamic mutation of time series. This algorithm has the advantages of simple principle,
high computational efficiency, and good robustness. It is very suitable for nonlinear data analysis [24].
The specific steps of the algorithm are as follows.

Step 1: Given a discrete time series { x(i), i = 1 ∼ N}. Phase space reconstructionfor each element
in the time series. Get the refactoring matrix as shown in the following formula.

x(1) x(1 + τ) . . . x(1 + (m− 1)τ)
. . . . . . . . . . . .

x(j) x(j + τ) . . . x(j + (m− 1)τ)
. . . . . . . . . . . .

x(K) x(K + τ) . . . x(K + (m− 1)τ)

 (1)
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Among them, j = 1 ∼ K, K is the number of reconstructed components. m is the embedding
dimension. τ is the delay time. x(j) represents the j row component of the reconstruction matrix.

Step 2: According to the ascending rule, the reconstruction matrix of each row is arranged, and the
result is shown in Equation (2).

x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤ . . . ≤ x(i + (jm − 1)τ) (2)

Step 3: If there is an equal value in the component, that is, when x(i− (j1− 1)τ) = x(i− (j2− 1)τ)
occurs, then sort according to the size of the j value. That is, when j1 < j2, there is

x(i− (j1 − 1)τ) ≤ x(i− (j2 − 1)τ) (3)

Step 4: For every row of the reconstructed matrix, a row of symbol sequences S(l) = (j1, j2, . . . , jm)
can be obtained. Among them, l = 1 ∼ k, k ≤ m!.

That is to say, in the m dimensional phase space mapping, different symbol sequences of m! group
can be obtained, and S(l) belongs to one of them.

Step 5: The probability of each S(l) appears with P1, P2, . . . , Pk, respectively. The permutation
entropy formula of the symbol sequence of k time series x(i) at different time is shown in Equation (4).

HP(m) = −
k

∑
j=1

Pj ln Pj (4)

That is,

PEP(m) = HP(m) = −
k

∑
j=1

Pj ln Pj (5)

2.2. Principle of VMD

The specific construction steps of the constrained variational model are as follows.
Step 1: For the input signal x(t), through the Hilbert Transform (HT), we can get the analytic

signal of each modal function uk(t).
Step 2: The center frequency ωk of each modal function uk(t) is estimated, and its spectrum is

moved to the baseband.
Step 3: After that, the bandwidth is estimated through the H1 Gauss smoothness. The final

constraint variational model can be expressed by Formula (6).
min

(uk)(ωk)

{
∑
k

∥∥∥∥∂t

[
(σ(t) + j

πt )uk(t)
]
e−jωkt

∥∥∥2

2

}
s.t.∑

k
uk = x(t)

(6)

In the equation, ∂t means partial derivative to t, δt is the impulse function, and
{uk} = {u1, . . . , uK} represents the K IMFs obtained by the VMD for the original signal x(t),
and {ωk} = {ω1, . . . , ωK} represents the central frequency of each IMF component.

In order to solve the optimal solution of the above variational model, the following forms of
Lagrange function are introduced

L({uk}, {ωk}, λ) = α ∑
k

∥∥∥[(σ(t) + j
πt )× uk(t)]e−jωkt

∥∥∥2

2

+

∥∥∥∥x(t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), x(t)−∑

k
uk(t)

〉 (7)

In the equation, λ is a Lagrange multiplier and α is a penalty factor.
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Secondly, the Lagrange function of Equation (7) is transformed in time-frequency domain, and the
corresponding extremum solution is carried out. The frequency domain expression of the modal
function uk and the central frequency ωk can be obtained.

∧
u

n+1

k (ω) =

∧
f (ω)−∑i 6=k

∧
ui(ω) +

∧
λ(ω)

2

1 + 2α(ω−ωk)
2 (8)

ωn+1
k =

∞∫
0

ω
∣∣∣∧uk(ω)

∣∣∣2dω

∞∫
0

∣∣∣∧uk(ω)
∣∣∣2dω

(9)

Finally, the optimal solution of the constrained variational model is solved by using the Alternate
Direction Method of Multipliers (ADMM), and the original signal x(t) is decomposed into K IMFs.

The specific steps of the algorithm are as follows.

Step 1: The initialization of the parameters, set
{
∧
u

1

k

}
,
{
∧
ω

1

k

}
,
∧
λ

1
and n to 0.

