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Abstract: This paper presents the design of a novel small-angle transducer characterized by a
simple structure, fast response and very low reaction torque. A theoretical model is presented
which describes the linear relationship between the output voltage and the angular displacement
when the rotor rotates away from the null position. By analysis of the theoretical model, it is
revealed that the small-angle transducer possesses a very high linearity within ±4◦ and a high
sensitivity (approximately 0.34 V/◦), and the parameters affecting output characteristics can be
obtained. Furthermore, it is found that the transducer sensitivity can be improved by optimizing
the load impedance and excitation frequency. These findings are verified by numerical evaluations.
In addition, the established theoretical model and simulation analysis provide a quantitative method
for analyzing the output characteristics of the novel small-angle transducer.

Keywords: electromagnetic sensor; inertial sensors; output characteristics; small-angle transducer;
rotor with short-circuit ring

1. Introduction

Electromechanical inertial sensors play an important role in inertial navigation and control
applications due to their high accuracy and reliability [1–8]. For a given excitation voltage, the angular
transducer used in electromechanical inertial sensors is used to provide a voltage output signal that
is proportional to the angular displacement of the rotor from a null position [9–12]. As a critical
component of inertial sensors, the requirements for precision from the angular transducer are much
higher than those for inertial sensors [13–15]. Therefore, the angular transducer is necessary for
working within the scope of small angles to provide high sensitivity, linearity, very low reaction
torque and high reliability. As microsyn signal generators possess good structural stiffness and
high sensitivity [16,17], they are often used in gyroscopes, inertially stabilized platforms and some
accelerometers [18,19]. However, the rotor and the stator of a microsyn are both constructed of
silicon-steel laminations with high permeability [13]; therefore, a very small non-concentricity between
the stator and the rotor leads to the formation of two random reaction torques acting on the output axis:
a radial magnetic pull and a tangential electromagnetic reaction torque. It is difficult to compensate for
these random reaction torques; thus, it is difficult for a microsyn to realize a very low reaction torque.

In this paper, we present the design of a novel small-angle transducer used in high-precision
inertial sensors. Its rotor is a specially shaped conducting loop made from highly conductive and
non-conductive magnetic materials. Between the outer stator and the inner stator, which are both
constructed of silicon-steel laminations with high permeability, an air gap in the form of a ring emerges,
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in which the rotor is free to rotate. Moreover, both the excitation windings and the output windings are
mounted on the outer stator, so that there are no coil lead wires on the rotor. In addition, because the
rotor is made of a highly conductive non-magnetic material (e.g., copper), a radial magnetic pull is
not formed on the rotor; therefore, this novel small-angle transducer can achieve a very low reaction
torque, so that it is suitable for use in high-precision inertial sensors. Meanwhile, the transducer’s
output characteristics directly affect the performance of the inertial sensors. Therefore, it is necessary
to have a quantitative method to analyze the output characteristics in order to predict the performance
of sensors, and it is also essential to carry out parameter optimization to acquire higher linearity and
sensitivity. In addition, the study of the output characteristics can also provide a theoretical basis to
further improve precision and reliability and expand the scope of applications.

This paper is organized as follows. In Section 2, the basic structure and working principles are
introduced, and the theoretical model that describes the linear relationship between the output voltage
and the angular displacement when the rotor rotates away from the null position is deduced through
analysis of the magnetic circuit of the transducer. The short-circuit ring on the rotor is regarded as a
single-turn short-cut coil and its equivalent magnetic resistance and magneto-reactance are deduced.
In Section 3, a simulation tool is introduced, and a simulated analysis is carried out over a range of
angles of rotation to acquire the curves of the output voltage. In Section 4, various curves, which are
the results of the theoretical model calculation, are discussed and compared with the simulation results,
and the parametric optimum design is then realized. It is done through an analysis of the theoretical
model over a range of angles of rotation, excitation frequencies and resistances etc. The paper is
concluded in Section 5.

2. Theory

In this section the working principle of the new small-angle transducer is firstly presented.
Secondly, the equivalent magnetic resistance and magnetoreactance of the short-circuit ring (conducting
loop) on the rotor is deduced by regarding the short-circuit ring as a single-turn short-cut coil. Thirdly,
the theoretical model of the transducer is deduced, while ignoring the magnetic resistance and leakage
flux of the stators, to describe the output characteristics of the transducer.

