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Abstract: Herein, we present an energy efficient successive-approximation-register (SAR)
analog-to-digital converter (ADC) featuring on-chip dual calibration and various
accuracy-enhancement techniques. The dual calibration technique is realized in an energy
and area-efficient manner for comparator offset calibration (COC) and digital-to-analog converter
(DAC) capacitor mismatch calibration. The calibration of common-mode (CM) dependent
comparator offset is performed without using separate circuit blocks by reusing the DAC for
generating calibration signals. The calibration of the DAC mismatch is efficiently performed by
reusing the comparator for delay-based mismatch detection. For accuracy enhancement, we propose
new circuit techniques for a comparator, a sampling switch, and a DAC capacitor. An improved
dynamic latched comparator is proposed with kick-back suppression and CM dependent offset
calibration. An accuracy-enhanced bootstrap sampling switch suppresses the leakage-induced
error <180 µV and the sampling error <150 µV. The energy-efficient monotonic switching technique
is effectively combined with thermometer coding, which reduces the settling error in the DAC.
The ADC is realized using a 0.18 µm complementary metal–oxide–semiconductor (CMOS) process in
an area of 0.28 mm2. At the sampling rate f S = 9 kS/s, the proposed ADC achieves a signal-to-noise
and distortion ratio (SNDR) of 55.5 dB and a spurious-free dynamic range (SFDR) of 70.6 dB.
The proposed dual calibration technique improves the SFDR by 12.7 dB. Consuming 1.15 µW at
f S = 200 kS/s, the ADC achieves an SNDR of 55.9 dB and an SFDR of 60.3 dB with a figure-of-merit
of 11.4 fJ/conversion-step.

Keywords: analog-to-digital converter; successive approximation register; comparator offset;
capacitor mismatch calibration

1. Introduction

Demand is increasing for various battery-operated sensing systems, for example, the Internet of
Things (IoT), which is deployed in various objects for biomedical, home, industrial, and environmental
monitoring [1]. For the sensor interface in these applications, very low power consumption is required
to provide a long battery lifetime.

To meet the demand, the successive approximation register (SAR) analog-to-digital converter
(ADC) has drawn much interest, due to its medium conversion rate and low-power consumption.
Various approaches have been proposed to further reduce power consumption. Compared with
the conventional structure, the average energy can be reduced by 37.5% using a capacitor splitting
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technique [2]. When monotonic capacitor switching is used, it saves up to 81.2% [3]. The energy
saving is further improved to 87.5% and 96.9% when merged capacitor switching (MCS) and tri-level
switching is used, respectively [4,5]. However, the MCS technique demands additional reference
voltage with increased circuit complexity. The tri-level switching has a similar drawback, and high
energy efficiency is achieved with complex SAR logic.

Monotonic switching uses energy-efficient down switching only. The switching is efficiently
realized using a reduced number of switches and capacitors, which simplifies the design of SAR
logic [3]. With down switching, the common-mode (CM) voltage at the digital-to-analog converter
(DAC) decreases. Therefore, CM-dependent offset calibration is desirable. In a previous work [6],
an auto-zeroed comparator is proposed for offset calibration. In reference [7], the offset calibration
is performed by using a body terminal that is controlled by a resistive DAC. These works assume a
constant CM voltage; therefore, they are not directly applicable to a monotonic SAR ADC.

Mismatch in the capacitive DAC, which occurs due to process variations and routing parasitics,
limits the linearity of the ADC. Several techniques have been reported to calibrate the mismatch [7–9].
In reference [7], both the comparator offset and mismatch calibrations are applied for a 10-bit
split-capacitor ADC; a separate calibrating DAC is used to measure the capacitor mismatch,
which consumes additional power and chip area.

Taking advantage of scaled-down complementary metal–oxide–semiconductor (CMOS) process,
various digital calibration techniques have been reported [10–13]. In reference [11], a low-power
calibration technique is presented where circuit blocks, except for the DAC and comparator,
are implemented in a field programmable gate array (FPGA). Because the capacitive DAC operates as
a single-ended circuit for error evaluation, this approach is rather sensitive to the CM noise. Moreover,
the digital calibration usually requires computationally intensive post-processing, and thus, is not
suitable for battery-operated low-power sensing applications.

In this paper, we present a low-power SAR ADC realized in an energy and area-efficient manner
for a sensor interface. The proposed ADC features (1) fully-integrated on-chip dual calibration and
(2) various accuracy-enhancement techniques.

(1) Dual calibration: The proposed calibration techniques, CM-dependent comparator offset
calibration (COC) and DAC capacitor mismatch calibration, are realized in an energy and
area-efficient manner. By reusing the DAC for generating calibration signals, the CM-dependent
comparator offset is calibrated without using separate circuit blocks for calibration. After COC,
DAC capacitor calibration is efficiently performed by reusing the comparator for delay-based
mismatch detection.