Step 2: Update
∧
uk and

∧
ωk according to Equations (8) and (9).

Step 3: Update the value of
∧
λ

n+1
according to equation

∧
λ

n+1
(ω) =

∧
λ

n
(ω) + τ(

∧
f (ω)−∑

k

∧
u

n+1

k (ω)).

Step 4: Until the equation
∑k

∥∥∥∥∧un+1
k −∧u

n
k

∥∥∥∥2

2∥∥∥∥∧un
k

∥∥∥∥ < ε is satisfied, the iteration is stopped and the loop is

exited. Otherwise, the return step 2. Finally, K intrinsic mode functions can be obtained.

3. Improvement of VMD

Aiming at the problem of VMD, this paper adopts the permutation entropy optimization algorithm
to adaptively determine the number of decomposition layers, and uses the Modified VMD to reduce
the noise of the original signal and finish the final decomposition. The following two algorithms are
introduced, respectively.

3.1. Permutation Entroy Optimization Algorithm (PEO)

First, the permutation entropy values of the following simulation signals are calculated,
respectively. Among them, x1 = sin(2 × π × 30), x2 = sin(2 × π × 120), x3 = sin(2 × π × 250)
are sinusoidal signals. x4 = (1 + cos(2 × π × 12)) sin(2 × π × 120) is an amplitude modulation
signal. x5(t) = Am × exp(− g

Tm
) sin(2π fct) is a periodic shock signal, among them, Am = 2, damping

coefficient g = 0.1, oscillation period Tm = 0.1, natural frequency fc = 160 Hz. x6 is Gauss white noise
with a length of 2048.

The permutation entropy values of the above simulation signals are calculated, respectively,
and the histogram as shown in Figure 1 is shown.

In order to make the experiment have better reliability, it can be known that the PE of different
energy is solved. As the noise amplitude increases, PE also increases gradually, but both are greater
than 0.6. When the amplitude and frequency of the modulated signal and the impulse signal change,
the change of PE is small, and both are less than 0.6. As shown in Tables 1–3.

Table 1. The permutation entropy values corresponding to different noise amplitude.

Amplitude 0.2 0.5 0.8 1 1.5 2

PE 0.6524 0.7832 0.8231 0.8937 0.9435 0.9846
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Table 2. The permutation entropy values corresponding to different frequency of modulation signal.

Frequency 80 120 180 240 300 360

PE 0.3822 0.3835 0.3876 0.3926 0.3935 0.3921

Table 3. The permutation entropy values corresponding to different amplitude of impulse signal.

Amplitude 1.5 2 2.5 3 3.5 4

PE 0.4824 0.4821 0.4838 0.4872 0.4905 0.4931
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According to the above histogram, the permutation entropy of sinusoidal signal and amplitude
modulation signal is small. The permutation entropy of periodic impact signals is slightly larger
than that of sinusoidal and amplitude modulated signals, but neither of them exceeds the empirical
threshold of 0.6. However, the permutation entropy of white noise is very large and far higher than
the threshold. It shows that the Gauss white noise sequence is more random and the probability of
dynamic mutation is larger, which is also consistent with the reality. Therefore, through the above
analysis, we can see that according to the permutation entropy value, we can distinguish normal signals
from abnormal signals. Based on the randomness detection of the permutation entropy, this paper
proposes a permutation. Entroy optimization (PEO) in order to adaptively determine the parameter K
in the VMD. The principle of the algorithm is to calculate the entropy of each intrinsic modal function
decomposed by the original signal. As the anomalous component is random, its permutation entropy
is much larger than the normal component. Thus, after setting the threshold of the permutation
entropy, whether the permutation entropy of each layer of IMF is greater than the threshold value
is judged, so as to determine whether there is an abnormal component in the decomposition result,
that is, whether there is an over decomposition at this time. If not, we need to continue to increase the
number of decomposition layers, that is, the number of decomposition layers needs to increase by one,
and then according to the updated K value, the VMD is used to decompose the original signal, until the
decomposition results have abnormal components, it shows that the decomposition occurs right now,
and then the K value at this time is reduced by one as the final optimization value. The concrete steps
of the algorithm are as follows:

(1) The initial value of setting K is 2, and the threshold of permutation entropy is taken as an empirical
value 0.6.

