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Abstract: Web Ontology Language (OWL) is designed to represent varied knowledge about things
and the relationships of things. It is widely used to express complex models and address information
heterogeneity of specific domains, such as underwater environments and robots. With the help
of OWL, heterogeneous underwater robots are able to cooperate with each other by exchanging
information with the same meaning and robot operators can organize the coordination easier.
However, OWL has expressivity limitations on representing general rules, especially the statement
“If . . . Then . . . Else . . . ”. Fortunately, the Semantic Web Rule Language (SWRL) has strong rule
representation capabilities. In this paper, we propose a rule-based reasoner for inferring and providing
query services based on OWL and SWRL. SWRL rules are directly inserted into the ontologies
by several steps of model transformations instead of using a specific editor. In the verification
experiments, the SWRL rules were successfully and efficiently inserted into the OWL-based ontologies,
obtaining completely correct query results. This rule-based reasoner is a promising approach to
increase the inference capability of ontology-based models and it achieves significant contributions
when semantic queries are done.

Keywords: underwater robots; semantic representation; ontology languages; SWRL rules;
rule-based reasoning

1. Introduction

Underwater environment is characteristically, dynamic and dangerous, leading to several
difficulties for human beings to perform underwater operations. For example, it is impossible for
human beings to work under high pressure, low temperature, and dark environments for a long time.
Under these circumstances, underwater robots [1] are drawing wide attention from many researchers.
Underwater robots include heterogeneous robotic vehicles, like Remotely Operated Vehicles (ROVs) [2]
and Autonomous Underwater Vehicles (AUVs) [3]. ROVs can be remotely controlled by human
operators and AUVs are able to complete assigned missions automatically, such as sea pollution
detection [4], underwater infrastructure repairing [5], seabed mapping [6,7], etc. With the help of
underwater robots, humans do not need to take any risks by diving into a dangerous underwater
environment. Meanwhile, the working efficiency and operation lifetime of underwater robots are
much higher than that of human beings.

An underwater robotic system [8] surely contains large quantities of information and data,
including communication channels management, underwater environment data, status of robotic
vehicles, and mission planning strategies. Substantial problems may happen when heterogeneous
underwater robots attempt to exchange disordered information and data. Hence, the underwater
robotic system requires certain approaches to model the whole deployment in a well-organized manner,
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so that the description of the system can be understood both by robotic vehicles and human beings.
One of the most popular approaches to model an underwater robotic system is to define the system
components and their relationships by ontologies [9,10]. Generally, ontologies encompass a formal
representation of certain categories, properties and relations between their concepts, data and entities.
Ontologies are widely adopted in many research domains, such as semantic web [11], health care [12],
the smart home [13], access control [14], or logistics [15]. An ontology is encoded by means of an
ontology language. For example [16]:

• Knowledge Interchange Format (KIF) [17]: It is a formal language for interchanging knowledge
between disparate programs and has features like declarative semantics, logic comprehensibility,
translatability, and readability. However, KIF requires massive resources to model the
whole system.

• The eXtended Markup Language (XML) [18]: It is able to facilitate the representation of
task-specific and domain-specific data. XML documents can generate a balanced tree of open and
close tags, which contains several attribute-value pairs.

• The Resource Description Framework (RDF) [19]: It can describe any web resources and provide
interoperability for exchanging machine-understandable information.

• The Ontology Interchange Language (OIL) [20]: It is a Web-based ontology language that has
well-defined semantics with established reasoning properties. One of the advantages using OIL is
that it offers various levels of complexity. However, an OIL-based ontology has the difficulties of
model transformation. For example, it is not guaranteed that conversions between OIL and RDF
can keep the completeness of the model.

• Ontology Web Language (OWL) [21]: As a computational logic-based, OWL is able to represent
rich and complex knowledge and it could be exploited by computer programs. OWL is admitted
by the World Wide Web Consortium (W3C).

Among the above-mentioned ontology languages, the Smart and Networking Underwater Robots
in Cooperation Meshes (SWARMs) project [22], a European project that has its main focus on expanding
the use of underwater and surface vehicles to cooperatively perform underwater and offshore
operations, adopts the ontology language OWL to model the whole platform. The SWARMs ontology
is a Common Information Model and represents several domain-specific knowledge, including
communication domain, environment domain, mission planning domain and robotic vehicle domain.
The advantage of modeling SWARMs platform with OWL is that OWL is capable for representing
the exchanged information between robotic vehicles and enabling robotic vehicles to share and reuse
different knowledge. In such networked ontology, it is more convenient for users to search desired
resources and deliver the information to computers for further processing.

However, OWL has its own limitations [23–27], such as being unable to represent general rules
and statistics-based uncertainty. Generally, OWL can only represent the description logic, leading
to weakness of rule-based reasoning. For example, OWL-based ontology is capable of reasoning
the correspondence of specific classes, such as C1 ∈ C2, meaning that C1 set is a subclass of C2 set.
However, OWL and OWL 2 [28,29] are unable to describe the definition of rule “If . . . Then . . . Else”,
such as “Elderly”: Person(?x)ˆhasAge(?x, ?y)ˆswrlb: greaterThan(?y, 65)→ Elderly(?x) . This rule
indicates that if a person is greater than 65 years old, this person is regarded as elderly. It is worth
noting that the representation of general rules plays a significant role in semantics. On the one hand,
general rules are able to represent more abundant knowledge, ranging from simple common sense
to complex strategies. On the other hand, the representation of general rules can save more memory
storage for the knowledge base, because some knowledge could be inferred from existing information
by the reasoners. It is unnecessary to store such deducible knowledge in advance. Conclusively, it is
quite promising to combine the general rules with OWL-based models.

