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Abstract: This paper describes the design and calibration of a highly accurate temperature
measurement system for pervasive computing applications. A negative temperature coefficient
(NTC) thermistor with high resistance tolerance is interfaced through a conditioning circuit to a
12-bit digital converter of a wireless microcontroller. The system is calibrated to minimize the
effect of component uncertainties and achieves an accuracy of ±0.03 ◦C on average (±0.05 ◦C
in worst cases) in a 5 ◦C to 45 ◦C range. The calibration process is based on a continuous
temperature sweep, while calibration data are simultaneously logged to reduce the delays and
cost of conventional calibration approaches. An uncertainty analysis is performed to support the
validity of the reported performance results. The described approach for interfacing the thermistor
to the hardware platform can be straightforwardly adjusted for different thermistors, temperature
ranges/accuracy levels/resolutions, and voltage ranges. The low power communication combined
with the energy consumption optimization adopted enable an operation to be autonomic for several
months to years depending on the application’s measurement frequency requirements. The system
cost is approximately $45 USD in components, while its design and compact size allow its integration
with extended monitoring systems in various pervasive computing environments. The system has
been thoroughly tested and validated in a field trial concerning a precision agriculture application
and is currently used in a health monitoring application.

Keywords: wireless sensor; temperature measurement; precision; calibration; ZigBee; pervasive
computing applications; uncertainty analysis

1. Introduction

Pervasive computing represents a new paradigm where the physical world is merged with
the digital world by embedding information and communication technology (ICT) capabilities into
everyday objects and environments. Pervasive computing applications depend on a range of wireless
sensor nodes and networks of sensors that collect and transmit contextual information, such as
environmental and physiological data, to base stations which is crucial in order to provide valuable
services in real-time [1]. In this context, the knowledge of accurate temperature values is significant in
various domains, such as smart buildings [2], medical research [3], smart agriculture [4], and industrial
processes [5]. Accurate and continuous temperature measurement is considered critical in the food
industry to certify safe products of the highest quality [6]. This is because, with the support of
an accurate temperature monitoring system, many of the thermobacterium germs that develop in
food (e.g., meat and poultry) can be eradicated [7], or diseases can be detected early [8]. Likewise,
monitoring body temperature variations for long periods of time can provide valuable information on
human health conditions. For example, body temperature variability is associated with certain kinds
of insomnia [9], cognitive operations [10], and circadian rhythm detection [11].
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Currently, there is an increasing number of applications in the fields mentioned above where
even slight temperature changes at the level of a few tens of milliKelvin need to be captured either to
dynamically update domain knowledge models supporting precise decision-making functionality or to
avoid unacceptable errors [12]. In precision agriculture, for example, temperature measurements with
uncertainties at the level of 0.05 ◦C are required to analyze collected data with machine learning
algorithms that search for accurate domain knowledge in order to optimize resource usage [4].
Biomedical research based on the remote monitoring of patients to gather clinically useful information
requires a similar level of accuracy for the continuous monitoring of slight variations in skin
temperature to enable an instant quantitative evaluation of tissue thermal conductivity. This is
associated with accurate determination of skin hydration as well as with the characterization of
vasoconstriction and vasodilation operations [13]. Environmental research in terms of observatory
networks for the study of physical and biological processes by combining forecasting models and
remotely sensed data requires a level of accuracy of up to 0.01 ◦C in fields like marine environmental
research [14] and oceanographic research [15]. Also, specific industrial applications in precision
manufacturing require similar levels of accuracy [16]. Optical systems, for example, can suffer from
thermal deformations, even with slight changes in temperature, that can result in intolerable errors
in their pointing accuracy. Time measurement can be also affected by tiny temperature changes with
unacceptable drift for reference clocks.

Continuous, accurate temperature measurement is challenging when performed in everyday
environments. A wireless temperature sensor for pervasive computing applications has a number of
requirements that must be fulfilled:

• autonomy;
• network scalability (some applications may require large number of nodes);
• diagnostics (a logic that identifies that a sensor may not be working well);
• small size;
• low power;
• high resolution;
• high accuracy, sometimes precision is enough especially if the relative temperature is required

and not the absolute value;
• possibility for being wearable;
• withstanding harsh environments (e.g., in agriculture).

The development of wireless sensors has been the target of both the research and industrial
communities in recent years. In the next paragraphs, we discuss related work on systems that
accurately measure temperature signals with characteristics similar to the proposed work.

A high precision temperature measurement system based on a thermocouple sensor is described
in [17]. The sensor is connected to an 8-bit microcontroller to correct temperature online using a ninth
order polynomial with standard coefficients and a reference junction compensation measured with a
pre-calibrated temperature to digital converter. The accuracy achieved after calibration is ±0.08 ◦C,
meeting industrial applications requirements. However, the communication with the back-end system
is not performed wirelessly but serially (RS-232C). The design of a wireless temperature sensor required
to achieve low drift and thus, high stability over long time periods (5 mK/year), again in industrial
environments, is reported in [18]. A negative temperature coefficient (NTC) thermistor is interfaced
through a bridge circuit to a microcontroller, Bluetooth communication is used; however, a medium
accuracy level of 0.1 ◦C over a 15–30 ◦C range is reported.

In the agricultural domain, temperature measurement is an indispensable part of portable
monitoring systems, and measurements are provided either via general purpose weather stations or
through specifically developed systems using off-the-shelf components [19]. An example of a low-cost
wireless temperature measurement system developed to monitor all stages of winery production,
from the vineyard to the bottle, is reported in [20]. An off-the-shelf digital thermometer is interfaced to
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a ZigBee node. After calibration, the accuracy of the system is reported to be 0.4–0.8 ◦C depending on
the media measured (ambient or liquid).

In the medical domain, a portable device with two thermistor channels for measuring body
temperature is reported in [21]. The device is intended for clinical practice use, achieving a resolution
of 0.01 ◦C, an accuracy of ±0.2 ◦C, and an operation autonomy of up to 10 days using a measurement
frequency of 0.02 Hz. Bluetooth communication is used for data downloading. Accuracy is achieved
by using standard calibration curves and high precision resistors. A passive Radio-Frequency
Identification (RFID) temperature sensor optimized for ultra-low power consumption using 0.35 µm
Complementary Metal–Oxide–Semiconductor (CMOS) technology is proposed in [22]. The sensor
communicates with a reader over a distance of 2 m to transmit the measurements with a resolution of
0.035 ◦C and an accuracy of ±0.1 ◦C over a 35–45 ◦C range which makes it appropriate for human
body temperature monitoring.

Another wireless temperature sensor category is the chipless sensor which is based on
passive tags that do not contain any semiconductor technology or power source but rely on
radio-frequency backscattering techniques to transmit the temperature data over relatively short
distances. These antenna/resonator temperature sensors are classified as semi-invasive sensors and
are placed at the area of interest, but the transmitted measurements are acquired remotely. The sensor
tag may consist of a ceramic, dielectric resonator placed on a metal sheet, as in [23]. Since the dielectric
resonator permittivity depends on the temperature, the resonant frequency emitted by the tag encodes
the temperature value. In a different approach, the sensor node consists of a microstrip patch antenna
serving as the temperature sensing unit, while an ultra-wide band (UWB) transmitting/receiving
antenna with a Reactive Impedance Surface ground plane transmits the data [24]. Such sensors are
used especially for control and monitoring processes in harsh conditions and high temperatures where
silicon-based sensors cannot operate [25]. Their accuracy may range from ±0.1 ◦C to ±1.5 ◦C [23,26].