(2) VMD is used to decompose the original signal and get K intrinsic mode functions imfi(t) (i = 1 ∼ K).
(3) The permutation entropy pei (i = 1 ∼ K) of each IMF in the decomposition results is

calculated, respectively.
(4) Whether there is a greater than a threshold of 0.6. If there is an explanation that the decomposition

result is over decomposed to cause abnormal components, then it is necessary to stop the loop
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and enter the step (5). If not, there is no over decomposition. The original signal also needs
to increase the number of decomposition layers, that is, K = K + 1, and will return to step (2).
According to the updated K value, we continue to decompose the original signal by VMD.

(5) The condition of the loop termination is that the current K value makes the decomposition result
exactly the abnormal component of the permutation entropy greater than the threshold value,
that is, the K value set at this time causes the VMD over decomposition. Therefore, it is necessary
to update the K value before output as the final result, so that K = K − 1 can be used as the
optimal solution output of the decomposition level.

3.2. Modified VMD (MVMD)

In order to improve signal-to-noise ratio (SNR) and reduce the sensitivity of VMD to noise,
the author, inspired by the idea of Noise-Aided Data Analysis (NADA), proposed a method of noise
reduction based on VMD, that is, the modified VMD (MVMD). The principle of this algorithm is to add
auxiliary Gauss white noise to the original signal and make use of the uniform distribution of white
noise to change the extreme distribution of the signal. After repeated cycles and integrated averages,
the noise in the original signal will be greatly offset, thus achieving the purpose of homogenizing the
noise in the original signal. At the same time, in order to reduce the reconfiguration error and make the
white noise to be completely neutralized. This algorithm adopts the idea of adding white noise pairs
in the CEEMD. That is, the white noise added in each cycle is two positive and negative white noise
pairs with the same amplitude and the opposite symbol. This can guarantee the noise reduction while
not increasing the new noise. After adding auxiliary white noise, two signals to be decomposed will be
obtained, and then the VMD is used to decompose them, respectively. After repeated cycles, the noise
in the original signal will be counterbalanced. Finally, the IMF of each layer obtained by each cycle is
integrated averaging, and then the signal is reconstructed according to the result of ensemble mean.
The reconstructed signal is decomposed by VMD again as the final result of MVMD. The specific steps
of the algorithm are as follows:

Step 1: Initialize the parameter settings. Determine the K value according to the PEO algorithm.
At the same time, set the number of cycles N and the amplitude of white noise Nstd.

Step 2: By adding the positive and negative Gauss white noise pairs with Nstd amplitude to the
original signal, two decomposed signals xi1(t) and xi2(t) can be obtained.{

xi1(t) = x(t) + noisei(t)
xi2(t) = x(t)− noisei(t); (i = 1 ∼ N)

(10)

Step 3: The two decomposed signals xi1(t) and xi2(t) are decomposed by VMD, respectively,
and two groups of IMFs can be obtained. As shown by Equation (11).{

imf1ij(t) (j = 1 ∼ K)
imf2ij(t) (j = 1 ∼ K)

(11)

The imf1ij(t) represents the jth IMF component of the signal xi1(t) after the ith decomposition,
imf2ij(t) represents the jth IMF component of the signal xi2(t) after the ith decomposition.

Step 4: Repeat steps 2 and step 3 N times, and add a new Gauss white noise pair at the beginning
of each cycle.

Step 5: After N cycles, the final 2× N × K IMF is integrated and the result is shown in formula 12.

imfj(t) =
1

2N

N

∑
i=1

(
im f 1ij(t) + im f 2ij(t)

)
, (j = 1 ∼ K) (12)

where imfj(t) represents the ensemble mean of the j level IMF component in all decomposition results.
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Step 6: The reconstructed signal is reconstructed according to the result of ensemble mean,
as shown in Equation (13).

x0(t) =
K

∑
j=1

im f j(t), (j = 1 ∼ K) (13)

Step 7: The VMD is used to decompose the reconstructed signal x0(t), and K IMFs is obtained as
the final result of MVMD.