2.1. Working Principle

The basic structure of the transducer is shown in the image on the left in Figure 1. It consists of
an outer stator with four salient poles, of which 1 and 2 are excitation poles and 3 and 4 are output
poles; an inner stator; and a rotor. More specifically, the rotor is partitioned into two short-circuit rings
by two ribs and is free to rotate in the air gap between stators, as shown in the top right-hand image
of Figure 1. The excitation windings and output windings are mounted on the excitation poles and
output poles, respectively, and are connected in series opposition as shown in the bottom right hand
corner of Figure 1. Figure 2 illustrates the instantaneous magnetic flux distribution. It can be seen that
an alternating magnetic flux

.
φd (the main magnetic flux) flows through the excitation poles, across the

air gap and through the output poles, when an alternating current is applied to the excitation windings.
In this paper, the dot symbol indicates a phasor. Moreover, the magnetic flux through the output poles
has two parts flowing in and out. The null position of the transducer is shown in Figure 2a. The center
of the ribs of the rotor is consistent with the center of the output poles. The magnetic flux flowing in the
output pole is equal to the magnetic flux flowing out of the output pole; therefore, the output voltages
in the output windings cancel out if the stators’ overlap is symmetrical, the air gaps are uniform, and
all coils are identical.
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Figure 2. Instantaneous magnetic flux distribution: (a) magnetic flux distribution in the null position;
(b) magnetic flux distribution when the rotor moves clockwise by an angle of α away from the
null position.

As shown in Figure 2b, if the rotor is rotated clockwise at an angle of α from the null position,

the magnetic flux flowing in the short-circuit ring is
.
φ
′
d, that is a component of

.
φd, and

.
φ
′
d =

.
φd · cos α;

therefore, the net magnetic flux of each output pole is ∆
.
φ and ∆

.
φ =

1
2

.
φd · sin 2α. When angle α is small,

sin 2α = 2α, so that ∆
.
φ =

.
φd · α. Thus, the sum of the voltages in the output windings is no longer

zero. Because the output windings are connected in series opposition (shown in the bottom right-hand
image of Figure 1), according to the law of electromagnetic induction,

.
E2 can be expressed as

.
E2 = 2W2

d∆
.
φ

dt
(1)

where
.
E2 is the phasor of the induced electromotive force in the output windings, W2 is the number of

turns of output windings, and ∆
.
φ is the alternating net magnetic flux of each output pole. Therefore,
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from Equation (1), it is seen that the output voltage is positively proportional to ∆
.
φ. Consequently,

the output voltage is positively proportional to the angular displacement of the rotor from its null
position α and thus realizes the measurement of the small angle. Meanwhile, a reversal of the
direction of the rotor displacement from the null position will cause a reversal in the polarity of the
output voltage.

2.2. The Equivalent Magnetic Resistance and Equivalent Magnetoreactance of a Short-Circuit Ring of Rotors

Based on the working principle of the small-angle transducer, induced eddy currents are generated
on the short-circuit ring of the rotor, which consequently generates an obstruction to the main magnetic
flux flowing in the short-circuit ring. As shown in Figure 3, the short-circuit ring can be regarded as a
single-turn short-cut coil of secondary winding. Therefore, the obstruction to the main magnetic flux
can be regarded as the equivalent magnetic resistance and magnetoreactance of the short-circuit ring
in the magnetic circuit of the small-angle transducer. Since the coil is a single-turn, the leakage flux of
short-cut coil can be ignored, so that we can obtain Equations (2)–(5):

.
I1W1 +

.
IcWc =

.
φd · G0 (2)

.
Ec =

.
Icrc (3)

.
Icrc = −jωWc

.
φd (4)

.
I1W1 =

.
φd

(
G0 + j

ωW2
c

rc

)
(5)

where,
.
I1 is excitation current,

.
Ic is short-cut current in the short-circuit ring, W1 is the number of turns

of excitation windings,
.
Ec is the induced electromotive force in the short-cut coil, Wc is the number

of turns of the short-circuit ring (Wc = 1) and G0 is the magnetic resistance of the air gap. Therefore,
from Equation (5), the equivalent magnetic resistance of the rotor is equal to zero, and the equivalent

magnetoreactance of the rotor is equal to
ω

rc
, where rc is the electrical resistance of one short-circuit

ring on the rotor and can be acquired by the dimensions and material of the rotor.
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2.3. Theoretical Model of Output Characteristics