In 2003, the Semantic Web Rule Language (SWRL) is firstly released as a part of the DARPA
Agent Markup Language (DAML) Program [30]. SWRL aims at combining horn-like rules with the
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OWL-based knowledge base in order to compensate the weakness of OWL [31]. A SWRL rule contains
an antecedent (body) and a consequent (head). Both components consist of zero or several atoms.
It means that if the conditions specified in the antecedent are reached, then the actions specified in the
consequent must be then executed. By adding SWRL rules, the OWL-based ontology can be greatly
enhanced in completeness, expressiveness, and logic. This is so because SWRL allows users to specify
user-defined rules in order to perform inferences over OWL individuals, so new knowledge about these
individuals can be obtained. Moreover, SWRL rules enable the computation of desired behavior based
on the content of the individuals by connecting a rule-based reasoner. By updating the new knowledge
and rule-based constraints, the OWL-based ontologies become more consistent and may be more
applicable to the dynamic environment. For example, the SWARMs users may define two individuals
named “VehicleAtLeastSafetyPosition” and “AlarmEvent” and relevant rules to determine the status
of robotic vehicles. If one robotic vehicle is at an emergency status while operating the mission, the
human operator may be informed by the SWARMs platform and perform immediate operations to
recall the vehicles in order to avoid the property loss. The alarm information is generated through the
rule-based reasoner based on the current status of the vehicle and user-defined SWRL rules.

Regarding the SWRL rules insertion, some researchers [32,33] recommend to use SWRL plugins
of Protégé. Though this approach is easy to use, it can only insert a single rule at one time and the
ontology has to be reloaded before the inference process. From the literatures reviews, there are not
any published works introducing an approach of inserting multiple SWRL rules at once. In this paper,
we propose a novel SWRL rules insertion mechanism in order to directly insert multiple SWRL rules
through several steps of model transformations. The proposed rules insertion mechanism does not
require users to have the experience or knowledge of editing in Protégé. The users just have to know
how to manipulate the SWRL rules and edit them in a text file. The SWARMs ontology is able to adopt
the SWRL rules through such text file for further reasoning by the rule-based reasoner.

Additionally, SWRL rules have no limitations on the selections of inference engines, which means
that SWRL rules can be reasoned by linking an external inference engine, such as Java Expert System
Shell (Jess) [34], Algernon [35], SweetRules [36], and any other user-specified reasoners. This paper
proposes a rule-based reasoner using Pellet [37] and Jena [38]. The rule-based reasoner [39,40] is
on the basis of “If-Then-Else” statement. The “If” means when the condition is true, the “Then”
means take actions, and the “Else” means when the condition is not true, take another actions.
Meanwhile, there are two types of rule-based reasoning strategies, including forward-chaining and
backward-chaining [41–43]. The rule-based reasoner can provide the marine experts and human
operators with a comprehensive query services, such as searching for a potential candidate of robotic
vehicles for a certain mission, possibility of replacing one robotic vehicle in the swarm, etc.

Conclusively, our main focus is to create and insert the SWRL rules without using any specific
editors, like Protégé. Actually, the SWRL rules are manipulated in a text file and then inserted to the
SWARMs ontology through several steps of model transformations. Compared with the Protégé, it is
worth noting that our proposal allows SWARMs users to insert multiple SWRL rules at the same time
instead of inserting the rules one by one. With the successful insertion of SWRL rules, the SWARMs
ontology is enhanced with expression capabilities and could provide the SWARMs users with a precise
query service by running the rule-based reasoner. The query results generated by the rule-based
reasoner are able to help the SWARMs users to take immediate actions in order to make a better
decision, obtain higher benefits and avoid economic loss.

The paper is organized as follows. In the next section, the overview of SWARMs ontology
and its components are briefly introduced. In Section 3, we describe the construction and syntax of
SWRL rules, insertion of SWRL rules into SWARMs ontology. Meanwhile, the rule-based reasoner is
represented to provide query services according to inference results. In Section 4, we perform some
experiments to evaluate the efficiency of rules insertions and the usefulness of rule-based reasoner.
Lastly, we conclude all the contributions and discuss the future work in Section 5.
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2. Ontologies for Robotic Systems

The term “Ontology” is originated from philosophy, aiming at dealing with realistic objects
and conceptual entities. Recently, Artificial Intelligence (AI) and Robotics are adopting this term
to represent the real world, enabling the description of objects and the relationships of objects in
the knowledge domain [44]. For a robotic system, an ontology is regarded as a formal and clear
specification of shared categories, properties, and relations between the concepts, data, and entities.
In other words, an ontology of a robotic system captures a common understanding of the domain.

Many researchers tried to build a robotic system by using ontologies. Sadik A.R. and Urban B. [45]
combined an ontology-based Multi-Agent System (MAS) and a Business Rule Management
System (BRMS) and proposed a distributed control solution to solve challenges in the cooperative
manufacturing. It is remarkable that they treated the ontology as a conceptual tool to represent and
create a common understanding for the manufacturing work cell entities. Ali F. et al. [46] proposed
a merged ontology and Support Vector Machine (SVM) based on an information extraction and
recommendation system to convey information and provide recommendations. The ontology-based
humanoid robot is able to give accurate feedbacks on a query of a particular topic. IEEE Robotics
& Automation Society proposed a Core Ontology for Robotics and Automation (CORA) [47], used
by robots that require explicit knowledge. Their ontology is meant to standardize the knowledge
representation in the Robotics and Automation (RA) field.

Though plenty of ontologies for robotic systems have been proposed, the construction approaches
are not the same. Meanwhile, there is no standard approach of constructing an ontology.
Generally, researchers are complying with the following principles to model a robotic system by
ontologies [48–50]:

1. Clarity: An ontology should represent defined terms in a clear and complete manner.
The definition of terms should be independent and objective. Definitions could be formularized
in logic axioms. Natural languages are recommended to comment on all the definitions.

2. Coherence: An ontology should support inferences that are consistent with the definitions. If an
inference result contradicts a definition, it means that the ontology is incoherent.

3. Extendibility: An ontology should be able to provide the extensions on the existing definitions.
An updated definition could be added directly without modifying any existing definitions.

4. Modularity: An ontology should have the capability of being divided into several modules
with relevant fragments of the ontology. Because a module is usually smaller than the original
ontology and is easier to be re-used.

5. Minimal encoding bias: The description of terms does not rely on a specific encoding approach.
Because the different components of a robotic system in the real world could be programmed by
various languages.

6. Minimal ontological commitment: An ontology should achieve the minimal ontological
commitment, which is exactly sufficient to support knowledge sharing within the ontology.
The ontology developers should define as fewer constraints as possible in order to provide
freedom to specialize and instantiate the ontology as needed.