(2) Accuracy-enhancement techniques: To support the calibration operation, we propose new
accuracy-enhancement techniques for a comparator, a sampling switch, and a DAC capacitor.
We present a dynamic latched comparator, which is robust to kick-back noise. An improved
bootstrap sampling switch is proposed, which suppresses a leakage-induced error within 180 µV
and a sampling error less than 150 µV. The monotonic switching technique is effectively combined
with thermometer coding to reduce the settling error in the DAC.

The measured data indicate the successful operation of the ADC and performance improvement
by the proposed dual calibration technique. At a sampling rate of 200 kS/s, the ADC achieves a
signal-to-noise and distortion ratio (SNDR) of 55.9 dB and a spurious-free dynamic range (SFDR) of
60.3 dB with a figure-of-merit (FoM) of 11.4 fJ/conversion-step.

2. Design

Figure 1a shows a block diagram of the proposed ADC. Top-plate sampling is performed using a
bootstrap sampling switch. Monotonic switching is chosen for simple implementation. Thermometer
coding is used for the upper 3-bits and binary coding for the remaining 7-bits; the DAC consists of
thermometer-coded capacitors CT[i] and binary-weighted capacitors CB[i] (i = 0 to 6). Thermometer
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coding reduces the size of the most significant bit (MSB) capacitor from 256 to 64 unit capacitors. Thus,
the settling error in the DAC can be reduced.
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Figure 1. (a) Block diagram of the proposed analog-to-digital converter (ADC) with dual calibration.
(b) Timing sequence of the ADC.

A straightforward way to reduce the settling error is reserving different delay times for each DAC
capacitor [14]. This approach reduces overall conversion time suitable for applications requiring a high
conversion rate. The drawback, is that the design of the asynchronous or variable delay logic is rather
complicated; for each transition, this approach needs to test a specific condition (DAC voltage settling)
to make sure that the previous step is finished before going to the next step. Our work is targeted to
sensor applications where a high conversion rate is not needed, but the energy and area efficiencies
are important. Although more cycles are needed, the segmented DAC (thermometer + binary coding)
reduces differential non-linearity (DNL) errors [15]. In addition, the monotonic switching is efficiently
combined with thermometer coding; because monotonic switching performs only down switching,
the realization of the thermometer coding is achieved by simply adding shifter registers and switches.

The proposed ADC supports a dual calibration technique for COC and DAC capacitor mismatch
calibration. During the COC, we note that the capacitive DAC is not used for analog-to-digital (A/D)
conversion. To realize the calibration without using separate circuit blocks, the DAC is reused for
implementing the common-mode voltage generators (CMVG). During COC, a multiplexer (MUX)
array selects inputs from the CMVG for the DAC. During normal A/D conversion, the inputs from
SAR logic are selected. The linearity of SAR ADC is affected by the mismatch in the capacitive DAC.
Because high mismatch errors occur for the large capacitors, the DAC mismatch calibration is applied
to upper CT[i] arrays. To realize the calibration in an energy and area-efficient manner, the lower
CB[i] are not calibrated; they require sufficient intrinsic linearity. Otherwise, they set the upper limit
on performance.
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Figure 1b shows the timing sequence for the proposed dual calibration. Without using a separate
circuit, the comparator is reused to detect the DAC mismatch. Therefore, COC is performed first and
then DAC mismatch calibration follows. The COC includes four steps: reset, offset measurement,
writing the calibration data, and applying the calibration during A/D conversion. Similar steps are
used for DAC mismatch calibration: reset, mismatch measurement, and applying the calibration data.
The data for the DAC mismatch calibration is static and they are applied before A/D conversion.
The data for COC are dynamic in nature and they are applied during A/D conversion. During the
calibration period, the SAR logic is turned off for power saving.

2.1. Dynamic Latched Comparator

The dynamic latched comparator is widely used to reduce power consumption [16]. We consider
three issues for the design of the comparator: (1) the clocked operation of the comparator disturbs the
top plate of DAC by kick-back; (2) systematic and random device mismatch creates an offset voltage
Voffset; (3) during monotonic switching, Voffset depends on the CM voltage VCM.

Figure 2a shows the waveforms of the DAC voltage VDACP,N which are disturbed by the clock
transition. In the dynamic latched comparator, the input difference is resolved when the clock signal
CLK is switched from low to high. By the CLK transition, the kick-back noise is generated at the input
of the comparator by clock feed-through [17]. Then, there is a recovery period when VDACP,N settles to
a stable voltage. Because this is the time when the comparator starts resolving the input difference,
a small asymmetry in this recovery period can cause a decision error.
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Figure 2b shows a schematic of the comparator. By the use of auxiliary transistors (MR1 and MR2),
hysteresis can exist in the comparator by the mismatch introduced through the process variations.
Therefore, we use the common-centroid layout carefully to suppress the hysteresis. In addition,
the comparator is carefully designed for kick-back suppression and CM-dependent offset calibration.
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To reduce the kick-back, the input transistor pair M1,2 is shielded using three cascode transistors MC1–3.
To increase the output resistance of the MC1–3, we choose a small aspect ratio of (W/L) = 1 µm/5 µm
so that they operate in the saturation region. By the increased output resistance, the large voltage step
created by CLK transition is attenuated as it goes through the MC1–3 [18]. The size and bias voltages for
the cascode are chosen by circuit simulations. By adjusting the bias voltage VB2, we are able to control
the current through MC2,3. When VB2 is decreased from 1.2 to 0.7 V with VB1 = 1 V, it effectively
reduces the peak current through MC2,3 from 7 to 1 µA during the CLK transition. In addition,
we perform sizing optimization of M1,2 from W/L = 8 µm/0.5 µm to 4 µm/0.3 µm. By the use of
cascode and the size optimization, the peak value of kick-back is reduced from 4 to 1 mV. Although the
small-size input pair and the cascode reduce the comparator speed, the proposed ADC is targeted for
low-speed sensing applications. Therefore, the tradeoff does not greatly affect the overall performance
of the ADC.