Based on the distribution of magnetic flux (Figure 2), we can assume that the magnetic flux flowing
through the output poles has two parts flowing in and out; therefore, to perform an in-depth analysis
on the magnetic circuit containing the flux, each output pole is divided into two sections from the
center. The magnetic flux flows in one section and flows out of the other section. In the zero position,
the two magnetic fluxes flowing in and out are in an equal and opposite direction. Consequently,
the output voltage in the output windings is zero. Due to the function of the short-circuit ring of
the rotor, when the rotor rotates clockwise at an angle of α away from the zero position, the net
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magnetic flux in the output pole is no longer zero; therefore, the differential flux ∆
.
φ results from the

flux imbalance caused by the displacement from the zero position. Figure 4 shows the equivalent
electric and magnetic circuits when the rotor rotates clockwise at an angle of α away from the zero
position. By building the electric circuit of the transducer, we can obtain Equations (6)–(8):

.
U1 =

.
I1r1 −

.
E1 (6)

−
.
E2 =

.
I2r2 +

.
U2 (7)

.
U2 =

.
I2 ·

R2

1 + jωC2 · R2
(8)

where
.

U1 and
.

U2 denote the AC excitation voltage and output voltage, respectively, where
.

U1 =

U1m sin ωt, and U1m is the amplitude of the excitation voltage. f is the excitation frequency ( f =
ω

2π
),

and
.
I1 and

.
I2 denote the current in the excitation windings and output windings, respectively.

.
E1 and

.
E2 denote induced electromotive force in the excitation and output windings, respectively. r1 and r2

denote resistance of excitation and output windings, respectively. R2 is the load resistance, and C2 is
the load capacitance. By building the magnetic circuit of the transducer,

.
φd and ∆

.
φ can be written as

.
φd =

2
.
I1W1(2G0 + jXc)− 2

.
I2W2 j∆X

4G02 + 4G0 jXc − Xc2 + ∆X2 (9)

∆
.
φ =

−2
.
I2W2(2G0 + jXc)− 2

.
I1W1 j∆X

4G02 + 4jXcG0 + ∆X2 − Xc2 (10)

where, G0 =
ln (r + δ)/r

µ0hθ
is the magnetoresistance of the air gap under the single magnetic pole, where r

is the diameter of the inner stator, δ is the length of the air gap, h is the thickness of the outer stator,
θ is the angular width (in radians) of the magnetic pole and µ0 is the permeability of the vacuum
(µ0 = 4π × 10−7 H/m). When the structural parameters are confirmed, G0 is a constant. Xc is

the magnetic resistance of the rotor in the zero position (Xc =
ω

rc
), and ∆X is the change in the

magnetoreactance of the rotor, when the rotor rotates clockwise at an angle of α away from the zero
position. W1 and W2 denote the turns of excitation windings and output windings, respectively.

Since
.
I1 �

.
I2, from Equations (9) and (10),

∆X =

(
−jG0 +

1
2

Xc

)
· sin 2α (11)

According to Equations (6)–(11) and the law of electromagnetic induction,
.

U2 can be written as

.
U2 = −2jωW2∆

.
φ =

−4jωW1W2Z1
.

U1R2

(
G0 −

1
2

jXc

)
sin 2α

Z1Z3[r2(1 + jωC2R2) + R2] + 4jωW22Z3Z2(1 + jωC2R2)
(12)

When the angle of rotation α is small, Equation (12) can be written as

.
U2 =

−8jωW1W2Z1
.

U1R2

(
G0 −

1
2

jXc

)
α

Z1Z3[r2(1 + jωC2R2) + R2] + 4jωW22Z3Z2(1 + jωC2R2)
(13)

Here, Z1 = 4G0
2 + 4jXcG0 − Xc

2, Z2 = 2G0 + jXc and Z3 = Z1r1 + 4jωW2
1 Z2. Equations

(12) and (13) are complex number expressions and comprise real and imaginary components.
From Equation (13), it follows that the output voltage

.
U2 is positively proportional to the angle
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of rotation α and excitation voltage amplitude U1m in the scope of a small angle. Therefore, there is a
linear relationship between the output voltage

.
U2 and angle α. Moreover, the output voltage

.
U2 can

be given by structural parameters and electromagnetic parameters, as shown in Table 1.
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Figure 4. The equivalent electric and magnetic circuits when the rotor rotates clockwise at an angle of
α away from the zero position.