Flow chart of MVMD based on PEO in Figure 2. The specific steps are as follows

(1) Input signal;
(2) Initialize K and determine the best K value by Permutation Entroy;
(3) Add the opposite white noise to the signal and perform MVMD decomposition;
(4) Refactoring the decomposed signal;
(5) Determine the location of the composite fault by spectrum analysis.Sensors 2018, 18, x FOR PEER REVIEW  8 of 16 
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4. Simulation Signal Analysis

4.1. Construction of Simulation Signal

Gears and bearings are two important components, and they are also prone to fatigue damage.
When the gearbox has compound faults, the vibration signals are usually with multiple modulation
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sources. Therefore, in the construction of the simulation signal, the simulation and analysis of the
gear fault simulation signal and the rolling bearing fault simulation signal are used in this paper.
The simulation signal is constructed as follows.

x(t) = x1(t) + x2(t) + x3(t) + 0.5× randn(t) (14)

The composition signal x1(t) = 2 sin(2π f1t) is a sine signal. The composition signal
x2(t) = (1 + cos(2π fn1t) + cos(2π fn2t)) sin(2π fzt) is a gear fault simulation signal containing two
modulation sources, where fn1 and fn2 are modulation frequencies, and fz is the carrier frequency,
that is, the meshing frequency of gears. The component signal x3(t) = Am × exp(− g

Tm
) sin(2π fct) is a

periodic shock signal, which is used to simulate the fault signal of the rolling bearing, in which Am

represents the amplitude of the shock, the g is the damping coefficient, the Tm is the cycle of shock,
and the fc is the rotation frequency of the bearing. The parameters are shown in the following Table 4.

Table 4. The parameters of the simulation signal.

f1 fn1 fn2 fz Am g Tm fc

28 Hz 12 Hz 20 Hz 120 Hz 2 0.1 0.1 280

Set the number of sampling points N to 3000, and the sampling frequency is 1500 Hz.
The time-domain waveforms of the component signal x1(t), x2(t), x3(t), and the simulation signal x(t)
are shown in Figure 3. Through the spectrum analysis, the carrier frequency and the natural frequency
of the impact signal in the composite fault signal can be extracted. However, the natural frequency has
a small amplitude and is easily disturbed by noise.
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4.2. Adaptive Determination of Decomposition Layer K by PEO Algorithm

First, we use the PEO algorithm to determine the decomposition level K, set the initial value of
K to two. Find out the optimal value of K according to whether or not there is over decomposition.
After each cycle iteration, the permutation entropy of each IMF of the original signal decomposed by
VMD is calculated. As shown in the following Figure 4.
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Figure 4. Permutation entropy of Intrinsic Mode Functions (IMF) in each iteration of PEO algorithm
with different K value in the VMD.

According to the running result of the PEO algorithm, it is known that when K = 4,
the decomposition results appear the abnormal component of permutation entropy value greater
than the threshold value, while the K = 3 does not appear abnormal components, which indicates that
the K = 4 happens to be over decomposition, so the decomposition mode number K of VMD is three.
The number of components in the simulation signal is also exactly three, which is consistent with the
operation results of the PEO algorithm, which shows that the PEO algorithm can indeed adaptively
determine the optimal value of the K.

4.3. Parameter setting of MVDM

In the MVMD, we need to set the number of cycles N and the white noise amplitude Nstd added.
The greater the number of cycles, the better the effect of homogenization noise. However, the efficiency
of signal processing needs to be taken into account. This paper takes the number of cycles N = 100.
For the selection of the amplitude of positive and negative Gauss white noise, the signal to noise
ratio (SNR) of reconstructed signal is chosen as the basis for choosing the amplitude of white noise.
Through a lot of experiments, the experimental results are drawn into the SNR-Nstd diagram as shown
in Figure 5.
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It is known from the diagram that when the white noise amplitude Nstd is 0.15, the signal to
noise ratio of the reconstructed signal is the highest, that is to say, the effect of noise reduction is the
best. Therefore, for the simulation signal, the amplitude of white noise added in the MVMD is 0.15.

4.4. Comparison of Decomposition Results of Different Algorithms

In order to achieve transversal contrast between different EEMD, VMD, and MVMD are used
to decompose the simulation signals, respectively. In the decomposition results of EEMD, only the
first four layers with strong correlation with the original signal are analyzed. The corresponding
decomposition results of each algorithm are shown in Figure 6.
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It can be seen from Figure 6 that there is a serious modal aliasing phenomenon in
EEMD decomposition, and 120 Hz and 30 Hz are, respectively, decomposed into two different
feature components.