To handle Voffset, the comparator is calibrated using a binary-weighted capacitor array.
Because analog offset calibration requires additional DAC [7], we choose a simple digital approach.
Using a register array to store the offset calibration data, CM-dependent offset calibration is performed
(See Section B for implementation detail.)

The Voffset of the comparator consists of static (the first term) and dynamic (the second term)
offsets, which can be written as

Voffset = ∆VTH1,2 +
VSG − |VTH1,2|

2

(
∆(W/L)1,2

(W/L)1,2
+

∆Rload
Rload

)
(1)

where ∆VTH1,2 is the threshold mismatch, VTH1,2 is the threshold voltage, ∆(W/L)1,2 is the physical
dimension mismatch between M1 and M2, and ∆Rload is the load resistance mismatch [3]. The dynamic
offset is attributed to charge injection, thus voltage dependent.

Figure 3a compares error probabilities obtained by static and dynamic offset calibrations.
The result is obtained using Spectre transient noise simulation with the difference Vdiff = 1 mV
applied to the input of the comparator. The sampling rate is f s = 4 kS/s and the supply voltage is
VDD = 1.8 V. The error probability is obtained by counting the case when the comparator makes the
wrong decision out of 1000 simulations. The wrong decision is caused by the noise and the Voffset of
the comparator. Because the static approach performs the COC one time at VCM = 0.9 V, it reduces
the static offset only. The dynamic approach performs the COC at each VCM from 0.9 to 0 V with a
112.5 mV step. And this approach reduces both the static and dynamic offsets. The result shows that
the two approaches achieve a similar error probability at VCM = 0.9 V. In the low VCM range, however,
the error of dynamic COC is significantly lower than that of static COC.
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In addition, we evaluate the error probabilities as a function of Vdiff. Figure 3b shows the error
probability of three comparators. The result is obtained by performing 1000 Monte Carlo simulations
that consider both local and global process variation under a TTT corner. The result confirms that the
error is significantly reduced when both cascode and COC are used. In the next section, we describe
the implementation details for realizing dynamic COC.

2.2. Comparator Offset Calibration

Figure 4a shows a block diagram to implement the dynamic COC. A reset signal RST initializes
the digital logic and registers. A MUX controlled by CMP_CAL_EN selects the input to the DAC.
When COC is enabled by CMP_CAL_EN = 1, the output from the CMVG is supplied to the DAC.
For normal A/D conversion, the output from the SAR logic is input to the DAC.
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Figure 4b shows the control block for the binary-weighted capacitor array. The residual offset is
in theory reduced by half when increasing the number of calibration bits by one [19]. We determine
the number of array elements using circuit simulations. The error probability is reduced by 18.5%
and 39.5% when the number of elements is increased to two and five, respectively. Considering
the tradeoff between the complexity and the error, we choose 5-bit for the capacitor array elements.
The manufacturer’s process specification provides statistical data for the mismatch of the threshold
voltage, drain current, and the transconductance as a function of device size ratio (W/L)0.5. By using
the mismatch data corresponding to the size of the input pair M1,2 into (1), we determine a typical
Voffset = 25 mV for the comparator. The proposed offset calibration method allows an offset correction
up to ±24 least significant bits (LSB) in the 0.7 LSB step under TTT corner. Although the process
corner changes the calibration range up to 20%, the 5-bit calibration scheme still covers the Voffset
range. In addition, the delay of the comparator does not vary significantly with the calibration code.
When the mismatch in the DAC capacitor is not considered, it varies from 9 (FFF corner) to 13 ns
(SSS corner) with Vdiff = 0.
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With the same VCM applied to the inputs of the comparator, the state of the capacitor is determined
in order of weight by VOUTP,N. In the case of VOUTP = 1 (VOUTN = 1), it increases the capacitance
at V+ (V−) node. This process is repeated five times. For each VCM step, this timing control is
performed by the shift register, which is controlled by CAL_WR. The rising edge of CAL_WR clears
the D F/F, which holds the previous data for the capacitor array. When the state of 5-bits is determined
for a given VCM, MEM_EN is generated from the last stage of the shift register, which writes the
calibration data to the register via MEM_IN[4:0]. This operation repeats until all nine VCM steps are
processed. During normal A/D conversion, the stored data in the register are sequentially read using
MEM_OUT[4:0], which sets the state of the capacitor array.