Table 1. The parameters in the simulation.

Structural Parameters Electromechanical Parameters

α 1◦ U1m (V) 8.48
r (mm) 26 f (Hz) 7000
δ (mm) 2.3 r1 (Ω) 45
h (mm) 5 r2 (Ω) 240
θ (rad) 0.21 C2 (µF) 0.022

W1 200 R2 (KΩ) 10
W2 560 rc (Ω) 1

The result of the real and imaginary components obtained by numerical calculation is shown
in Figure 5a, and the curves of the output voltage for the simulation and theoretical models are
contrasted in Figure 5b. The fact that the stable curves overlap identically confirms the validity of the
theoretical model.
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3. Simulation

Based on the above theoretical analysis, we can conclude that the output voltage is related to the
parameters shown in Table 1. To verify the theoretical model, simulations were carried out over a
range of angles of rotation. In addition, the application of the transducer required the dimensions to
be in mm. The value of the parameters used in the simulation and theoretical calculation are shown
in Table 1.

The ANSYS Maxwell-3D was used as the simulation tool. It is an interactive software package
that uses the finite element method (FEM) and electromagnetic field theory based on Maxwell’s
equations. It is often used to simulate and solve three-dimensional electromagnetic field problems of
high-precision inertial sensors [20,21]. For transient electromagnetic field, Maxwell’s equations can be
rewritten as 

∇× H = σE

∇× E =
∂B
∂t

∇× B = 0

(14)

where B is the magnetic flux density, H is the magnetic field intensity, E is the electric field density and
σ is the conductivity of the material. First, the magnetic vector potential A (B = ∇× A) is introduced
for simplified calculation. After substitution, by merger and normalization, the discrete equation of all
internal nodes in the computational domain can be deduced. Then, the magnetic flux density B at each
time step at every node in the finite element model is obtained. Finally, by importing the electrical
circuits connected with the windings shown in Figure 6, the variation curves of the output voltage in
the output windings can be obtained.

When the rotor rotates clockwise or counterclockwise away from the zero position, the angle
of rotation value is defined as positive or negative, respectively. Figure 7 shows the curves for the
variation of the output voltage with time when the angle of rotation of the rotor is ±1◦, ±2◦, ±3◦, ±4◦,
±5◦, ±6◦, ±7◦, ±8◦, ±9◦ and ±10◦. The output voltage amplitude increases with the angle of rotation;
however, this trend gradually weakens. In addition, the phases of the curves of the same direction of
rotation as the rotor are identical, and the phase difference between the positive angle and negative
angle is 180◦. Moreover, after a transient period of approximately 300 µs, the stable shape of curves is
a standard sine wave. The transient period of approximately 300 µs can be ignored in real engineering
applications; hence, we can conclude that the small-angle transducer has a very fast response.
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4. Results and Discussion

In this section, to verify the influence of the important parameters in the theoretical model,
simulations were carried out over a range of angles of rotation, amplitudes of excitation voltage,
frequencies of excitation voltage and resistances and capacitances of the load. The linearity and
sensitivity of the output characteristics were first analyzed. Then, the results of the theoretical model
calculation and simulation were analyzed using various curves of the output voltage amplitude.
As a result, by parametric combination, the optimum design was realized.

4.1. Analysis of Linearity and Sensitivity

Linearity and sensitivity are very important parameters in small-angle transducers used in
high-precision inertial sensors; therefore, the angle of rotation was varied in the simulation experiment
to confirm the scope of the angle in which the transducer possesses a high linearity and sensitivity.
As shown in Figure 8a, the variation of the output voltage amplitude U2m with angles of rotation α

ranging from −10◦ to 10◦ in the theoretical model was compared with that of the simulation results.
The curve of the theoretical model was a straight line, and the output voltage amplitude proportionally
increased with the absolute value of the angle of rotation. However, the curve of the simulation was no
longer a straight line when the absolute value of the angle was greater than 4◦. Moreover, the variation
trend of the theoretical model agreed with that of the simulation. Meanwhile, the difference between
the output voltage amplitude obtained from the simulation and theoretical model increased when the
absolute value of the angle of rotation was greater than 4◦. The linear fitting graph of the simulation
data within ±4◦ is shown in Figure 8b. The fitting straight-line and curve of simulation data nearly
overlapped. We were able to deduce that the transducer possessed a very high linearity within ±4◦.
Furthermore, when the angle of rotation was ±1◦, the output voltage amplitude in both the simulation
and theoretical model was about 0.34 V; therefore, the novel small-angle transducer had a very high
linearity within ±4◦ and a high sensitivity (0.34 V/◦).
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4.2. Influence of Parameters on the Amplitude of Output Voltage