The non-linearity characteristic of certain types of temperature sensors presents a challenge for
achieving accurate measurements. Besides the typical use of look up tables and on-line linearization,
the use of more complex methods such as artificial neural networks has been applied to alleviate this
problem [27]; however, such solutions may be difficult to implement considering the limited resources
(battery power, processing speed, and memory capacity) of typical wireless nodes and the long lifetime
operation expected by the foreseen applications. Instead, we propose a systematic calibration process
of the measured signal.

From the above discussion, a conclusion that is drawn is that either the proposed systems are
accurate but not portable, or the solution may be wireless but the accuracy is medium. In this paper,
the design and calibration of a highly accurate (±0.03 ◦C on average) and low cost temperature
measurement system is described which can be exploited in various pervasive computing application
domains with precise measuring requirements in a 5–45 ◦C range. A low cost, thermistor-based sensing
system is interfaced to a microcontroller which employs the ZigBee protocol for data transmission.
The low power communication combined with the energy consumption optimization adopted in the
measuring system enable operation autonomy for several months to years using measurement rates
ranging from 0.0033 Hz (agriculture domain) to 1 Hz (medical domain).

A considerable focus of this work was the calibration of the measuring system. A conventional
thermometer calibration process is a time consuming and expensive task since it requires both the
reference thermometer and the tested device to be at precisely the same temperature in order to achieve
thermal equilibrium before data recording. This has to be repeated for several temperatures for a given
measurement range, resulting in a total required time between several hours (1–2 h per temperature
step) in oil-based bath systems to more than a day in oven-based calibration systems. The advantage is
that the uncertainties of the calibration process are minimized and an accuracy level of 1 mK can be
delivered using purpose-built calibration systems [28].

Since the targeted applications and design constraints of the proposed measurement system
cannot afford the time and cost of conventional calibration methods, we follow a different calibration
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process in a tradeoff between cost and accuracy. This process is based on a continuous temperature
sweep while calibration data are simultaneously logged, requiring about three hours to complete
without depending on specialized equipment. To support the validity of the reported performance
results, an uncertainty analysis is implemented concerning both the design stage and calibration
stage of the measurement system. In this context, we attempt also to experimentally justify that the
uncertainties of the temperature sweep calibration in terms of the thermal delays between the reference
device and the characterized sensors are affordable for the targeted accuracy.

2. Materials and Methods

2.1. Background

Temperature measurement is based on various sensor types [29]. These are broadly categorized
as contact and non-contact sensors. The former require physical contact with the entity to infer its
temperature when the system is in thermal equilibrium, i.e., there is no heat flow between the sensor
and the entity. Thermistors, thermocouples, resistance temperature devices (RTD), and silicon-based
sensors (e.g., bipolar junction transistor sensors) are commonly used as contact sensors. The majority
of non-contact sensors measure the infrared thermal radiant power emitted by an entity and the
surrounding surface. Infrared thermometers lead this category with two main subdivisions, spot and
area-measuring thermometers. Table 1 shows typical characteristics of the most common temperature
sensors, although other electric devices (e.g., thermopiles and piezoelectric temperature sensors) and
non-electric devices (e.g., bimetallic, chemical molecular change, and fluid expansion) exist [30].

For the kind of application we are interested in supporting, a thermistor-based thermometer is
most appropriate due to its low cost, high sensitivity and thermal conduction, low thermal mass,
and small size which allows for unobtrusive solutions. Thermistors have a typical accuracy level of
±0.1 ◦C; however, their non-linearity, expressed by Equations (1) and (2) (where parameters B and R0

are known from the sensor data sheets and T0 is a reference temperature, typically 25 ◦C/298.15 K),
presents a challenge when seeking highly accurate solutions. Parameters T, T0, and B are expressed in
Kelvin units. The approach developed to overcome this problem is explained next.

T =
B

ln
(

Rth
R∞

) (1)

R∞ = R0·e
−B
T0 (2)

2.2. Temperature Measurement System Design

Our measurement system uses an NTC thermistor (model MF51E103E3950 by Cantherm,
Montreal, QC, Canada) with a nominal resistance of 10 kΩ at 25 ◦C (±0.5% resistance tolerance).
A measurement takes 10 ms, and the results are the average of 50 ADC readings (5 kHz ADC sampling
frequency). Table 2 summarizes the main technical characteristics of the thermistor. Excess current
flowing through the thermistor will cause self-heating and will result in a difference in the temperature
reading. The temperature variance is related to the dissipation constant (e.g., when the heat of the
component is one tenth/hundredth of the dissipation constant, the temperature difference will be
0.1/0.01 ◦C).
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Table 1. Characteristics of temperature sensor types.

Characteristic Thermistor Thermocouple RTD Silicon IR Thermometer

Range −100 to 300 ◦C −270 to 2300 ◦C −200 to 850 ◦C −45 to 125 ◦C −40 to 3000 ◦C
Signal Output Resistance Voltage Resistance Resistance Voltage

Linearity Poor Moderate Best Best Moderate
Accuracy Moderate (0.1 to 1.5 ◦C) Low (0.5 to 5 ◦C) High (0.03 to 1 ◦C) Moderate (0.5 to 2 ◦C) Low (±2 ◦C)
Sensitivity Best Low Moderate High Moderate

Size (diameter) 0.4 to 2.5 mm 0.5 to 8 mm 3.17 to 6.35 mm 0.8 to 1 mm Non-contact
Response Time Moderate (0.1 to 10 s) Moderate (0.1 to 10 s) Slow (1 to 50 s) Slow (5 to 50 s) Fast (0.1 to 1 s)

Sensor/System Cost Low/Moderate Low/moderate Moderate/high Low/moderate High/high

Advantages
High sensitivity; Small

size; Copper/nickel wires;
Low cost.

Self-powered; rugged;
wide temperature range;
interchangeable; no lead
wire resistance problems.

Accuracy and stability;
High repeatability;

Interchangeable;
Corrosion resistant.

Linearity and sensitivity;
Low weight; very long
operation life; energy

efficiency.

No contact required; fast
response; good stability;

repeatability; no oxidation
impact.

Disadvantages

Non-linear; Limited range;
Self-heating; Current

source required; Fragile;
Specs and calibration vary
by manufacturer; Lock-in
due to lack of standards.

Non-linear; low output
voltage; reference junction

compensation required;
lower accuracy; wire

shielding is required; least
sensitivity and stability.

High cost; slow response;
low sensitivity; current
source required; fragile.