Figure 5 shows the schematic of the CMVG. The CMVG is implemented without using separate
circuit blocks by reusing the DAC. To be compatible with monotonic switching where VCM is gradually
reduced, the CMVG generates nine VCM steps of each 112.5 mV in the range from 0.9 to 0 V. Each VCM is
generated by controlling the bottom plate of the capacitor arrays CT[6:0] and CB[6:0]. With a reference
voltage of 1.8 V, a VCM step of 112.5 mV corresponds to 32 CU (CU = 31.7 fF is a unit capacitor).
To complete one cycle of COC, eight clocks are needed; one clock for reset, five clocks for determining
the state of the capacitor array, and two clocks for the data store. Therefore, we use a CLK/8 divider
for the CMVG. The VDACP,N changes its value at every rising edge of CLK/8.
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Figure 6a shows the block diagram of the register control for writing the calibration data Cal_j[4:0]
(j = 1 to 9). When CMP_CAL_EN = 1 and MEM_EN = 1, the output of the shifter register provides
the clock for D F/F. Then, MEM_IN[4:0] are written to the register with the rising edge of MEM_EN.
During normal A/D conversion, the calibration data stored in the register are sequentially read out
using a 9 to 1 MUX and a 4-bit counter as shown in Figure 6b. The calibration data read signal CAL_RD
resets a 4-bit counter and starts reading Cal_j[4:0] with every falling edge of CLK. Figure 7 shows
the timing waveform for the comparator offset measurement, which starts with CMP_CAL_EN = 1.
For each VCM step, the rising edge of CAL_WR is used for reset. During the period when CAL_WR = 1,
the CMVG generates a VCM to determine the state of the capacitor array. Then, the calibration data
MEM_IN[4:0] are stored with the MEM_EN signal. When offset measurement for nine VCM is finished,
CMP_CAL_EN signal becomes low, which indicates the end of comparator offset measurement.
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2.3. Digital-to-Analo Converter Capacitor Mismatch Calibration

Figure 8 shows the timing waveform during the normal A/D conversion when the COC is
applied. Before the comparator makes a decision, the calibration data MEM_OUT [4:0] are applied
to the comparator. When CLK_RD becomes high, MEM_OUT [4:0] are read, which sets the state of
the capacitor array in the comparator. When the comparator makes a decision, thermometer-coded
bits T[6:0] and binary-coded bits B[6:0] are sequentially generated. When the B[6:0] switches, VCM is
already close to the ground and does not change significantly. Therefore, Cal_1[4:0] is used during this
period. With the end-of-conversion (EOC), the ADC generates outputs.
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Figure 9 shows the sequence of the calibration for detecting the DAC capacitor mismatch.
The DAC array consists of CT[i] and CB[i]. We note that the one-bit of CT[i] has a weight of
64CU. Under the ideal matching condition, the sum of binary capacitors from CB[6] to CB[0] has
the same weight, 64CU. For the DAC capacitor mismatch calibration, we detect the difference between
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VDACP and VDACN, which can be used to evaluate the mismatch between the upper and lower DAC.
The proposed approach is different from the previous works [7,8,11], which evaluate the mismatch
using the DAC in the same branch. Although the previous approach can potentially achieve a better
calibration result, it requires a rather complicated calibration logic as well as additional calibration
DAC. By reusing the offset-calibrated comparator, our approach evaluates the mismatch in the DAC
capacitor without a separate circuit block. A small mismatch in the DAC capacitor leads to a slight
difference between VDACP and VDACN, which leads to a large comparator delay for generating output.
In the case of a large mismatch, the comparator generates output with a relatively short delay. The delay
is encoded using two-bit data for each CT[i]. Due to circuit complexity, CB[i] is not calibrated.
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Using the symmetric properties of the differential structure, the proposed calibration method
measures the mismatch between the upper and lower DAC. The mismatch in the one-bit CT[i] is
sequentially detected by using the sum of CB[i] in the other branch. The positive DAC branch is
evaluated first and the negative DAC branch is calibrated next. The procedure can be summarized
as follows:

(1) Before starting mismatch calibration, the bottom nodes of all capacitors in the DAC are reset by
connecting them to the ground.

(2) To evaluate the mismatch error of CT[0], connect the bottom plate of CT[0] in the positive branch
to the reference voltage VREF and generate VDACP. Then, connect the bottom plate of all CB[6:0] in
the negative branch to VREF and generate VDACN. If there is a mismatch, the difference between
VDACP and VDACN is reflected as the output delay in the comparator.

(3) The delay in the comparator is encoded using two-bit data LSB_P[1:0], which represents mismatch
information for CT[0] in the positive branch.

(4) Sequentially evaluate the mismatch of the remaining thermometer-coded capacitors
(CT[1] − CT[6]) in the positive DAC branch.

(5) In the same manner, evaluate the mismatch of seven CT[i] in the negative DAC branch.
This mismatch information is encoded using two-bit data LSB_N[1:0].