2.1. Overview of SWARMs OWL-Based Ontology

Based on the above-mentioned principles, the SWARMs project adopts the ontology language
OWL to design a networked ontology. The SWARMs ontology [51] has two general characteristics,
understandability and conciseness. The characteristics of understandability means that the SWARMs
ontology can be easily understood by all stakeholders, including ontology developers, marine experts,
human operators, etc. The characteristics of conciseness means that the SWARMs ontology consists of
the least number of vocabularies to describe the underwater robotic system.
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The SWARMs ontology consists of one core ontology and four domain-specific ontologies,
including communication, environment, mission planning, and robotic vehicle domain. The overview
of SWAMRs ontology is shown in Figure 1.Sensors 2018, 18, x  5 of 26 

 

 
Figure 1. Overview of the ontology in Smart and Networking Underwater Robots in Cooperation 
Meshes (SWARMs) project. 

As is shown in Figure 1, the core ontology provides a comprehensive representation and has the 
capability of interconnecting the four domain-specific ontologies. The interconnection of these 
ontologies is shown in Figure 2. 

 
Figure 2. Interconnection of four domain-specific ontologies. 

The details of four main domain-specific ontologies are explained in the following sub-sections. 
Besides the four main domain-specific ontologies, application ontologies could be added in 

order to fulfill specific requirements from different scenarios, such as pollution detection, underwater 
infrastructure repairing, seabed mapping, etc. The application ontologies aim at enriching the 
SWARMs ontology and providing the details of assigned missions. For example, an application 
ontology on pollution detection is given in Figure 3. 

Figure 1. Overview of the ontology in Smart and Networking Underwater Robots in Cooperation
Meshes (SWARMs) project.
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The details of four main domain-specific ontologies are explained in the following sub-sections.
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Besides the four main domain-specific ontologies, application ontologies could be added in
order to fulfill specific requirements from different scenarios, such as pollution detection, underwater
infrastructure repairing, seabed mapping, etc. The application ontologies aim at enriching the SWARMs
ontology and providing the details of assigned missions. For example, an application ontology on
pollution detection is given in Figure 3.Sensors 2018, 18, x  6 of 26 
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With the extension of application ontologies, SWARMs users could perform a pollution detection
mission by using underwater robots and surface robots. Based on the environmental variables in the
given region, SWARMs users are able to estimate the spread speed of pollutants and conclude the
pollution level and estimated size of the polluted area [52].

2.2. Communication Domain

The communication domain contains the information model which describes the communication
approaches in SWARMs platform. Due to the challenges of unstable communication channels and
limited bandwidths, several communication approaches are considered, such as acoustic, cable, radio,
satellite, and Wi-Fi. The communication link of acoustic uses an acoustic modem and is able to
offer the possibility of wireless communication under water for Autonomous Underwater Vehicles
(AUVs) [53]. The communication link of radio and satellite can be used by Remotely Operated Vehicles
(ROVs) to transmit data and commands between vehicles and operators [54,55]. If the environment
is terrible and the communication is easily disturbed by noise, the communication link of cable is
then a reliable option [56]. Meanwhile, several types of messages are defined in the communication
ontology, including “ErrorMsg”, “EventMsg”, “NotificationMsg”, “QueryMsg”, “RegistrationMsg”,
and “RequestMsg”.

The details of communication ontology is defined by OWL in Figure 4.
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In Figure 4, the classes of “Source” and “Target” represent the message sender and
receiver, respectively.

2.3. Environment Domain

The ontology model of environment domain consists of several disjoint classes and describes the
concepts within the environment, such as sensors, entities, landmarks, etc. The environment ontology
is shown in Figure 5.
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In Figure 5, the class “Sensor” has two sub-classes, named logical sensor and physical sensor.
Regarding the physical sensor, it is able to provide physical measurements of the environment, such as
water currents and the water temperature. Regarding the logical sensor, it can precept logical data,
such as the current condition of a robotic vehicle. The class “DataProcessor” is dealing with the sensing
data in order to generate the processed data. For example, “DataProcessor” can perform feature
extractions, recognitions and classifications from a captured image. The class “Landmark” refers to
specific seabed features, objects, or fixed structures. The class “Entity” represents marine lives and
man-made objects. The detail of “Entity” is shown in Figure 6.
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2.4. Mission Planning Domain

The ontology model of mission planning domain represents the mission composition and planning
procedure. Once a mission is established, it is decomposed into several goals according to its objectives
and mission specifications. In order to achieve all the goals, certain tasks should be completed by
following series of scheduled actions [57]. The details are shown in Figure 7.
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In Figure 8, the class “Task” has two sub-classes, named “LowLevelTask” and “HighLevelTask”.
A low-level task can be divided into operator-level task and vehicle-level task. The former one
represents that the task requires human operators to manually perform the operations. The latter
one means that the task only needs an individual robotic vehicle to carry on the mission, whereas a
high-level task has to be executed by a swarm of robotic vehicles.

2.5. Robotic Vehicle Domain

The ontology model of robotic vehicle domain specifies the robots and vehicles used in the
SWARMs project. Generally, a robotic vehicle is either an underwater or surface robot according to its
working environment. A robotic vehicle is either an autonomous or non-autonomous according to its
autonomy and intelligence [58,59]. The detail of robotic vehicle ontology is shown in Figure 9.
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In Figure 9, the class of “RobotCandidateForMission” represents the specific robotic vehicles which
have qualified capabilities and fulfil certain requirements of the mission. For example, one certain
mission requires that the remaining energy of a selected candidate vehicle should be greater than 60.0
and the vehicle should have certain sensors or actuators. In a robotic vehicle ontology, there are several
specific vehicles, including Remotely Operated Vehicle (ROV), Autonomous Surface Vehicle (ASV),
Autonomous Underwater Vehicle (AUV), and so on. The detail of these robotic vehicles is as described
in [60,61].