Limited temperature range;
highly non-linear at

low/high temperatures;
limited sizes; slow response

time

High cost; complex
electronics; view size

restrictions; accuracy affected
by object emissivity and

background “noise” (smoke,
dust, radiation).
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The NTC thermistor is interfaced through a conditioning circuit to the analog-to-digital converter
(ADC) module of Tyndall motes available in 25 mm and 10 mm form factors (Figure 1) [32].
Our hardware platform offers a 2.5 V reference voltage (Vref) which is obtained through a voltage
divider (not shown in the circuit schematic) from the supply voltage that determines the maximum
input voltage to the 12-bit ADC module. This makes the ADC count dependent only on the resistance
values and eliminates any dependency on the tolerance of the ADC voltage reference. In this context,
typically, three steps are involved to measure temperature values: (i) the ADC component measures
the output voltage (Vout) given by the thermistor interfacing circuit; (ii) the thermistor resistance (Rth)
is calculated as a function of the ADC value (Count); and (iii) the temperature is calculated by means
of Equation (1). Table 3 gives the corresponding ADC values for indicative temperature values in the
application range and related parameters in the conditioning circuit.

Table 2. Thermistor specifications [31].

Dimensions B Value (R25/50 ◦C) Rated
Power

Dissipation
Constant

Thermal
Time ConstantLead Wire Nominal Tolerance

1.6 × 4 mm 0.2 mm 3950 K ±0.5% 3.5 mW ≥0.7 mW/◦C ≤3.2 s
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Table 3. Temperature values mapped to ADC values and related circuit parameters.

T (◦C) Rth (KΩ) Vth (mV) Vout (mV) Count

5 25.57 1178 2407 3943
5.58 25.17 1168 2380 3899
10 20 1027 1996 3270

15.3 15.61 881 1600 2621
20.38 12.32 751 1247 2043

25 10 646 963 1577
30.3 7.93 541 679 1112

35.98 6.25 447 422 691
40.64 5.17 381 244 400

44 4.52 340 133 217
45 4.356 329 103 169

T is the temperature; Rth is the thermistor resistance; Vth is the thermistor voltage; Vout is the output voltage given
by the thermistor interfacing circuit.

A high tolerance (0.1% tolerance) pullup resistor R1 is used in order to adjust the current that
passes through the thermistor. This allows the self-heating of the thermistor to be controlled which
affects the accuracy of the measurement. The temperature rise caused by self-heating represents a
measurement error and this requires the dissipation constant of the thermistor to be examined. Given
that we want an accuracy of at least 0.05 ◦C, the allowable dissipation would be 0.05 mW, but instead,
by adding a safe margin to compensate for other errors and uncertainties in the system, we use
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0.025 mW as the maximum allowable self-heating dissipation over the measurement temperature
range. Given this bound and that we want to measure temperatures in the range of 5–45 ◦C using
a 2.5 V voltage, the R1 resistor is calculated as follows. The thermistor resistance (from the data
sheet) at 45 ◦C is 4356 Ω. A thermistor dissipation of 0.025 mW will result in a voltage drop over the
sensor of 330 mV at 4356 Ω since V = Sqrt(dissipation × Resistor), and a current flowing of 75.75 µA.
Consequently, the voltage drop across R1 will be 2.17 V and the minimum required resistance will be
28.7 KΩ (the nearest 0.1% value).

The conditioning circuit includes also a resistor network (R2, R3, R4) combined with an operational
amplifier of high precision to scale and shift the thermistor voltage signal (Vth). This allows for proper
mapping of the Rth range of interest (4.356 KΩ to 25.57 KΩ) to the microcontroller ADC voltage range
(0 V to 2.5 V). It is necessary to scale the Vth signal to get the required resolution. From the first and last
rows in Table 3, we can see that the higher and lower Vth values are 1178 mV and 329 mV, respectively.
The Count for an output voltage (Vout) in the measurement system is Vout/Vref × 4096. So, the top
and bottom counts (without scaling) are 1930 and 539, respectively. This means that for the range of
temperatures we want to measure, there are 35 ADC counts [(1930 − 539)/(45 − 5)] per degree, which
is less than the resolution we require (50 ADC counts for a 0.02 resolution)

The operational amplifier (op-amp) in the circuit provides the gain and the offset so that the
output voltage matches the capabilities of the ADC module. Given that the op-amp is operating in
the linear range (V+ = V−), the transfer function of the circuit is as described by Equations (3) and (4).
By combining them and given that Vout/Vref = Count/4096, a relationship between Rth and the digital
ADC output is obtained, as described by Equation (5):

Vout = Vth·
(

1 +
R3
R4

+
R3
R2

)
−Vre f

R3
R2

(3)

Vth =
Vre f ·Rth

Rth + R1
(4)

Rth =
R1·Count

4096 + R1·R3
R2

1 + R3
R4 −

Count
4096

(5)

To select the appropriate values for R2, R3, and R4, the gain and the offset of the op-amp need to be
calculated. First, the mapping of the temperature range of interest were designed to be between 0.1 V
and 2.4 V at the ADC input, giving a little margin to compensate for system uncertainties. The higher
and lower Vth values were 1178 mV and 329 mV, respectively, which gave a ∆Vth of 848 mV. The top
and bottom ADC values (after scaling) were 3943 and 169, respectively (Table 3). This corresponds to
94 ADC counts per degree, satisfying our resolution requirements. Given that we designed the circuit
so that the ∆Vth swing of the thermistor output voltage is mapped into a swing of 2.3 V, this gave a
gain of 2300/848 or 2.71. The offset can be found by subtracting the scaled higher or lower Vth value
(i.e., 1178 × 2.71 = 3192 mV) from the corresponding required voltage (i.e., 2400 mV). So, we calculated
an offset of 792 mV or 0.79 V. By choosing R3 = 10 KΩ, we solved the equation system for the other two
resistors, getting R2 = 31.52 KΩ and R4 = 7.18 KΩ (the nearest 0.1% standard values will be 31.6 KΩ
and 7.15 KΩ, respectively).

Now, we can confirm that our measurement system offers the proper resolution for the designed
temperature range. For NTC thermistors, the worst cases occur at higher temperatures. Using Table 3,
we the sensitivity of the sensor is shown to be−30 mV/◦C between 44 ◦C and 45 ◦C. Since the required
temperature resolution was 0.02, the ADC voltage resolution needed to be at least 0.6 mV. The 12-bit
ADC module of the Tyndall mote conveniently offers a resolution of 2.5/4096 = 0.6 mV.

2.3. Calibration

Equations (1) and (5) provide a complete model for temperature measurements from ADC outputs
using the circuit in Figure 1c. However, the temperature accuracy depends on the tolerance of the
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circuit components and the thermistor’s B value given by the manufacturer. Therefore, the measuring
system was calibrated to minimize the effect of element uncertainties and get highly accurate results.
Equation (5) was rewritten as shown in Equation (6), where ω = Count/4096, K = R1, L = R1·R3/R2,
and M = 1 + R3/R4. Moreover, Equation (6) was combined with Equation (1) to get the formula shown
in Equation (7), where K′ = K/R∞ and L′ = L/R∞:

Rth =
K·ω + L
M−ω

(6)

e
B
T =

K′·ω + L′

M−ω
(7)

Equation (7) is the calibration equation which relates the digital ADC value to the temperature.
The main goal of the calibration process is to obtain a set of T and ω values that allows the calibration
parameters K′, L′, and M to be computed. The advantage of this approach is that the entire circuit
(sensor, resistors, op-amp, ADC) can be calibrated as a unit.