Figure 10 shows the block diagram for realizing the proposed DAC mismatch calibration.
It consists of a DAC calibration logic, a delay detector, registers, and compensation capacitors.
During mismatch calibration, CAL_END selects the MUX to receive the input from the DAC calibration
logic. The calibration logic sequentially controls the bottom plate of capacitors in the positive and
negative DACs. Then, the delay detector generates LSB_P[1:0], which indicates the mismatch data of
the positive DAC (LSB_N[1:0] for the negative branch). The two-bit outputs are sequentially written
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seven times into the register. When the mismatch evaluation is finished for CT[0:6], the mismatch data
are retrieved from the register. There are seven register outputs for positive (Cal_P0[1:0]-Cal_P6[1:0])
and negative (Cal_N0[1:0]-Cal_N6[1:0]) branches. These outputs are used to set the compensation
capacitors attached to each CT[0:6].
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Figure 11 shows the schematic of DAC calibration logic. It consists of positive/negative branch
calibration logic, a clock divider, and a logic gate. Comparator offset and DAC mismatch calibrations
are enabled by signals CMP_CAL_EN and DAC_CAL_EN, respectively. The two calibration logics
sequentially generate the signals to control the bottom plate of the capacitors in the DAC. To control
the other side of the DAC, the period of positive (negative) DAC calibration is set by the LSB_N_CNTL
(LSB_P_CNTL) signal. Two clock cycles are used for evaluating the comparator delay and writing the
mismatch data to the register, which is generated by the clock divider. From the last stage of D F/F,
CAL_END is generated, which indicates the end of the calibration phase.
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Figure 12 shows the timing waveform of the DAC calibration logic. The low-level transition of the
CMP_CAL_EN signal indicates the end of COC. Then, the DAC_CAL_EN signal is enabled to perform
the DAC capacitor mismatch calibration and the shift registers in the positive branch calibration logic
start operation. First, T_P0 becomes active to switch the bottom plate of capacitor CT[0] in the positive
branch. During this time, LSB_N_CNTL controls the bottom plate of capacitors CB[6:0] in the negative
branch. The LSB_N_CNTL is enabled until mismatch evaluations are performed for all CT[0:6] in
the positive DAC branch. The negative branch calibration logic operates in a similar manner using
LSB_P_CNTL. When the DAC mismatch calibration is finished, CAL_END becomes low.
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Figure 13a shows the schematic of the delay detector. The detector consists of two delay generators
and D F/Fs. The outputs PSET_D1,D2 of the delay generator are used for the reference for detecting
the mismatch. They are applied to the input terminal of D F/F. Then, the sampling operation of
PSET_D1,D2 is performed by the comparator output CMP_OUT. The sampling evaluates the amount
of mismatch existing in the positive (negative) DAC branch using two-bit data LSB_P[1:0] (LSB_N[1:0]).
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where ΔCT[0] is the deviation from the ideal 64CU. Similar expressions can be written for CT[i]. The 
delay time tD of the comparator can be written as the sum of two terms, the load capacitor discharge 
time tcharge and the latch delay time tlatch [20] as: 

2
TH 7,8 L,out L,V+ DD BIAS2

charge latch L,out 2
BIAS2 m,eff L,out TH 7,8 mR1,2 m i

D
1,2 n

2 ln
8

V C C V I
t t t C

I g C V g g V
 

= + = +   Δ 
 (3) 

Figure 13. (a) Schematic of the delay detector. (b) Timing waveform of the delay detector. (c) Modified
latch control to avoid meta-stability.
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The comparator delay depends on the DAC capacitor mismatch. When the mismatch error of
CT[0] in the positive branch is evaluated (See Figure 9), for example, the capacitors in the negative
branch is assumed to have sufficient intrinsic linearity; we assume the total sum of these capacitors to
be 64CU even in the case when the individual capacitor CB[i] experiences the worst-case mismatch
deviation of 1% from the ideal binary ratio. To meet the requirement, we carefully lay out the routing
paths and iteratively trim the size of each capacitor with the aid of a CAD tool. Instead of SAR logic,
the DAC calibration logic controls the bottom nodes of capacitors. Then, the difference ∆Vin between
VDACP and VDACN is obtained [2] using:

VDACP = VCM +
CT[0] + ∆CT[0]

6
∑

i=0
(CT[i] + CB[i]) + ∆CT[0]

VREF, VDACN = VCM +

6
∑

i=0
CB[i]

6
∑

i=0
(CT[i] + CB[i])

VREF (2)

where ∆CT[0] is the deviation from the ideal 64CU. Similar expressions can be written for CT[i].
The delay time tD of the comparator can be written as the sum of two terms, the load capacitor
discharge time tcharge and the latch delay time tlatch [20] as:

tD = tcharge + tlatch = 2CL,out
VTH7,8

IBIAS2
+

CL,out

gm,eff
ln

(
CL,V+

CL,out

VDD I2
BIAS2

8V2
TH7,8gmR1,2gm1,2∆Vin

)
(3)

where VTH7,8 is the threshold voltage of the transistor M7,8 (See Figure 2b), IBIAS2 is the bias current
of the second stage, CL,out is the output load capacitance, CL,V+ is the capacitance at the output
of the first stage, gm,eff is the effective transconductance of the back-to-back inverter, gmR1,2 is the
transconductance of the intermediate stage transistors MR1,2, and gm1,2 is the transconductance of the
input pair. The first term of (3) is independent of ∆Vin but affected by the process corner. The second
term is inversely proportional to ∆Vin.