Based on the theoretical analysis, we were able to assume that the output voltage amplitude in
the theoretical model was positively proportional to the excitation voltage amplitude. In addition,
we were able to deduce the influence of the main parameters, i.e., amplitude of excitation voltage,
excitation frequency, load resistance and load capacitance, on the output voltage amplitude. Therefore,
a simulation of the trend of the variation of the output voltage amplitude with the excitation voltage
amplitude ranging from 0 V to 14.14 V was first performed.

For both the theoretical model and simulation results, when the angle of rotation was 1◦, the output
voltage amplitude increased with the excitation voltage amplitude, and their curves overlapped
(Figure 9a). Moreover, we were able to obtain the ratio of the output voltage amplitude and the
excitation voltage amplitude was nearly 0.04. To analyze how the output voltage amplitude varied
with the three other parameters, the variations of the output voltage amplitude with excitation
frequency from 1 KHz to 24 KHz, load resistance from 1 KΩ to 140 KΩ and load capacitance from
0.01 µF to 0.06 µF in the theoretical model were compared with those of the simulation result when
the angle of rotation was 1◦. In Figure 9b, with an increase in the excitation frequency, the output
voltage amplitude first increased and then decreased. The curve of the theoretical model reached its
peak at f = 14 KHz, and the curve of simulation reached its peak at f = 10 KHz. When the excitation
frequency was increased to 7 KHz, a larger deviation occurred between the two curves until the
excitation frequency reached 21 KHz.

The trend of the output voltage amplitude variation with the load of the theoretical model
agreed with that of the simulation (Figure 10). In Figure 10a, with the change of the load resistance,
the output voltage amplitude first increased and then tended to be stable from R2 = 10 KΩ. Moreover,
the difference between the voltages of the theoretical model and the simulation was about 0.01 V.
In Figure 10b, with the change of load capacitance the output voltage amplitude first increased and then
decreased. Moreover, the output voltage amplitude was highest at C2 = 0.034µF and C2 = 0.046µF
for the simulation and the theoretical model, respectively. The results of the theoretical model were
largely consistent with those of the simulation; thus, the theoretical model was verified. The reasons
for the deviation were the magnetic saturation of the stator core caused by the excessive excitation
frequency, the asymmetry of magnetic field and the performance of the material.
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4.3. Discussion on the Optimisation of Parameters

From the above analysis, we were able to conclude that the electromagnetic parameters in the
theoretical model influenced the output voltage. Moreover, suitably increasing the excitation frequency
and load impedance improved sensitivity. Taking into account the influence of the above parameters,
the parametric computation for optimal performance was as follows: excitation frequency should be
less than 9 KHz, load resistance should be less than 20 KΩ, and load capacitance should be less than
0.04 µF.

5. Conclusions

This paper presented a novel small-angle transducer used in high-precision inertial sensors and
explored its output characteristics based on theoretical and simulation investigations. The impact
of important electromagnetic parameters including excitation voltage and the load impedance were
explicitly analyzed, which was useful to improve the performance of the transducer and to expand the
scope of its application.

The analysis of this novel transducer demonstrated that it was characterized by a simple structure,
fast response and very low reaction torque. Moreover, a theoretical model of the transducer output
characteristics was designed to reveal the influences of structural and electromagnetic parameters on
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the output voltage, providing a method of quantitative analysis. A simulation experiment was carried
out to verify the effectiveness of the theoretical model. Analysis of the theoretical model revealed that
the transducer possessed a high linearity when the angle of rotation of the rotor was within ±4◦ and
that its sensitivity was approximately 0.34 V/◦. Furthermore, the optimum design was realized by
parametric combination and the results indicated that the load resistance should be less than 20 KΩ
and that the transducer sensitivity could be improved by suitably increasing excitation frequency and
load capacitance.

In the future, we will analyze the temperature characteristics and the stability of the zero position
of the novel small-angle transducer using theoretical and experimental studies. Extensive field
evaluation of the transducer’s performance will also be carried out. Furthermore, further studies
should be carried out on the leakage flux and magnetic saturation that occur in stator cores under real
working conditions.
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