For the calibration process, we used a Tinsley 5885 high precision reference thermometer (0.001 ◦C
resolution, ±0.01 ◦C accuracy, Tinsley, Essex, UK). We placed the thermometer and the thermistor
in an insulated pot filled with water. The water was heated to reach a temperature of about 45 ◦C
and then it cooled naturally while measurements are taken. Afterwards, the water was cooled to
reach a temperature of about 5 ◦C and then it warmed naturally while measurements were taken.
This process took more than 3 h as the temperature dropped by 0.01 ◦C every 3 s, and during this
interval, the reference thermometer (Ti) and the ADC (ωi) values were logged on a file, where each
ωi entry was calculated by averaging 50 successive ADC readings. The file with the collected data
was loaded to Matlab, and Equation (7) was used to fit the calibration data and finally, compute
the unknown parameters using the least squares technique. The calibration values obtained were
K = 1,627,697.417, L = 515,094.119, and M = 2.398. After plugging the calibration parameters into
Equation (7), we were able to compute temperature values with high accuracy given an ADC value.

Figure 2a shows the accuracy of the measurement system in absolute values. Without calibration
we obtained an average error of ±0.26 ◦C for the temperature range of interest. In this case,
Equations (1) and (5) as well as the parameters from the sensor data sheet were used to compute
the temperature. The design of our circuit and the tight tolerance of the components used were
shown to allow for a satisfactory accuracy level. When calibration was used, the average error
was ±0.03 ◦C. In this case, Equation (7) and the computed calibration parameters were used to
estimate the temperature. Calibration was shown to improve the temperature accuracy by, on average,
approximately 9-fold. For comparison, the average error in cases where a linear approximation was
used was ±1.2 ◦C.
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As part of the calibration process, we also performed an analysis regarding the estimation of
the number of samples required in order to reduce random noise during temperature measurements.
For a specific temperature, the number of ADC samples was taken repeatedly and for each cycle,
the average was computed as in the calibration process. The temperature value, as given by the
calibration model (Equation (7)), was also computed in each cycle. The average temperature value
was then compared to the real temperature which was given by the reference thermometer and the
accuracy of the measurement was computed and recorded. Figure 2b illustrates the results of this
analysis graphically. Using this information, the number of samples according to the requirements of
an application can be chosen. Usually, there will be a tradeoff between the measurement accuracy and
the energy efficiency. It is evident that in order to get an accuracy level of ±0.05 ◦C, 50 samples must
be taken.

2.4. Uncertainty Analysis

Uncertainty in measurement is defined as the estimated probable deviation of a measurement
result from its real value. The uncertainty of a measurement system is calculated by combining the
uncertainties of its individual components using statistical methods. The two methods typically used
are the combined standard uncertainty and the expanded uncertainty. The standard uncertainty
is based on the uncertainty propagation law known as the root-sum-of-squares. The expanded
uncertainty results from standard uncertainty via multiplication by a factor k which may be 2 or 3.

The standard uncertainty evaluation of the various components can be either Type A or Type B [33].
The former refers to a statistical analysis of observations (e.g., a series of measurements) whereas
the latter refers to statistical measures (e.g., standard deviations from probability distributions) that
are evaluated based on experience or other information about the measurement. For the uncertainty
evaluation, a normal distribution (divisor 1) may be assumed when a probability distribution is formed
via repeated measurements or when uncertainty reporting (e.g., given by device manufacturers,
calibration certificates, etc.) is accompanied by the corresponding coverage factor. When there is no
specific knowledge about the source of values, a rectangular probability distribution (divisor √3) is
assumed where the values have an equal probability of lying within the stated interval [33].

2.4.1. Design-Stage Uncertainty Evaluation

A zero-order uncertainty analysis combining Type A and B evaluations was conducted for
the designed temperature measurement system to determine the combined standard measurement
uncertainty using the root-sum-of-squares method. All the component uncertainties analyzed were
assumed to be associated with independent variables of the measurement model (Equation (1) to
Equation (7)) and parameters of the essential hardware. A first-order Taylor series approximation of
the measurement model was used to compute the combined uncertainty related to the propagation
of uncertainty law [33]. In general, if y = f (x1, x2, . . . , xn) is the measurement model of quantity y
depending on n independent variables (x1, x2, . . . , xn), then the standard uncertainty of y is obtained by
combining the standard uncertainties of the input estimates (ux1, ux2, . . . , uxn), as given by Equation (8),
where the partial derivatives ∂ f /∂xi provide a sensitivity index related to the uncertainty of variable xi:

u2
y =

N

∑
i=1

(
∂ f
∂xi

)2
u2

xi
(8)

The main variables required to compute Rth (Equation (5)) are a voltage measurement by the
ADC component (Count) and four resistor values (R1, R2, R3, R4) which are treated as variables in the
domain of their nominal value variance. Therefore, the standard uncertainty related to these variables
is either calculated or is taken from the manufacturers’ datasheets and propagated through Equation (1)
to evaluate the combined standard uncertainty associated with the temperature measurement T.
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For the voltage measurement by the ADC component, both Type A and Type B evaluations were
used to determine the uncertainty (Table 4).

Table 4. Combined standard uncertainty for voltage measurement by the ADC component.

Source Value (V) Type Probability Distribution Standard Uncertainty (V)

Quantization error a 3 × 10−4 B Rectangular 1.7 × 10−4

Signal to distortion ratio b 2 × 10−4 B Rectangular 1.2 × 10−4

Repeatability c 1.5 × 10−4 A Normal 1.5 × 10−4

Combined standard uncertainty, uCount 2.5 × 10−4

a ±0.5 LSB (least significant bit) Analog Devices AD7490 12-bit ADC resolution 0.6 mV BL−1; b 74 dB; c experimental
standard deviation of the mean of 30 independent measurements of five constant voltages.

The combined standard uncertainty of the Rth measurement is given by Equation (9), taking into
account the uncertainties of the involved variables. A rectangular distribution was assigned to the
tolerance of the resistors since the manufacturers’ specification limits were used as the uncertainty and
these limits could not be traced from additional information [33].

u2
Rth

=

(
∂Rth

∂Count
uCount

)2
+

4

∑
i=1

(
∂Rth
∂Ri

uRi

)2
(9)

where uRi = standard uncertainty of resistor Ri (±0.1% resistor tolerance; normal distribution).
The open loop voltage gain (AOL) and the common-mode rejection ratio (CMRR) of the op-amp in

the conditioning circuit may be the sources of gain errors in the measurement. Equation (10) gives the
uncertainty of the op-amp due to AOL and CMRR [34]:

uOA = 2
(

1
|CMRR| +

1
|AOL|

)
+

R
Zc

(10)

where Zc is the input impedance of the op-amp and R is the resistor value in the circuit model.
For the TI OPA277 component with AOL = 2 × 106 (126 dB; minimum value), CMRR = 3.2 × 106

(130 dB; minimum value), Zc = 250 GΩ (typical value), and R = 10 KΩ; the obtained value is uOA =
1.7 × 10−6. Given such a low value, we excluded this component from the following uncertainty analysis.