3. SWRL Rules and Rule-Based Reasoner

As is stated in the previous section, OWL is an ontology description language and has the
capability of modelling complex systems and environments. One of the advantages of using OWL is
that it has various operators, such as intersection, union, and negation, enabling OWL users to check
whether all the definitions and relations in the ontology are consistent. Thus, OWL can represent the
SWARMs ontology clearly and succinctly. However, OWL is unable to describe general rules, especially
the “if-else-then” statements, leading to impossibility for users to check hidden knowledge in the
ontology. Although this knowledge could be defined manually by ontology developers through OWL,
this approach definitely increases the complexity of SWAMRs ontology and it actually repeats the
existing knowledge. Hence, it is a promising approach to combine the Semantic Web Rule Language
(SWRL) to help OWL describing general rules. SWARMs users can define their own rules and insert
the rules into the SWARMs ontology for further inferences [62]. With the help of SWRL, the usability
of OWL-based ontologies could be extended and the consistency of the ontologies could be improved.
The SWARMs users are able to obtain more abundant and precise information by requesting queries
to the ontology. A rule-based reasoner can be used to perform inferences on SWARMs ontology
with SWRL rules, providing the marine experts and human operators with simple or complex query
services, such as searching for a potential candidate among a swarm of robotic vehicles for a certain
mission, possibility of replacing one robotic vehicle in the swarm, etc. It is worthy to mention that the
proposed rules insertion mechanism allows SWARMs users to directly insert multiple SWRL rules
into the SWARMs ontology at one time without editing in Protégé. By this approach, the SWARMs
ontology does not need to be reloaded again after the rules insertion.

3.1. SWRL Rules

The Semantic Web Rule Language (SWRL) is firstly released in 2003. The latest version of SWRL
is updated in 2004 (Version 0.7) with more extensions of Built-Ins. SWRL is on the basis of OWL DL
and OWL Lite, enabling the combination of horn-like rules and OWL-based knowledge base. Due
to the compatibility of SWRL, OWL can adopt the SWRL rules in order to provide a more completed
ontology and enable the possibility of rule-based reasoning.

3.1.1. Structure and Syntax of SWRL Rules

Generally, SWRL rules consist of four components, including “Imp”, “Atom”, “Variables”, and
“Built-in”. The structure of SWRL rules is shown in Figure 10.



Sensors 2018, 18, 3481 11 of 27

Sensors 2018, 18, x  10 of 26 

 

is worthy to mention that the proposed rules insertion mechanism allows SWARMs users to directly 
insert multiple SWRL rules into the SWARMs ontology at one time without editing in Protégé. By 
this approach, the SWARMs ontology does not need to be reloaded again after the rules insertion. 

3.1. SWRL Rules 

The Semantic Web Rule Language (SWRL) is firstly released in 2003. The latest version of SWRL 
is updated in 2004 (Version 0.7) with more extensions of Built-Ins. SWRL is on the basis of OWL DL 
and OWL Lite, enabling the combination of horn-like rules and OWL-based knowledge base. Due to 
the compatibility of SWRL, OWL can adopt the SWRL rules in order to provide a more completed 
ontology and enable the possibility of rule-based reasoning. 

3.1.1. Structure and Syntax of SWRL Rules 

Generally, SWRL rules consist of four components, including “Imp”, “Atom”, “Variables”, and 
“Built-in”. The structure of SWRL rules is shown in Figure 10. 

 
Figure 10. The structure of Semantic Web Rule Language (SWRL) rules. 

In Figure 10, “Imp” is short for implication and consists of head and body. The head and body 
represent inference results and the initial state before inference, respectively. The basic element in the 
head and body is “Atom”. The variables of “Atom” are stored in “Variable”. Four basic forms of 
“Atom” are defined in “Variable” shown as follows. 

• C(x). C represents an OWL description or data range. 
• P(x, y). P is the property of OWL. x and y can be variables, OWL individuals or OWL data 

values. 
• SameAs(x, y). It represents that x is equal to y. 
• DifferentFrom(x, y). It represents that x is different from y. 

The “Built-In” is a modular component of SWRL and contains formulas of logic operations, such 
as boolean operation, mathematical calculation, string operation, etc. Seven types of built-ins are 
defined in SWRL in Table 1. 
  

Figure 10. The structure of Semantic Web Rule Language (SWRL) rules.

In Figure 10, “Imp” is short for implication and consists of head and body. The head and body
represent inference results and the initial state before inference, respectively. The basic element in
the head and body is “Atom”. The variables of “Atom” are stored in “Variable”. Four basic forms of
“Atom” are defined in “Variable” shown as follows.

• C(x). C represents an OWL description or data range.
• P(x, y). P is the property of OWL. x and y can be variables, OWL individuals or OWL data values.
• SameAs(x, y). It represents that x is equal to y.
• DifferentFrom(x, y). It represents that x is different from y.

The “Built-In” is a modular component of SWRL and contains formulas of logic operations, such
as boolean operation, mathematical calculation, string operation, etc. Seven types of built-ins are
defined in SWRL in Table 1.

Table 1. The Built-Ins in SWRL.

Built-In Example Example Explanation

Comparisons swrlb:equal If the first argument and the second argument are the same.

Math swrlb:abs If the first argument is the absolute value of the second argument.

Boolean Values swrlb:booleanNot If the first argument is true and the second argument is false, or
vice versa.

Strings swrlb:startsWith If the first argument starts with the second argument.

Date, Time and
Duration swrlb:time If the first argument is the xsd:time representation, followed by

arguments of hours, minutes, seconds and timezone.

URIs swrlb:anyURI If the first argument is a URI reference, followed by arguments of
scheme, host, port, path, query and fragment.

Lists swrlb:empty If the first argument list is empty.
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As is mentioned before, a SWRL rule consists of an antecedent (body) and a consequent (head).
Both antecedent and consequent have multiple atoms. In Listing (1), it describes the abstract syntax of
a SWRL rule [63].

rule ::=′ Implies(′[URIre f erence]′ {annotation} antecedent consequent)′

antecedent ::=′ Antecedent
(′{atom}′

)′
consequent ::=′ Consequent

(′{atom}′
)′

.
(1)

In this paper, the SWRL rules are loaded in OWL/RDF format, such as the example given in
Listing (2):

〈swrlx : individualPropertyAtom〉
〈swrl : propertyPredicate rd f : resource = “&eg : hasBatteryLevel”/〉
〈swrl : argument1 rd f : resource = “#x1”/〉
〈swrl : argument2 rd f : resource = “#x2”/〉
〈swrlx : individualPropertyAtom〉

. (2)

The SWRL rules in OWL/RDF format can perfectly merge with the OWL-based SWARMs
ontology. Besides, SWRL rules offer a human-readable syntax, such as in Listing (3):

RoboticVehicle(?x)ˆvehicleCurrentSpeed(?x, ?y)ˆswrlb: equal(?y, 0.0)→ StandByVehicle(?x). (3)

The above SWRL rule in Listing (3) means that if the current speed of a vehicle is zero, then it is a
stand-by vehicle waiting for commands.