Using (2), we obtain ∆Vin of 0.6 and 0.9 LSB for 1.0% and 1.5% capacitor mismatch. Considering
some margin for the mismatch, the delay generator is sized to produce proper delay so that mismatch
error from 0.5 to 1.5 LSB is detected. To prevent malfunction, we determine the proper delay in the
comparator and the delay generator by performing extensive Monte-Carlo simulations. Because the
delay in these circuits shares a global process corner, we are able to mitigate the mismatch between
delay detectors by using careful layout.

Table 1 shows the delay depending on process corners. The result shows that the comparator
delay is reduced when the process corner is changed from SSS to FFF corner as expected. Using the
difference between the total delay and the delay without mismatch, we are able to extract the delay
depending on the mismatch. Circuit simulations show that the delay has an approximate inverse
linear relationship with the error ∆Vin. Therefore, the delay threshold for PSET_D1,D2 is chosen by
using three equal delay regions. To deal with the process variation, the delay is further tuned using
VTUNE1,2 in the delay generator.

Figure 13b shows the timing waveform where the mismatch is evaluated in the positive DAC
branch. When the mismatch is small, the difference between VDACP and VDACN is also small,
resulting in a relatively long delay in the comparator [21]. For example, consider the case when
the mismatch is more than 0.5 LSB but less than 1.0 LSB. In the evaluation phase, CMP_OUT rises
after PSET_D1 which sets LSB_P[0] to high and LSB_P[1] to low. The LSB_P[0:1] is subsequently
written to the register. When the delay detector samples the output of the comparator using D F/F,
meta-stability can occur. To remove this, we insert a logic gate to generate an Enable signal as shown
in Figure 13c. In this way, the Enable signal provides the clocks for D F/F in a well-defined sequence
and removes meta-stability.
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Table 1. Delays depending on process corner and tuning voltages.

Process Corner SSS TTT FFF

CMP_OUT (ns)
Total delay * 21 17 13

Delay w/o mismatch ** 13 11 9

Delay by the mismatch 8 6 4

PSET_D1 (ns) 2.7 2 1.3

PSET_D2 (ns) 5.4 4 2.6

VTUNE1, VTUNE2 (mV) 543, 539 496, 492 420, 414

* The delay range is obtained for the capacitor mismatch corresponding to the ∆Vin from 0.5 to 1.5 LSB.
** This delay range is mainly from capacitor discharge time with ∆Vin = 0. SSS (slow NMOS, slow PMOS,
slow Poly), TTT (typical NMOS, typical PMOS, typical Poly), FFF (fast NMOS, fast PMOS, fast Poly)

By the delay detector, two-bit data (LSB_P[1:0] and LSB_N[1:0]) for each CT[0:6] in the two
branches are generated. By the calibration logic, the data are sequentially written in the register
(Figure 14). The data are used to control the switch for the compensation capacitors attached to each
CT[0:6], as shown in Figure 15. Each compensation capacitor consists of 0.5CU and 1.0CU. The value
of the capacitors is chosen considering a worst-case mismatch (2%) of 64CU. The effect of calibration
can be enhanced by using both add and subtract operations. The subtract operation is implemented
by taking advantage of the differential structure [22]. To simplify the logic for the subtract operation
and consider the layout parasitic, the size of the original DAC capacitors is reduced by 0.5CU. Then,
the error compensating range is from −0.5 to +1 LSB in the 0.5 LSB step.
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Figure 15. Schematic of compensation capacitors in the positive DAC branch.

In order to assess the performance improvement by the proposed calibration technique,
behavioral simulations are performed using Matlab. By including random DAC capacitor mismatch
in the behavioral model of the ADC, we perform 1000 Monte-Carlo simulations. Comparator and
kT/C noises are not included. The foundry datasheet shows 1% capacitor mismatch which is
a conservative estimate. Because there is additional mismatch caused by routing and fringing
components, we consider the random mismatch from 1.0% to 2.5%.
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Figure 16 shows the probability distribution of an effective number of bits (ENOB) before and
after the mismatch calibration. In the case of 1% mismatch, the average ENOB before and after
calibration is 8.61 and 8.87 bits, respectively. The standard deviation is reduced from 0.24 to 0.12 bits
by the calibration. In the case of 1.5% mismatch, the average ENOB improves from 8.29 to 8.65 bits.
The standard deviation is reduced from 0.33 and 0.25 bits after calibration. The binary-weighted
capacitors are not calibrated. With the quantization noise and the discrete value of compensation
capacitors, these set the upper limit on performance after calibration. In the case when the binary
capacitors are calibrated, the ENOB improves by 0.3–0.4 bits depending on the mismatch. In addition,
we perform simulations for static nonlinearity. For 2% mismatch, the peak DNL is +0.09/−0.63 LSB
before calibration and it is reduced to +0.08/−0.32 LSB after calibration. The peak integral non-linearity
(INL) is +1.71/−1.72 LSB before calibration and it is improved to +0.74/−0.75 LSB after calibration.
The result shows that the proposed DAC mismatch calibration is effective at improving both dynamic
and static performances of the ADC.
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2.4. Bootstrap Sampling Switch