The combined standard uncertainty of the thermistor temperature measurement (Equation (11))
depends on the propagated uncertainty of the Rth measurement and the tolerance of the sensor
provided by the manufacturer.

u2
T =

(
∂T

∂Rth
uRth

)2
+

(
∂T
∂R0

usensor,R0

)2
+

(
∂T
∂B

usensor,B

)2
(11)

where usensor is the standard uncertainty of the sensor (±0.5% resistance tolerance; normal distribution,
±0.5% B value tolerance; normal distribution).

By using Equation (11), the uncertainty of the temperature measurement system before calibration
can be estimated based on uncertainties in component nominal values assessed through error
propagation. Figure 3 shows the absolute and relative combined standard uncertainties related
to the temperature measurement system. Figure 3a shows the total measurement uncertainty, taking
into account all component uncertainties. Figure 3b shows the uncertainty of the conditioning circuit
components excluding the sensor tolerance. The sensitivity analysis showed that, on average, the sensor
tolerance contributes the most to the combined standard uncertainty (~70% or 0.16 ◦C), the resistor
network contributes ~26.5% or 0.06 ◦C; and last is the ADC count (~3.5% or 0.008 ◦C). Since the
sensor uncertainty dominates the relative contribution to uT , the almost solid, absolute uT is sensible.
The figures indicate that systematic errors exist which can be removed with appropriate calibration.
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Figure 3. (a) Absolute and relative uncertainty estimation for temperature measurement based on
system design and uncertainties of component nominal values; (b) uncertainty of the conditioning
circuit components excluding the sensor tolerance.

The actual average error of 0.26 ◦C in temperature measurement without calibration was shown
to be slightly different to the estimated 0.23 ◦C by the uncertainty analysis. This difference can be
attributed to other uncertainty sources such as the thermal noise from the resistors, measurement noise
and the impact of equilibrium state which either were not considered or considered to be negligible in
this analysis. If we had considered a rectangular distribution for the resistor and sensor tolerances,
a choice that could have been justified by the fact that the provided uncertainties of nominal values
have not been supported by coverage factors, then the estimated uncertainty would have been lowered
to an average value of 0.13 ◦C, providing a larger margin for undercover uncertainties.

2.4.2. Calibration Stage Uncertainty Evaluation

Thermistor calibration uncertainties are typically evaluated by following the instructions released
by the International Committee for Weights and Measures in a guide that compiles the typical sources
of uncertainty for thermometers based on NTC thermistors [35]. Based on the calibration process
described in Section 2.3, the calibration-stage measurement uncertainty can be separated into two key
parts: temperature measurement uncertainties and ADC count measurement uncertainties. The latter
represents the standard uncertainty for voltage measurement by the ADC component which has been
already discussed in the previous section in terms of the data given in Table 5. The temperature
measurement uncertainties are associated with temperature readings by the reference thermometer
and the continuous temperature sweep process involved. The uncertainty of the calibration model
(Equation (7)) should be also taken into account in the form of the standard deviation of its error [33,36].

The reference thermometer used in the calibration process is a platinum resistance thermometer
calibrated at fixed points with a standard uncertainty of 10 mK. Regarding the uncertainties of the
temperature sweep calibration, an experiment was performed to examine the error margin caused
by the shortage of perfect thermal stability and the temperature difference between the reference
thermometer and the thermistor due to their different positions. Two thermistors calibrated with the
model described previously were placed in a circulator water bath (Grant GD 120, stability ±0.05 ◦C,
uniformity ±0.1 ◦C) for temperature measurement assessment against the reference thermometer.
The thermistors and the reference thermometer were assessed at 5 temperature steps (5 ◦C, 15 ◦C,
25 ◦C, 35 ◦C, and 45 ◦C) at which measurements were taken only after the temperature in the water had
balanced to within 25 mK for at least 20 min. The assumption was that if the continuous temperature
sweeping time was adequate relative to the thermistor response time, then the measurement error in
the relaxed steps would be comparable to the ones in the continuous temperature measurement.

Figure 4 shows the results. The spread of the errors in Figure 4a,b can be seen to have a random
pattern which is a qualitative metric of the accuracy of the calibration model [36]. Apart from this,
it is clear that the measurement errors are comparable and within the same accuracy limits. The step
temperature assessment shows an improvement on the worst case error for both sensors (0.04 ◦C);
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however, the average remains the same (0.03 ◦C). Starting from high temperatures towards the lower
ones, the continuous sweep shows a larger variation in measurement error between the sensors than
the step temperature assessment. This indicates that it would be good practice to start the temperature
sweeping higher than the current starting temperature. There is also a partial shift in the absolute error
value of about 0.01 ◦C between Figure 4a,b which can be attributed to the stability of measurements
in the step mode. However, this is not observed for all temperature values. As a result, the average
error between the two modes of temperature assessment is 0.008 ◦C and its standard deviation is
2.3 × 10−3 ◦C which is considered to be the standard uncertainty of the temperature continuous sweep
process. For the setup examined in this experiment, this error could be considered as being at the level
of thermal noise of the sensors.
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Figure 4. (a) Residual temperature offset of thermistors in the continuous temperature assessment;
(b) residual temperature offset of thermistors in the step temperature assessment; (c) absolute values of
errors between the two modes of temperature assessment.

In order to verify the reproducibility of the results, a second evaluation was applied to the same
sensors. The relative errors obtained were almost exactly the same as those obtained from the first
test. This indicates that the systematic temperature offsets associated with the continuous calibration
are constant.

The self-heating effects of the thermistor were also examined in the uncertainty analysis.
According to [35] the self-heating uncertainty can be estimated by Equation (12), where I is the
sensing current flowing through the thermistor, Rth(Ti) is the thermistor resistance at temperature Ti,
and δ is the dissipation constant of the thermistor:

uth_sel f _heat =
I2·Rth(Ti)

δ
(12)

Given the thermistor specifications in Table 2 (a dissipation constant of 2 mW/◦C was used) and
assuming a constant sensing current of 75.75 µA which results from the circuit design to compensate
for the self-heating effect, we calculated the uncertainty of self-heating.
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Finally, a source of uncertainty in the calibration process is the measurement noise caused by
noise or variability in the measurement readings. This uncertainty was calculated as the experimental
standard deviation of the mean.

In Table 5, the uncertainty budgets are provided for the calibration-stage analysis in the
temperature range 5–45 ◦C. The worst case combined standard uncertainty (k = 1) for the calibration
model presented was estimated to be 1.3 × 10−2 ◦C which is within the error margin assessed by the
system evaluation.

Table 5. Uncertainty budgets for the calibration stage.

Uncertainty Source Type 5 ◦C [◦C] 25 ◦C [◦C] 45 ◦C [◦C]

Reference thermometer calibration B 1 × 10−3 2 × 10−3 5 × 10−3

Self-heating of thermistor B 7.3 × 10−8 2.9 × 10−8 1.2 × 10−8

Calibration model interpolation error a A 8 × 10−3 8 × 10−3 8 × 10−3

Continuous temperature sweep error A 2.3 × 10−3 2.3 × 10−3 2.3 × 10−3

Measurement noise of reference
thermometer A 7.3 × 10−4 7.9 × 10−4 8.1 × 10−4

ADC count measurement A,B 8 × 10−3 8 × 10−3 8 × 10−3

Total combined standard uncertainty 1.2 × 10−2 1.2 × 10−2 1.3 × 10−2

a See estd in Table 8.