3.1.2. SWRL Rules for SWARMs Ontology

With the help of SWRL rules and its human-readable syntax, marine experts and human operators
can easily express their knowledge and experience [64] as user-defined rules without knowing the
technical details of programming. Usually, pre-defined rules can be embedded in the SWAMRs
platform in advance and all robotic vehicles should follow these pre-defined rules to perform
underwater operations. However, underwater environment is complex and dynamic. Consequently,
marine experts and human operators should add extra new rules and constraints for the purpose
of helping robotic vehicles adapting to the environment and carrying on operations safely during
runtime. Listing (4)–(9) represent some SWRL rules used in the SWARMs ontology.

RoboticVehicle(?x)ˆvehicleBatteryLevel(?x, ?y)ˆswrlb: greaterThan(?y, 30.0)→ RobotCandidateForMission(?x) (4)

In Listing (4), it is a very straightforward and simple rule, representing that if the remaining battery
of a robotic vehicle is greater than 30.0, then this vehicle is a candidate for enrolling in the mission.
This rule can be specifically inferred by the rule-based reasoner when the SWAMRs platform tries
to automatically select the mission candidates. Similar rules of selecting the mission candidates are
shown as follows.

RoboticVehicle(?x)ˆisAvailable(?x, ?y)ˆswrlb: booleanNot(?y, false)→ RobotCandidateForMission(?x) (5)

RoboticVehicle(?x)ˆconsumption(?x, ?y)ˆswrlb: lessThan(?y, 50.0)→ RobotCandidateForMission(?x) (6)

Meanwhile, event-related SWRL rules could be defined by the marine experts. For example,
in the mission planning ontology, several types of event is given, including the “AlarmEvent”,
“ChangeEvent”, “RequestEvent”, “SignalEvent”, and “TimeEvent”. Marine experts could determine
whether a robotic vehicle is at risk or not during runtime by defining a least-safety position.
For example, if the remaining battery of a vehicle is lower than a certain value or the position of
the vehicle is out of the mission-specified boundary, then it will trigger an alarm event. After being
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notified, the human operator can recall the robotic vehicle at the least-safety position in order to avoid
the property loss. Relevant SWRL rules in SWARMs ontology can be defined as follows.

RoboticVehicle(?x)ˆGPSPosition(?x, ?y)ˆgpsAltitude(?y, ?z)ˆswrlb: greaterThan(?z, 100.0)→ VehicleAtLeastSafetyPosition(?x) (7)

RobotCandidateForMission(?x)ˆvehicleBatteryLevel(?x, ?y)ˆswrlb: lessThan(?y, 5.0)→ VehicleAtLeastSafetyPosition(?x) (8)

In Listing (7), the SWRL rule represents that if the robotic vehicle detects that its current altitude
is greater than 100.0, then this vehicle is at the least-safety position. In Listing (8), the SWRL rule
indicates that if the remaining battery of a mission candidate is lower than 5.0, then this vehicle is at
the least-safe position. Once the human operator has been notified about the alarm events, immediate
actions can be taken to recall these vehicles.

Meanwhile, Marine experts could define the severity level of pollutant by using SWRL rules. The
severity level of pollutant depends on its denseness. For example, marine experts could determine the
severity level of hydrogen sulfide, also known as H2S. The SWRL rule can be defined as follows.

Pollutant(?x)ˆh2sPollution(?x, ?y)ˆswrlb: greaterThan(?y, 20)→ SeriousH2SPollution(?x) (9)

In Listing (9), the SWRL rule suggests that if the denseness of H2S is greater than 20 parts per
million (ppm), then we are dealing with a serious H2S pollution problem.

All user-defined SWRL rules are stored in a configuration file under serial orders. An example of
such file is given in Figure 11.
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Additionally, the rule file can contain only one rule or multiple rules.

3.2. Insertion of SWRL Rules into SWARMs Ontology

Most of ontology developers [65,66] are using SWRLTab [67] to insert SWRL rules into OWL-based
ontology. SWRLTab is an extension of Protégé-OWL that permits the manipulations on SWRL rules,
including creating new SWRL rules, reading and writing existing SWRL rules. A screenshot of
SWRLTab is shown in Figure 12.
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However, there are some constraints when using the SWRLTab. Firstly, the SWRLTab plugin
only allows users to manipulate a single rule at one time. Secondly, it requires the users to have the
experience in working with Protégé. Thirdly, it is necessary to have the source code of OWL-based
model. Thus, this paper proposes a new approach to insert the SWRL rules into the OWL-based
ontology model by several steps of model transformations. The newly proposed rules insertion
mechanism allows users to write multiple SWRL rules in a configuration file and then load the rule file
into the ontology model. Meanwhile, users just need to understand the SWRL syntax and do not need
to use Protégé to edit the SWRL rules. The proposed rules insertion mechanism is one of the novelties
in our work.

The proposed rules insertion mechanism is shown in Figure 13.
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In the SWARMs project, the Jena Ontology API [68], OWLAPI [69], and SWRLAPI [70] have been
used to manipulate the SWARMs ontology and SWRL rules.

In Figure 13, the steps for model transformations with the purpose of inserting SWRL rules are
shown. Normally, the ontology model is fixed and does not allow users to make any modifications,
due to the fact that the whole SWARMs ontology is carefully designed and implemented by experts,
thus containing highly professional knowledge. The source code of the SWARMs ontology is not fully
public and all we receive from the remote server is an ontology file with the “OntModel” (An interface
provided by Jena Ontology API) format. However, SWRL rules cannot be directly inserted into the
“OntModel”. Therefore, the original ontology model with “OntModel” format has to be converted
to the “OWLOntology” (An interface provided by OWLAPI) format. The SWRL rules are parsed
by the ontology model with “SWRLAPIOntology” (An interface provided by SWRLAPI) format.
Afterwards, a new ontology model with “OWLOntology” format loads all the rules and is converted
to “OntModel” format.