The decomposition results of the VMD is shown in Figure 7, the frequency spectrum of the
decomposition can be found that the low frequency components of the 30 Hz are successfully extracted
from the original signal, and the frequency spectrum is less affected by the noise. However, due to
the interference of strong background noise, the modal aliasing occurs in the 120 Hz signal, which is
decomposed into the two modes of IMF2 and IMF3. The characteristics of the spectrum are very weak.
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Finally, the decomposition results of the MVMD is shown in Figure 8, it is found that the spectrum
characteristics of the low frequency signal of the 30 Hz in the original signal are very obvious by
observing the time spectrum of the IMF1. In IMF2, the central frequency 120 Hz of the amplitude
modulation signal and the two modulation frequencies fn1 and fn2 are also successfully stripped from
the original signal with strong noise, and the side band is evenly distributed on both sides of the
main frequency. In IMF3, The center frequency 280 Hz and the uniform distribution on both sides
of the 10 Hz side are also very obvious. While the noise components appear near 500 Hz, the noise
components are very weak compared to the main frequency components of the 280 Hz, which has
little influence on the identification of the fault features. In addition, compared to Figures 6 and 7,
the MVMD can not only effectively eliminate the phenomenon of modal aliasing in VMD, but also
obtain very obvious frequency characteristics in the strong noise environment.
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5. Analysis of Measured Signal in Gear Box

In order to verify the effectiveness and feasibility of the MVMD in engineering practice,
the relevant experiments on closed power flow gearbox test rig are carried out in this paper.
The complex fault vibration signals of the gear box under the condition of normal, tooth surface
pitting and bearing outer ring are measured respectively. Then, the MVMD is used to process these
complex fault vibration signals, and a good extraction effect is obtained. The effectiveness and
feasibility of the proposed method are verified.

In this experiment, the closed power flow test rig is used to collect the compound fault signal of
gearbox. In the experiment, the gear box was loaded by the internal force generated by the torsion bar.
The speed of gearbox is adjusted by controlling the electromagnetic speed regulating asynchronous
motor, and the regulating range is 120 r/min–1200 r/min. The test rig is shown in Figure 9, where the
fault bearing is at the three direction acceleration sensor 1#.
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Figure 9. Gearbox test rig. 1—Speed regulating motor; 2—Clutch; 3—Companion gearbox; 4—Rotating
speed torsion meter; 5—Torsion bar; 6—Test gear box; 7—Triaxial acceleration sensor 1#; 8—Triaxial
acceleration sensor 2#.
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The experimental device mainly includes the speed display, the three direction acceleration sensor
YD77SA (sensitivity is 0.01 V/ms2), the test gear, the test bearing 32,212, the motor, the rotating shaft
and so on. The specific experimental parameters are shown Table 5.

Table 5. Experimental parameters.

transmission ratio 1:1

engagement system Half-tooth meshing

frequency of samplingFs 8000 Hz

Sampling point N 2000

load troque T 1000 N·m
Gear tooth number z 18

rotational speed n 1200 rpm

rotor frequency fn 20 Hz

Bearing outer ring fault frequency 160.2 Hz

Gear meshing frequency 180 Hz

In order to verify the feasibility and effectiveness of the above methods, the fault type of gear box
in this experiment is set up as multiple faults. The composite fault types include pitting corrosion and
outer ring fault of the bearing, as shown in Figure 10.
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Figure 10. Figure of gear and bearing outer ring fault. (a) Gear pitting failure; and (b) Implantation of
outer ring fault by EDM.

When the gear system produces vibration shock, the vibration signal will be transmitted to the
shaft first, then the shaft will be transferred to the bearing, and finally transmitted to the gearbox.
When the acceleration sensor is placed, the location of the sensor should be as close to the vibration
source as it can reduce the attenuation of the fault characteristics in the transmission process, so the
best position of the measuring point should be the bearing seat. Therefore, in this experiment,
two acceleration sensors 1# and 2# are arranged in this experiment, and the two sensors are used
to measure the vibration signals of three directions of X, Y, and Z on two bearing seats, respectively.
As shown in Figure 9, the acceleration sensor 1# is arranged on the bearing seat of the failure bearing,
and the acceleration sensor 2# is arranged on the bearing seat of the normal bearing. The vibration
signal used in this experiment comes from the acceleration sensor 1#.

The vibration signal of compound fault of gearbox collected by closed power flow test rig is
shown Figure 11. The units of amplitude is mm/s2.