2.5. Communication Protocol

The physical and the Medium Access Control (MAC) layers of the communication protocol
employed by the wireless module are based on the IEEE 802.15.4 standard [37]. The upper layers
of the protocol stack implement the ZigBee open specification [38] for the provision of short-range,
low complexity, and low power communication which are appropriate for pervasive computing
applications [39]. The IEEE 802.15.4 standard uses the 2.4 GHz frequency band and specifies a nominal
transfer rate of 250 Kbps, supporting a transmission range from 10 to 100 m.

IEEE 802.15.4 combined with the ZigBee specifies networks with two kinds of devices designated
as reduced functionality devices (RFD) and full functionality devices (FFD). Each device has a 64-bit
IEEE address, even though short (16 bit) addresses can be used to reduce the packet size. In cases with
short addresses, the payload of the packet is up to 114 bytes, whereas the maximum packet size is
127 bytes. A ZigBee network must have a coordinator which is responsible for network configuration,
managing information exchanged in the network, and handling security keys. An FFD can be a
network coordinator or a router. The latter acts as an intermediate, forwarding data between devices.
An RFD is typically an inexpensive device (leaf node) that interacts with the physical world and has
also the capability to interact with an FFD.

ZigBee supports three network topologies: star, mesh, and cluster tree. The star topology is
particularly useful when the leaf nodes are closely clustered and can communicate with a single
coordinator in a single-hop communication. Star configurations enable leaf nodes to implement power
saving schemes and thus, to prolong the network’s lifetime. The mesh topology allows peer-to-peer
interactions between adjacent nodes enabling multi-hop communications. The cluster tree topology is
a combination of the preceding topologies where the root of the tree is allocated to the coordinator and
all the non-leaf nodes are defined as routers which can forward the packets to/from the root.

The MAC layer of IEEE 802.15.4 operates in two different modes: non-beacon mode and beacon
mode. In non-beacon mode, devices use the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) physical layer protocol to access the radio channel; FFDs are always active ready to
receive messages from RFDs, whereas the latter can stay in sleep mode for long periods of time.
In beacon mode, all devices remain in sleep mode and they wake up only when a special packet
(the beacon) is transmitted by the coordinator periodically using a slotted CSMA/CA protocol. The
two operational modes dictate the power source requirements of the coordinator node: battery-source
for beacon mode and mains-source for non-beacon mode.
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The standard allows a maximum number of 10 hops (30 hops in ZigBee Pro release). The beacon
operation mode allows for low energy consumption, even for large scale wireless sensor network
applications, as discussed in [40]. Real-time requirements can be met in star topologies by using
guaranteed time slots in the contention free period of the protocol’s superframe structure, whereas in
mesh topologies, the delay of data transfer is affected by the number of hops. For applications with
data transmitted at 5 min intervals, this may not be a problem; however, for industrial automation with
real-time requirements, the average delays may be intolerable, requiring specialized MAC protocol
solutions [41].

In the applications of our wireless temperature measurement system, the communication is
limited to non-beacon mode and therefore, a star network topology is followed where the coordinator
is mains-powered, while the sensor nodes are battery-powered. Besides simplicity, the star topology
avoids several problems that have been acknowledged in the beacon operation mode, like FFD
clock drifts in mesh and cluster-tree networks, network resynchronization due to the dynamic
presence/absence of cluster nodes, and duty cycle reorganization when the coordinator fails.

2.6. Energy Efficiency

The wireless module contains an 8-bit microcontroller (Atmel ATMega 128L, Microchip
Technology, San Jose, CA, USA) with 128 KB flash memory and a ZigBee transceiver (Chipcon CC2420,
Texas Instruments, Dallas, TX, USA). Table 6 summarizes the typical current consumption of the main
operations of the measuring system. The measurement frequency is configurable depending on the
application’s needs and energy consumption restrictions. Considering a real-time monitoring case
where a node includes one thermistor and a measurement is followed by a transfer—hence, both cycles
are identical—the timestamped data packet transmitted wirelessly to the base station has a size of
21 bytes (6 bytes payload, 9 bytes MAC headers, and 6 bytes PHY headers) which corresponds to a
2.8 bps rate for a measurement cycle of 1 min. Other sensors can be integrated into the wireless module
to measure additional parameters (e.g., humidity, light, air quality, etc.), increasing the data frame only
a few more bytes and keeping the data rate low compared to the transfer rate of IEEE 802.15.4, i.e.,
250 Kbps. This low data rate combined with a random sleep-wake pattern allows for the successful
delivery of packets, even when a large number of motes is used in demanding applications.

Table 6. Current consumption of system operations (in mA).

Transmit Receive Sleep Thermistor

17.4 19.7 0.001 0.08

When communication fails, the system keeps all the measurements in the local memory until
the communication channel is restored. In case of memory overflow, new sensor measurements
are suspended. In cases where the communication channel is temporarily unreliable resulting in
unsuccessful packet transmissions, the interval between retransmission attempts at the application
layer increases using a function that takes into account the number of failures and the measurement
period in order to minimize energy waste.

In order to preserve energy, the wireless nodes enter the sleeping state whenever possible
during their duty cycle. The latter is the ratio of the time to make and send one measurement
to the measurement period. Assuming a measurement cycle of 5 min and averaging 15 samples per
measurement (i.e., duty cycle of 0.07%), Table 7 summarizes the energy consumption for the various
system operations. The receive operation is due to an acknowledgement frame which is required to
consider the transmission successful.

The estimated average energy consumption is modelled by Equation (13):

Eavg = Eawake × DutyCycle + Esleep × (1 − DutyCycle) (13)
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where Eawake and Esleep denote the energy consumption during the active and sleep states, respectively.
Given a scenario with an average energy consumption of 0.196 mW/0.157 mJ (Table 7), then an
autonomous operation lifetime of 3 years is feasible if a 3.3 V Li-ion battery is used with 1200 mAh
capacity (lifetime is estimated as BattCapacity·Voltage/Eavg). In cases with a higher measurement
frequency, like 1 Hz, the duty cycle increases to 21.4%, and the average energy consumption is
estimated to be 61.052 mW/1.087 mJ which leads to an autonomous operation of about 5 months.

Table 7. Energy consumption of system operations and average estimation, assuming a measurement
frequency of 0.0033 Hz.

Time (ms) Current (mA) Energy (mW/mJ)

Initialization 20 5.91 19.5/0.39
Transmit 35 40 132/4.62
Receive 0.5 40.45 133.5/0.07

Sleep 299,765 0.02 0.055/16.49
Thermistor 150 0.08 0.26/0.04

Avg. 0.06 0.196/0.157

2.7. Applications

The proposed measurement system was used in the context of an agriculture application that
required plant leaf and environmental temperature measurements along with other parameters in
order to decide precise irrigation treatments [4]. Furthermore, the system was required to support
a machine learning process in order to induce new rules to improve the precision of plant state
assessment in the decision-making process. In a greenhouse setting, a network of eight wireless
modules including 36 thermistors was deployed and used for a period of 52 days providing accurate
temperature measurements to the decision-making algorithm with a measurement period of 5 min
(Figure 5a–c). The nodes were protected by water-resistant shielding to withstand the harsh field
conditions. Accurate measurement of the temperature was a critical factor in the success of the derived
agronomic model which resulted in a 20% irrigation water reduction compared to traditional practices
while keeping the high quality of the crop.
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Figure 5. (a) Field trial of the system in a greenhouse; (b) a thermistor in contact with a strawberry leaf
using a leaf clip; (c) temperature differences between a plant leaf and ambient air with a threshold of
0.84 ◦C to trigger water treatments.