Figure 17 shows the proposed bootstrap sampling switch. Based on the previous work [23], it is
modified to reduce leakage-induced error (off-state) and sampling error (on-state). It consists of a
booster, a sampling switch, and a clamping circuit.
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Figure 17. Schematic of the proposed bootstrap sampling switch.

The sampling error defined by the difference between VDACP and VINP occurs due to the
on-resistance of the switch. To reduce the resistance, a boosted voltage of about 2VDD is applied
to the gate of N1 and N2 through the capacitor CC2. In addition, P1 in parallel with N1 forms a
transmission-gate which further reduces the on-resistance. To reduce the leakage-induced error,
the threshold voltages of N1 and N2 (both are inside deep n-well) are increased by controlling the
body terminal. When the sampling clock CLKS is high, the body voltage Vb1,2 is set to the threshold
voltage of P2 by the clamping circuit. When CLKS goes low, Vb1,2 is reduced by VDD through the
capacitor CC1, which is about −1.3 V. The size of these transistors is optimized by considering the
tradeoff between the on-resistance and leakage-induced error.

Figure 18a compares the leakage-induced error as a function of VINP. The result is obtained from
post-layout simulations with a sampling rate of 3 kS/s. The VDACP is measured at 1 ms after the input
VINP is sampled. Three cases of the bootstrap switch (BS) are shown; (1) BS-1 having transmission-gate
without a clamping circuit; (2) BS-2 having a clamping circuit and the series switch (N1 and N2)
only [23]; (3) BS-3 having a clamping circuit and the transmission-gate (Figure 17). In the case of BS-1,
the leakage-induced error increases with VINP reaching 800 µV at VINP = 1.8 V. The result shows that
BS-3 has a smaller error than that of BS-2 except at VINP = 1.8 V; BS-3 shows a leakage-induced error
less than 50 µV up to VINP = 1.7 V. The worst-case error is 180 µV. Figure 18b shows the sampling error
as a function of VINP. The turn-on voltage of the sampling switch is 2VDD. The gate-to-source voltage
Vgs of the switch, thus, the turn-on resistance depends on VINP. This causes the sampling error to
vary with the input. A constant Vgs bootstrapping technique is reported [24]; it can be challenging
to implement this technique under different process corners. Another work focuses on reducing
the turn-on resistance only [25]; this approach can suffer from the leakage error when operated at
a low sampling rate. The result shows that the BS-3 shows overall smaller error than that of BS-2;
the sampling error is reduced by using a transmission-gate. BS-3 shows a worst-case sampling error
of 150 µV, which is higher than that of BS-1. However, the high leakage-induced error of BS-1 is not
suitable for our application.
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3. Measured Results

Figure 19 shows the microphotograph of the ADC fabricated with a 0.18 µm CMOS process.
The core area is 0.28 mm2.
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Figure 19. Microphotograph of fabricated ADC.

Figure 20 compares DNL/INL of the ADC before and after COC and DAC capacitor mismatch
calibration. A total of 51,200 codes are collected to build a histogram. The peak DNL is +1.79/−1.0 LSB
before calibration and it is +0.94/−0.98 LSB after calibration. We note that there is no missing code after
calibration. The peak INL is +3.06/−3.17 LSB before calibration and it is reduced to +1.32/−1.61 LSB
after calibration.

Figure 21 compares the measured output spectra of the ADC before and after calibration. The data
is obtained from the FFT spectrum with 9000 points. After performing COC, the SNDR and SFDR are
improved by 3.3 and 9.7 dB, respectively. When the DAC mismatch calibration is applied, the SNDR
and SFDR are improved by 2.8 and 3 dB, respectively. When both COC and DAC calibrations are
performed, the SNDR and SFDR are improved to 55.5 and 70.6 dB, respectively, resulting in an ENOB
of 8.9 bits.
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Figure 20. Measured static nonlinearity of ADC. (a) differential non-linearity (DNL), (b) integral
non-linearity (INL).
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non-linearity (INL). 
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Figure 21. Measured output spectra of the ADC. (a) Before calibration, (b) after comparator offset
calibration, and (c) after both comparator offset and DAC capacitor mismatch calibrations. f S = 9 kS/s,
f IN = 1.32 kHz.
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Figure 22a shows the measured SNDR and SFDR before and after calibrations as a function of
input frequency f IN. Figure 22b shows the measured SNDR and SFDR before and after calibrations for
sampling rate f S up to 100 kS/s. We characterize the ADC using a high f IN.
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Figure 23. Measured output spectra of the ADC at (a) fIN = 20.35 kHz, (b) fIN = 99.35 kHz. fS = 200 kS/s. 