Sensors 2018, 18, 3510 13 of 15

Sensors 2018, 18, x FOR PEER REVIEW  13 of 16 

 

Table 5. Experimental parameters. 

transmission ratio 1:1 

engagement system Half-tooth meshing 

frequency of samplingFs 8000 Hz 

Sampling point N 2000 

load troque T 1000 N·m 

Gear tooth number z 18 

rotational speed n  1200 rpm 

rotor frequency nf  20 Hz 

Bearing outer ring fault 

frequency 
160.2 Hz 

Gear meshing frequency 180 Hz 

In order to verify the feasibility and effectiveness of the above methods, the fault type of gear 

box in this experiment is set up as multiple faults. The composite fault types include pitting corrosion 

and outer ring fault of the bearing, as shown in Figure 10. 

  
(a) (b) 

Figure 10. Figure of gear and bearing outer ring fault. (a) Gear pitting failure; and (b) Implantation of 

outer ring fault by EDM. 

When the gear system produces vibration shock, the vibration signal will be transmitted to the 

shaft first, then the shaft will be transferred to the bearing, and finally transmitted to the gearbox. 

When the acceleration sensor is placed, the location of the sensor should be as close to the vibration 

source as it can reduce the attenuation of the fault characteristics in the transmission process, so the 

best position of the measuring point should be the bearing seat. Therefore, in this experiment, two 

acceleration sensors 1# and 2# are arranged in this experiment, and the two sensors are used to 

measure the vibration signals of three directions of X, Y, and Z on two bearing seats, respectively. As 

shown in Figure 9, the acceleration sensor 1# is arranged on the bearing seat of the failure bearing, 

and the acceleration sensor 2# is arranged on the bearing seat of the normal bearing. The vibration 

signal used in this experiment comes from the acceleration sensor 1#. 

The vibration signal of compound fault of gearbox collected by closed power flow test rig is 

shown Figure 11. The units of amplitude is mm/s2. 

  

(a) (b) 

Figure 11. Time-frequency spectrum of complex fault signal of gear box. (a) Time domain of complex 

fault vibration signal; and (b) Spectrum of complex fault vibration signal. 
Figure 11. Time-frequency spectrum of complex fault signal of gear box. (a) Time domain of complex
fault vibration signal; and (b) Spectrum of complex fault vibration signal.

The time-frequency spectrum of complex fault signal of gearbox shows that due to the influence
of strong background noise, the waveform of time domain is chaotic and irregular. In the spectrum,
the gear meshing frequency 360 Hz and its two doubling 720 Hz are appeared, and the fault frequency
of the outer ring does not appear, so the fault signal needs further decomposition. VMD and the
MVMD based on PEO will be used to decompose the above complex fault signals respectively.

First, the PEO is used to determine the decomposition level K, and the initial value of K is set to 2.
The iteration is iterated and the optimal value of K is found. The optimal value of the K output by the
final PEO algorithm is two, so the number of decomposition modes is K = 2. In addition, through a
large number of experiments, the amplitude of the white noise added in the MVMD is 0.85, and the
number of cycles is N = 100.

Secondly, in order to form a lateral contrast, the VMD and MVMD will be used to decompose the
above gearbox compound fault signals. The two algorithm decomposes the fault signal as shown in
Figures 12 and 13.
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As shown in Figure 12 as the result of the decomposition of VMD, it is found by observing
the spectrum that for the complex fault features of the gear box under the strong background noise,
the VMD has a poor extraction effect on the feature, and the two frequency components in the signal
all have serious modal aliasing, which makes this very weak fault feature more difficult to be extracted.
This has caused great difficulties in judging the types of faults. For the decomposition results of
the MVMD, the fault frequency of the outer ring in the gearbox 160 Hz, the gear fault characteristic
frequency 360 Hz and its two frequency doubling 720 Hz are successfully extracted, and the effect is
very obvious compared with the VMD.

6. Conclusions

VMD requires a preset number of decomposition layers K and is sensitive to background noise.
These shortcomings also become a bottleneck in the practical application of the algorithm. Therefore, an
improved algorithm based on Variational Mode Decomposition is proposed in this paper. Through the
analysis of the simulation signal and the experimental signal of the gear box, the experimental results
show that compared with the VMD, the proposed PEO based MVMD has more obvious advantages.
It not only overcomes the limitations of the VMD, but also successfully extracts the complex fault
features of the gear box under the strong background noise. The validity and feasibility of this method
are verified. In the future, the parameters can be intelligently determined to optimize the VMD and
improve the decomposition accuracy. Consider optimizing information entropy and fuzzy entropy as
the objective function to further optimize VMD.
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