According to the specification of “OntModel”, it is an extension to the “InfModel” interface and
supports to wrap the abstract syntax of “OntModel” in an RDF graph [71,72]. With the help of this
feature, SWRL rules can be wrapped in a RDF graph as well. The rule graph and the ontology graph
are independently existed, which means that users may manipulate the SWRL rules without modifying
the original SWARMs ontology. Both SWARMs ontology and SWRL rules can be understood in a
human-readable manner. The key part of a rule graph is given in Figure 14.

In Figure 14, the atoms of SWRL rules are mapped to RDF triples. The above figure represents
the rule Listing (4) in RDF graph. Clearly, the graph consists of two main parts, including the
antecedent and consequent. In the body of antecedent, the predicates indicated by the SWRL
rule is “RoboticVehicle” and “vehicleBatteryLevel”. Meanwhile, the graph includes a Built-in for
comparisons which is “greaterThan”. Thus, the antecedent represents that comparing the battery
level of a robotic vehicle, it should be greater than 30.0. In the body of consequent, the predicate is
named “RobotCandidateForMission” and it suggests that if the robotic vehicle fulfills the requirement
specified in the antecedent, then this vehicle is a potential candidate to execute a mission. Conclusively,
the graph represents that if the battery level of a robotic vehicle is greater than 30.0, then this vehicle
will be selected as a candidate for one mission.

Generally, after mapping the SWRL rules to RDF triples, the rules are ready to use by the
rule-based reasoner in the inference stage.
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3.3. Rule-Based Reasoner for Inference

After inserting SWRL rules into the ontology model, the SWARMs ontology is able to connect
with a reasoner and generate inference results. This paper proposes a rule-based reasoner to provide
SWARMs users with the query services. The rule-based reasoner is a particular type of reasoning
approach which uses “If-Then-Else” statements and offers two reasoning strategies, including forward
chaining and backward chaining strategies. Generally, the rule-based reasoner is on the basis of initial
facts (provided by the SWARMs ontology) and rules (provided by the SWRL rule base). The detail of
connection between the rule-based reasoner and SWARMs ontology is shown in Figure 15.

In Figure 15, it is displayed how the knowledge from domain-specific ontologies and SWRL
rules are going through corresponding parsers in order to generate initial facts and the rule base
respectively. Then, the inference engine loads all the facts and rules and performs rule-based reasoning.
The inference results are added as new knowledge into the SWARMs ontology after format conversions.

The rule-based reasoner is on the basis of Jena inference framework [73]. The details of rule-based
reasoner is shown in Figure 16.

In Figure 16, the rule-based reasoner is firstly registered through the reasoner registry module
(provided by Jena). Meanwhile, the “ModelFactory” creates a new “OntModel” for the associated
reasoner to read knowledge of the ontology. Once the rule-based reasoner is in the reasoner list,
ontology graph and rules graph are then loaded in the reasoner for preparation of reasoning.
An inference graph is generated and provides the inference results which are reasoned by the rule-based
reasoner through forward and backward chaining strategies [74,75].
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3.4. Query Service

The query service is provided for SWARMs users through Apache Jena Fuseki [76]. The Apache
Jena Fuseki is basically a SPARQL server and is able to load all the triples of SWARMs ontology in a
RDF graph shown in Figure 17.
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The query service is implemented by the programming language Java. In Figure 18,
the light-yellow round icons represent the interfaces and the dark-yellow rectangle icons represent
components (implemented by Java classes). The SWARMs users request the queries through the
component “QueryService” and write the SPARQL queries. As is mentioned in Section 3.3, the SWRL
rules are created through the component “Rules&PoliciesCreator” and the rule-based reasoner is
registered through the interface “ReasonerInterface”. Then, the component “Reasoner” is able to infer
the query based on the existing knowledge and user-defined SWRL rules. The query results are lastly
returned to the component “QueryService”.

There exists two types of query services, including the simple query and complex query.
The simple query refers to the query which does not need any inferences. It is only a query on
existing information in the knowledge base. The complex query refers to the query which triggers the
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rule-based reasoner. It involves the inferring process on the knowledge and may lead to changes on
the knowledge base. The detail of these two queries are explained in the following sub-sections.

3.4.1. Simple Query

If the query requested by SWARMs users is just to check existing knowledge in the ontology,
then it is unnecessary to trigger the rule-based reasoner for inference. For example, a SWARMs
user wants to query on all robotic vehicles which are available for executing certain missions, or the
SWARMs user wants to check the remaining battery of certain vehicles. Under this circumstance,
this information is already presented in the SWARMs ontology. Thus, the query results can be obtained
without using the rule-based reasoner.

3.4.2. Complex Query

Regarding the complex query, it is not a simple query on existing knowledge and it requires the
rule-based reasoner for inferring new knowledge. For example, UAV 1 and 2 are involved in a mission
and a SWARMs user has doubts on the mission candidates, the user wonders that if UAV 2 can be
replaced by UAV 3. Under this circumstance, the rule-based reasoner has to infer the possibility of such
replacement based on the status of each UAV and check that whether this substitution is feasible or
not. Meanwhile, the SWARMs users may occasionally request a query with plenty of restraints. Some
of the restraints may be in conflict with each other, leading to failure of query. Thus, the rule-based
reasoner should check that whether the query is correct or not.

4. Evaluation and Results

The rule-based reasoner is evaluated by the following aspects. Firstly, the insertion of SWRL rules
into the SWARMs ontology is tested. Secondly, the efficiency of rules insertion is recorded. Thirdly,
the simple queries and complex queries are requested to verify the correctness of query results. The
detail of evaluation is described in the following sub-sections.

4.1. Verification of Inserting SWRL Rules

At first, the configuration file (rule file) is given by the SWARMs users. We are testing two rule
files, containing a single rule and multiple rules, respectively. The rule files are shown in Figure 19.
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After uploading the SWARMs ontology to the Apache Jena Fuseki and executing the Java class
“PoliciesRulesCreator” (mentioned in Figure 18), the SWRL rules are correctly and fully inserted as a
rule graph. The results are shown in Figure 20.

In Figure 20, the number of triples in the rule graph for a single rule is 40 and the number of
triples for multiple rules is 143. The content of rule graph is basically the same as the one shown in
Figure 14. The results show that the SWRL rules are successfully inserted.
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Figure 20. Successful insertion of SWRL rules: (a) A single rule; (b) Multiple rules.