The interface layer of the wireless microcontroller allows any combination of up to eight different
sensors or actuators to be interfaced at any time and independently turned on and off. By interfacing
several sensor devices (i.e., thermistors with their circuit) the number of modules required per sensor
is reduced, which results in a lower overall cost. Each of the eight interface channel setups can easily
be modified in the field in order to change the type of sensor/actuator attached. In this application,
the deployment of the thermistors was a critical and time-consuming process. A series of leaf clips had
been designed to attach thermistors to the plant leaves (Figure 5b). Thermistors were connected to the
mote via two wires which had to be fixed to the bench top to minimize movement by the plant growth
or by users. During the deployment, special care was given to choosing leaves that were of similar
size, colour, shape, and location in order to minimize the local variations.

A 3.6 V lithium thionyl chloride (LiSOCl2) battery with a capacity of 550 mAh was used (Tadiran
TL-2450, Saft Groupe SA, Levallois-Perret, France) as the power source for the wireless nodes. This type
of battery offers a high energy density and voltage stability over time while meeting the operating
temperature range, capacity, and space requirements of pervasive computing applications. To monitor
energy consumption, a reference unit was equipped with a CR2477 Li-coin cell battery (LiMnO2) with
a capacity of 1000 mAh. The mote platform was also equipped with a voltage regulator (Torex XC6215,
Torex Semiconductor, Tokyo, Japan) to provide stable voltage to system operations. Figure 6 shows the
battery level and signal strength (Received Signal Strength Indication) plots during the trial period for
the reference measuring node.
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Figure 6. Battery level and signal strength readings for a period of 7.5 weeks.

During the trial, the battery level dropped from 99% to 94% with a discharge of 0.1% or about
1.83 mAh per day. This confirms the assessment of the energy consumption albeit the small increase in
the duty cycle to 0.11% due to the inclusion of four thermistors on the same unit. Most of the time, the
signal strength was high (between 40 dbm and 55 dbm), except for some periods where there was high
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movement in the greenhouse due to labor activities. Our interpretation is that the presence of workers
in the greenhouse affects the RSSI attenuation and variation due to the generation of multipath signal
components. This observation is in accordance with studies that have shown that the presence of people
moving in indoor environments significantly affects the signal strength, and the attenuation varies
with the number of people, their location relative to the antennas, and their movement speed [42]. In
the agricultural sector, energy harvesting through solar panels can significantly increase the autonomy
of a wireless monitoring system, especially in open Southern European fields [43].

We currently are using the developed system configured with the 10 mm mote in a health
monitoring application that detects skin temperature in a non-intrusive manner (Figure 7a) and based
on that detects user stress using a combination of physiological signals. The skin temperature is
monitored with a frequency of 1 Hz and statistical features are calculated (mean, stdev, max, min) in
different time windows. The Stoop test, which requires the participant to name the color of a word
designated in a different color under time pressure, is used to induce mental stress to volunteers
following an experimental protocol that includes relaxation and stress periods of 10 mins each, while
the skin temperature signal variation is monitored (Figure 7b). Experiments with the prototyped
wearable sensor have been performed in a laboratory setting with stable environmental conditions.
However, in physical locations, the ambient temperature fluctuates during the day and this affects
skin temperature measurements. To address this problem, differential models are used, taking into
account both the skin and ambient temperature.
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Figure 7. (a) Prototype package for health monitoring; (b) skin temperature variation between
relaxation and stress periods.

3. Discussion

The motivation for using a thermistor with high tolerance was to address the requirements of a
multitude of applications for which a good accuracy (~±0.2 ◦C) could be achieved without turning
to a specific calibration. The additional effort required for the calibration is justified for applications
requiring higher accuracy levels as detailed in the introduction of the paper. Nevertheless, in other
cases, a low tolerance and thus, lower cost thermistor can be used. The evaluation of the system proved
that it is possible to reach a good accuracy without a specific calibration using components with a
high tolerance. This observation was validated by the design stage uncertainty analysis discussed
previously and is also consistent with other similar studies, such as in [21] where an accuracy of
0.2 ◦C was achieved by carefully designing a circuit with high precision components. In our case,
a temperature error of 0.26 ◦C was observed.

Table 8 contains quantitative data for the assessment of the system’s performance in terms of the
measurement error. The error is defined by Equation (14), where Ti is the temperature measured by
the reference thermometer, and T∗i is the temperature calculated by the system model (Equation (1)
before calibration and Equation (7) after calibration). The minimum and maximum values of ei are
denoted as emin and emax, respectively. A typical metric of the accuracy of a measurement system is
the average error which is defined by Equation (15), where |ei| is the absolute value of ei and n is the
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amount of data. The smaller the average error is, the better the accuracy. The experimental standard
deviation of the mean (Equation (16)) is an effective measure of the underlying probability distribution
of the errors, where ei is the average value of ei. It provides a measure of precision of the measurement
system. The smaller the standard deviation is, the better the precision. This value is also used as a
Type A uncertainty of the calibration equation measurement.

ei = T∗i − Ti (14)

|e|avg =
∑|ei|

n
(15)

estd =

(
∑n

i=1(ei − ei)
2

n− 1

)0.5

(16)

The inspection of Table 8 shows that the accuracy of the measurement system has been improved
by about 9-fold on average by using a calibration process which is different from conventional
calibration approaches. The calibration process to reach the targeted accuracy is performed by
correlating the ADC output of the interfaced measuring sensor with that of a reference sensor using a
large set of temperature values. The continuous temperature sweep in about three hours makes the
approach faster and cost effective with respect to conventional calibration procedures that are typically
based on the use of specialized equipment. An additional advantage of the applied calibration is
the continual evaluation of the sensor over the total specified range of temperatures. Estimating
the calibration parameters for a collection of sensors in batch mode can reduce further the overall
calibration time.

Table 8. Quantitative metrics for the assessment of the measurement system’s performance.

Before Calibration (◦C) After Calibration (◦C)

emin −0.21 −0.04
emax 0.36 0.05

|e|avg 0.26 0.03
estd 0.030 0.008

Although the wireless sensor network deployed for evaluating the temperature measurement
system in the agriculture application used a limited number of sensor nodes and followed a star
topology, more advanced schemes can be realized by leveraging ZigBee’s capabilities. Namely,
by using the beacon operation mode of the ZigBee protocol, large scale deployments are feasible,
covering larger areas and distances (hundreds of meters) between the sensor nodes and the base station
through mesh networks. To cover even larger ranges (in thousands of meters), a solution proposed
is the combination of ZigBee with 3G/4G cellular networks. This comes at the expense, however, of
increasing energy consumption. The low power wide area network (LPWAN), an emerging wireless
communication technology for Internet of Things (IoT) applications, stands as a promising solution for
such large scales because of its low power, long range, and low cost communication characteristics [44].
LPWAN technology chipsets, like LoRa, are already in the market and are used in long range IoT
applications. Given the modular nature of our wireless module, a LoRa transceiver could be integrated
in the future.