Figure 22. Measured signal-to-noise and distortion ratio (SNDR) and spurious-free dynamic range
(SFDR) as a function of (a) input frequencies with f S = 9 kS/s, (b) sampling rates with f IN = 1.35 kHz.

Figure 23 shows measured spectra of the ADC for f IN = 20.35 kHz. When both COC and
DAC calibration are performed, the measured SNDR and SFDR are 56.2 and 70.3 dB, respectively,
resulting in an ENOB of 9.0 bits. At the Nyquist frequency, the measured SNDR and SFDR are 55.9
and 60.3 dB, respectively.
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Figure 23. Measured output spectra of the ADC at (a) fIN = 20.35 kHz, (b) fIN = 99.35 kHz. fS = 200 kS/s. Figure 23. Measured output spectra of the ADC at (a) f IN = 20.35 kHz, (b) f IN = 99.35 kHz.
f S = 200 kS/s.

Figure 24a shows measured SNDR and SFDR as a function of f IN. The SFDR decreases with f IN

and the SNDR remains relatively constant up to 100 kHz. Figure 24b shows measured SNDR and
SFDR as a function of f S. Both SNDR and SFDR remain relatively constant up to f S = 200 kS/s.
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The overall power consumption of the ADC is 1.15 µW. The power breakdown shows that the
DAC, the comparator, SAR logic, and calibration blocks consume 101 (8.8%), 516 (44.9%), 280 (24.3%),
and 253 nW (22%), respectively. Comparison with the other works is shown in Table 2.

Table 2. Comparison with other works.

[11] [26] [27] [28] [29] This Work

Technology (nm) 130 180 130 65 130 180
Supply voltage (V) 0.5 0.6 0.5 0.55 1.0/0.4 1.8/1.0

Resolution (bit) 11 10 13 10 10 10
Sampling rate (kS/s) 10 200 40 20 1 200

SNDR (dB) 61.8 57.5 66.3 55.0 56.7 55.9
SFDR (dB) 77.5 66.7 71.0 68.8 67.6 60.3

ENOB * (bit)
@Nyquist 9.93 9.26 † 10.7 8.84 9.1 8.98

Calibration Off-chip - On-chip - - On-chip
Core area (mm2) 0.58 0.08 0.90 0.21 0.19 0.28

Power (µW) 0.73 †† 1.04 1.47 0.21 0.05 1.15
FoM (fJ/conv-step) 74.8 8.0 17.9 22.4 94.5 11.4

† Input frequency of 20 kHz. †† Not including the power consumption of FPGA. * ENOB = (SNDR − 1.76)/6.02.

The work in reference [11] presents a low-power (~0.7 µW) SAR ADC for which calibration is
performed off-chip. The work in [27] presents a 13-bit SAR ADC with on-chip calibration in a relatively
large area of 0.9 mm2 using 0.13 µm CMOS. Our work is realized using 0.18 µm CMOS in a compact
chip area of 0.28 mm2. Both the works [28,29] show relatively low-power consumption, however, it is
achieved with relatively low f S = 20 and 1 kS/s, respectively. To capture all these tradeoffs, we can use
the figure-of-merit (FoM), which is defined as:

FoM =
Power

fS × 2ENOB =
Power

2× ERBW× 2ENOB (4)
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where effective resolution bandwidth (ERBW) is approximately equal to half of the sampling frequency.
The work in [26] shows a good FoM of 8.0 fJ/conv-step using a bypass window, however, it requires a
fine-tuned reference voltage to accurately set the bypass window. Consuming 1.15 µW at f S = 200 kS/s,
the ADC in this work achieves a good FoM of 11.4 fJ/conv-step.

4. Conclusions

We present a low-power SAR ADC with dual on-chip calibration technique applied for
COC and DAC capacitor mismatch correction. The proposed calibration technique is realized
in an energy and area-efficient method that does not use separate circuit blocks. In addition,
various accuracy-enhancement techniques further improve the performance of the ADC. A monotonic
switching technique is efficiently combined with thermometer coding to reduce the error caused
by incomplete settling. The CM-dependent comparator offset is dynamically calibrated by reusing
the differential DAC. In addition, the dynamic latched comparator is carefully designed to remove
decision errors due to kick-back noise. The evaluation of the DAC capacitor mismatch is performed
by reusing the comparator for delay measurement. The calibration of the DAC mismatch in the
thermometer-coded seven MSB bits is efficiently performed by using the symmetry property of the
differential structure. Measured data show the successful operation of the proposed dual calibration
technique. At f S = 9 kS/s, the proposed ADC achieves the measured SNDR of 55.5 dB and the SFDR of
70.6 dB. At an increased f S = 200 kS/s, the ADC achieves an SNDR of 55.9 dB and an SFDR of 60.3 dB
with a FoM of 11.4 fJ/conversion-step. The results indicate the potential of our work for low-power
sensing applications.
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