Then, the efficiency of SWRL rules insertion is recorded. In this case, we are testing the rule files
which contain 50 rules for three rounds. For each round, a single rule consists of three, four, and five
atoms, respectively. The example rules in the rule file for each round are shown in Listing (10)–(12).

pressure(?x)ˆswrlb: greaterThan(?x, 1000)→ HighPressure(?x) (10)

RoboticVehicle(?x)ˆhasVehicleID(?x, ?y)ˆswrlb: startWith(?y, ”00”)→ ROV(?x) (11)

RoboticVehicle(?x, ?y)ˆUnderwaterRobot(?y, ?z)ˆhasVehicleID(?z, ?w)ˆswrlb: startWith(?w, ”00”)→ ROV(?x) (12)

The efficiency of rules insertion is evaluated by the processing time. The result is shown in Figure 21.
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Figure 21. The evaluation of SWRL rules insertion by the proposed approach.

In Figure 21, all the SWRL rules are successfully inserted in a very short time. Obviously,
more atoms in a single rule, more time is needed. Even a rule consists of five atoms, all the 50 rules
can be processed within 60 milliseconds. Compared with inserting SWRL rules by editing in Protégé,
the proposed approach is able to insert multiple rules conveniently and efficiently.

4.2. Verification of Querying the Udated SWARMs Ontology

As is mentioned in the previous sections, the rule-based reasoner provides the SWARMs users
with query services. In this section, the simple query and complex query are testified respectively.
Firstly, in the SWARMs ontology, four instantiated models of robotic vehicles are defined (See Figure 22).
Each robotic vehicle model clearly indicates its properties and capabilities (See Figure 23).



Sensors 2018, 18, 3481 20 of 27

Sensors 2018, 18, x  19 of 26 

 

    
(a) (b) (c) (d) 

Figure 22. The four instantiated robotic vehicles in the SWARMs ontology: (a) SUSV; (b) SAGA; (c) 
Alister A9; (d) ATN50. 

    
(a) (b) (c) (d) 

Figure 23. The properties of robotic vehicles: (a) SUSV; (b) SAGA; (c) A9; (d) ATN50. 

Regarding the simple query, it is requested to select the qualified mission candidates. It is 
assumed that the robotic vehicle with remaining battery power greater than 30.0  will then be 
selected as a mission candidate. The SPARQL query and the result is shown in Figure 24. 

 
Figure 24. The simple query and result of checking the mission candidates. 

Obviously, in Figure 23, the battery levels of SAGA and A9 are 122.0 and 65.0, respectively. 
Meanwhile, the battery levels of SUSV and ATN50 are both 4.5. Thus, the robotic vehicles SAGA and 
A9 fulfill the requirement of being a mission candidate and the query result suggests the same (see 
Figure 24). 

Figure 22. The four instantiated robotic vehicles in the SWARMs ontology: (a) SUSV; (b) SAGA; (c)
Alister A9; (d) ATN50.

Sensors 2018, 18, x  19 of 26 

 

    
(a) (b) (c) (d) 

Figure 22. The four instantiated robotic vehicles in the SWARMs ontology: (a) SUSV; (b) SAGA; (c) 
Alister A9; (d) ATN50. 

    
(a) (b) (c) (d) 

Figure 23. The properties of robotic vehicles: (a) SUSV; (b) SAGA; (c) A9; (d) ATN50. 

Regarding the simple query, it is requested to select the qualified mission candidates. It is 
assumed that the robotic vehicle with remaining battery power greater than 30.0  will then be 
selected as a mission candidate. The SPARQL query and the result is shown in Figure 24. 

 
Figure 24. The simple query and result of checking the mission candidates. 

Obviously, in Figure 23, the battery levels of SAGA and A9 are 122.0 and 65.0, respectively. 
Meanwhile, the battery levels of SUSV and ATN50 are both 4.5. Thus, the robotic vehicles SAGA and 
A9 fulfill the requirement of being a mission candidate and the query result suggests the same (see 
Figure 24). 

Figure 23. The properties of robotic vehicles: (a) SUSV; (b) SAGA; (c) A9; (d) ATN50.

Regarding the simple query, it is requested to select the qualified mission candidates. It is assumed
that the robotic vehicle with remaining battery power greater than 30.0 will then be selected as a
mission candidate. The SPARQL query and the result is shown in Figure 24.
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Obviously, in Figure 23, the battery levels of SAGA and A9 are 122.0 and 65.0, respectively.
Meanwhile, the battery levels of SUSV and ATN50 are both 4.5. Thus, the robotic vehicles SAGA
and A9 fulfill the requirement of being a mission candidate and the query result suggests the same
(see Figure 24).
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Another simple query is also requested by the SWARMs users to check the available ROVs in the
SWARMs ontology. According to the specifications of robotic vehicles, SAGA and ATN50 both belong
to the class “ROV”. The SPARQL query and the result is shown in Figure 25.
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Regarding the complex query, it is requested to check whether a robotic vehicle can return to the
base safely or not. The return depends on the current position, speed, and battery remaining of the
robotic vehicle and the base position. During runtime, a human operator can request such query for
the purpose of property loss. A SWRL rule for determining the safely return is shown in Listing (13).

BaseStation(?bs)ˆhasGPSPosition(?bs, ?gps2)ˆ

RoboticVehicle(?rv)ˆhasGPSPosition(?rv, ?gps1)ˆvehicleCurrentSpeed(?rv, ?speed)ˆconsumption(?rv, ?cons)ˆ

vehicleBatteryLevel(?rv, ?bl)ˆswrlb: divide(?bl, ?cons,)ˆhasRemainingTime(?remainingTime)ˆ

swrlb: subtract(?gps2, ?gps1)ˆhasDistance(?dist)ˆswrlb: divide(?dist, ?speed)ˆhasReturnTime(?returnTime)ˆ

swrlb: lessThan(?returnTime, ?remainingTime)→ Alert(?alert)ˆhasRoboticVehicle(?alert, ?rv)ˆhasBaseStation(?bs)

(13)

The base station is located at 43◦48′25.1” N 28◦34′57.1” E and the current position of the robotic
vehicle is located at 43◦47′52.0” N 28◦35′55.0” E (see Figure 26). These two locations are near the
Mangalia coast in Romania. It is assumed that the robotic vehicle SUSV is executing a certain mission
and the human operator requests the query for the safely return of SUSV. The SPARQL query and
result is shown in Figure 27.
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In Figure 27, it is depicted that the robotic vehicle SUSV is unable to return back to base safely and
corresponding alarm alert is triggered. Obviously, the robotic vehicle SUSV lacks of energy resources
according to battery level shown in Figure 23a. Thus, the query result is correct.