Supporting high measurement accuracy and long sensor lifetime calls for a system design that
assembles high precision and energy efficient components and the adoption of power consumption
optimizations. As a result, a low average energy consumption in the region of 200 µW (as shown in
Table 7) is achieved which, combined with the small-scale factor of the wireless platform, enables the
system to be deployed in pervasive environments. The lifetime of the sensor module can be extended
for demanding applications by using a battery with larger capacity or by connecting a number of
batteries in parallel. Besides the energy harvesting already mentioned in the agricultural application,



Sensors 2018, 18, 3445 19 of 23

additional energy conservation can be brought into the system, for example, by dynamically adjusting
the measurement period by taking context information (e.g., the presence of people in a greenhouse)
into account.

A significant effort was devoted to the assembly of low-cost components, in order to realize a
platform that could be integrated into extended monitoring systems. Based on an analysis of existing
temperature sensors, the thermistor was selected because of its low cost and proper operational
characteristics, and a conditioning circuit using off-the-shelf components was realized in order to
create a low cost and portable thermometer that could be used in various domains. The cost of
the sensing system is about $5 (includes the thermistor and the conditioning circuit components).
The addition of the wireless board to support system intelligence and the ZigBee wireless connectivity
adds an extra cost of $40. As a result of the design and choice of system parameters, the overall cost
of the prototype is significantly less than the cost of laboratory thermometers with equal accuracy
existing in the market (cost starts at $200).

Despite the low cost viewpoint, the measuring system was designed with the aim of identifying
temperature-based physical and biological processes in pervasive computing environments with high
accuracy. Table 9 provides a comparison between the characteristics of our measuring system and
those of related systems reported in the literature as well as of sensors found in the market (last four
entries) with the cost of components ranging from $15 (sensors without any wireless connectivity)
to $60.

Table 9. Comparison of different temperature measurement sensors (the first entry refers to our system).

Sensor Type Temperature
Range (◦C)

Accuracy
(◦C)/Resolution (◦C)

Energy (mW) @ MF
a (Hz) Supply (V) Connectivity Ref

Thermistor 5 to 45 ±0.03/0.02 0.196 @ 0.003 3–3.6 ZigBee
Thermo-couple 0 to 200 ±0.08/0.01 – – RS-232C [17]

Thermistor 15 to 30 ±0.1/0.002 1 @ 1 3.6 BLE [18]
Silicon 0 to 60 ±0.5/0.02 – 3 ZigBee [20]

Thermistor 31 to 41 ±0.2/0.01 1 @ 0.02 3.3 Bluetooth [21]

Silicon 35 to 45 ±0.1/0.035 110 × 10−6 @ 1 passive Tag/Reader at
868 MHz [22]

Antenna 40 to 100 ±1.5 ◦C/– – passive Tag/Reader at
5–6 GHz [26]

Silicon −40 to 125 ±0.2/0.01 0.0032 @ 1 2.1–3.6 I2C [45]
RTD 0 to 50 ±0.5/0.1 3 yrs @ 0.001 3.6 WiFi [46]

Silicon 10 to 50 ±0.5/0.05 3 yrs @ 1 3 BLE [47]

Thermo-couple −40 to 85 ±0.5/0.03 5 yrs @ 0.001 3.6 Probe/Reader at
20 KHz [48]

a Measurement frequency.

The limitations of this study are acknowledged. The evaluation of the system design and the
calibration process were confined to the thermistors of a specific model. Although the steps of this
methodology have been described in detail so that can be straightforwardly applied for different cases,
a systematic validation is required using other sensors with different or similar characteristics with
the used model. The design of the conditioning circuit attempts to control the self-heating of the
thermistor which affects the accuracy of the measurement. Although the sensing currents allowed to
pass through the thermistor are small, they can still generate self-heating errors. For example, thermal
resistance caused by environmental temperature changes may vary due to air/liquid turbulence.
This also affects self-heating error variation. Thus, the effect of temperature elevation on self-heating
power needs to be addressed especially in the case of the outdoor health monitoring application.
In the case of the agriculture application, the deployment was done in a greenhouse, and therefore,
the measurements were performed in a more protected environment (e.g., physical shielding, light
by low power fluorescent lamps, etc.). However, in general cases, measurement accuracy may be
influenced by external factors such as air and thermal radiation, especially in outdoor environments;
the parasitic effects of these factors need to be studied explicitly to determine a radiation correction
model. Shielding of the thermometers (e.g., with a metal tube) may be also applied but care is required
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not to obstruct the air movement around the thermometers, otherwise the thermal contact between the
air and the thermometer may be affected.

4. Conclusions

The design and calibration of a wireless autonomous thermometer that can provide continuous,
real-time data to the decision-making mechanisms of various applications was described in this
paper. By capitalizing on progress in ICT and wireless sensors, the proposed system addresses the
challenge of developing a ubiquitous, robust, and autonomous low cost sensor while, at the same
time, delivering measurements with high accuracy. To strike a balance between cost and accuracy,
the calibration process follows a continuous temperature sweep approach to overcome the delays and
cost of conventional calibration. This approach was shown to improve the accuracy of temperature
measurement from ±0.26 ◦C to ±0.03 ◦C, on average. Furthermore, an uncertainty analysis was
performed to support the validity of the reported performance results in which both the design-stage
and calibration-stage of the measurement system were examined.

The developed temperature measurement system was evaluated in both lab and field settings for
extensive periods of time, obtaining accurate values and transmitting them correctly using the ZigBee
protocol to a base station. The low power communication combined with the energy consumption
optimizations adopted in the measuring system enable an operation autonomy from several months
to years depending on the required application measurement rates. The cost of the whole system
is approximately $45 (related data are provided in Supplementary Materials) including the circuit
components and wireless microcontroller, but excluding labor work for software development and
testing which is affordable for practical use and allorews scaling of the number of sensing units in the
same wireless module. In comparison, commercial thermistor-based systems of equal accuracy have a
typical cost of $200 or more. The described procedure for interfacing the thermistor to the hardware
platform can be straightforwardly adjusted for different thermistors, temperature ranges/accuracy
levels/resolutions, and ADC voltage ranges.

Although high precision measurement systems may seem to have the scientific and industrial
communities as their primary audience, we believe that as application intelligence and precise
control become increasing necessities in pervasive computing environments, components which can
deliver the accuracy of a laboratory thermometer with the cost of a common thermometer will be an
important enhancement for many typical IoT applications. In this paper, we presented proof-of-concept
applications that can take advantage of such progress.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/10/3445/s1,
Table S1: BOM for the wireless temperature measurement system (prices given for orders of 1, 100 and 1000 units).
Table S2: Assembly cost estimation (price ranges are per board for orders of 5, 100 and 1000 boards).
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