Conclusively, the rule-based reasoner is able to perform the reasoning based on the knowledge
base and rule base. The inference results can provide the SWARMs users with query services efficiently
and intelligently.

5. Conclusions and Future Work

The main focus of our work is on the SWRL rules insertions and the query service provided by
the rule-based reasoner, along with the detailed implementation. The conclusion of our contribution
and future work are summarized in the following sub-sections respectively.

5.1. Conclusions

Generally, this paper introduces the OWL-based SWARMs ontology as an information model
to enable heterogeneous robotic vehicles to obtain a common understanding of shared knowledge.
After analyzing the drawbacks of OWL-based ontology, inserting SWRL rules are proposed as an
approach to enhance the expression capability of OWL-based ontology. A rules insertion mechanism
is designed specifically for the insertions of multiple SWRL rules. This mechanism allows SWARMs
users to efficiently insert multiple rules through a text file at once, instead of inserting the rules one
by one in a specific editor. Once all the rules are successfully inserted to the rule base, a rule-based
reasoner is able to provide the SWARMs users with query services to know exactly the status of robotic
vehicles and desired information of underwater environment. Lastly, experimental tests are performed
to verify the proposed rules insertion mechanism and the rule-based reasoner. The experimental
results indicate the feasibility and usability of the proposed mechanism and reasoner. Our contribution
can be summarized in detail as follows:

• The SWARMs ontology is on the basis of the Web Ontology Language (OWL) and it is capable
of representing complex models and address heterogeneous information of the underwater
environment and autonomous robots. Therefore, the SWARMs project selects OWL to model
the information within the platform. The SWARMs ontology consists of one core ontology and
four domain-specific ontologies, including the communication, environment, mission planning,
and robotic vehicles domains. As an information model, the SWARMs ontology enables the
knowledge sharing and information abstractions in specific domains to help heterogeneous
robotic vehicles obtaining a common understanding of shared knowledge. With the help of
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SWARMs ontology, various robotic vehicles could work with each other for the purpose of
completing complex underwater and maritime missions cooperatively. Based on the successful
experience of modelling the SWARMs ontology, OWL is a promising approach to represent
information of complex environments and robotic vehicles.

• The Semantic Web Rule Language (SWRL) is combined with the SWAMRs ontology for the
purpose of overcoming the drawbacks of OWL-based ontologies. OWL-based ontologies cannot
represent the general rules, however, with the help of SWRL rules, marine experts and human
operators are able to turn their knowledge and experience as user-defined rules and insert them
into the SWARMs ontology during runtime. All the SWRL rules are manipulated in a text
file before insertion. A rules insertion mechanism is designed and implemented in this paper.
The proposed mechanism specifies several steps of model transformations to convert the SWARMs
ontology between different formats for the possibility of rule insertions. It is worth noting that
the rules insertion mechanism allow SWARMs users to insert multiple rules in one time, which
greatly increases the efficiency of rules insertion. Conclusively, SWRL rules could enable the
OWL-based ontologies to represent general rules and enhance the completeness of ontologies.
Compared with inserting the SWRL rules in a specific editor, the proposed approach does not
require the SWARMs users to have knowledge about the editors. Meanwhile, the proposed rules
insertion mechanism is more efficient and convenient.

• A rule-based reasoner is implemented to provide the SWARMs users with query services. In the
reasoning module, the initial facts of SWARMs ontology and user-defined SWRL rules are loaded
to the inference engine from the knowledge base and rule base respectively. Then, the rule-based
reasoner is able to perform the inference and generate query results. In this paper, the query
service is provided by Apache Jena Fuseki. After all the triples of SWARMs ontology and SWRL
rules are loaded in the server, the SWARMs users can write SPARQL queries and request inference
results. The query services not only can check the status of robotic vehicles and environment
information, but are also able to give feedback to the users regarding the emergency events and
decision corrections. It is concluded that the rule-based reasoner is a promising approach to
increase the inference capability of SWARMs ontology and provide the SWARMs users with
precise query services.

• Lastly, experimental tests are performed in order to verify the proposed rules insertion mechanism
and the rule-based reasoner. In this paper, the success of rules insertion and the insertion efficiency
are tested. No matter inserting a single rule or multiple rules at once, the successful insertions are
ensured with high efficiency. Afterwards, the rule-based reasoner is testified by requesting simple
and complex queries. The query results are totally correct. Consequently, the rules insertion
mechanism and rule-based reasoner are feasible and useful for the SWARMs project.

5.2. Future Work

Though the SWRL rules are able to enhance the expression capability of OWL-based ontologies
and the rule-based reasoner is a promising approach for providing the SWARMs users with a
convenient query services, further developments are still pending to be implemented for the purpose
of improving the SWARMs ontology, SWRL rules, and rule-based reasoner. The future work is
summarized as follows:

• Firstly, regarding OWL, it is necessary to extend and enrich the SWARMs ontology with
more elements, such as various robotic vehicles, communication approaches, user cases,
and environment landmarks. Meanwhile, though the SWARMs ontology is designed to provide a
common information model for underwater environment and robotic vehicles, the reusability of
such ontology should be taken into consideration for other underwater robotics projects.

• Secondly, it is worth exploring the extensibility of SWRL rules. Apart from the expressions of
general rules, statistics-based uncertainty also existed in the SWARMs project. It is promising to
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implement a probabilistic extension of SWRL to deal with the incomplete or partial knowledge.
With the help of probabilistic extension, certain reasoning algorithms (such as Multi-Entity
Bayesian Network algorithm) could be executed in order to infer uncertainties, providing an
improved query services to the SWARMs users.

• Thirdly, a conflict-free mechanism for rules insertion should be developed in order to avoid the
redundancy and complexity of the rule base. Repeated rules and conflict rules may result in
difficulties for the rule-based reasoner to understand and perform inferences. The conflict-free
mechanism aims at filtering the SWRL rules and eliminating unnecessary ones, keeping the
simplicity of the rule base in this way.
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