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Abstract: Quinoxaline-based novel acid-responsive probe Q1 was designed on the basis of a
conjugated donor-acceptor (D-A) subunit. Q1 shows colorimetric and fluorometric changes through
protonation and deprotonation in dichloromethane. With the addition of the trifluoroacetic acid (TFA),
UV-vis absorption spectral changes in peak intensity of Q1 was observed. Moreover, the appearance
of a new peaks at 284 nm 434 nm in absorption spectra with the addition of TFA indicating protonation
of quinoxaline nitrogen and form Q1.H* and Q1.2H"*. The emission spectra display appearance of
new emission peak at 515 nm. The optical property variations were supported by time resolved
fluorescence studies. The energy band gap was calculated by employing cyclic voltammetry and
density functional calculations. Upon addition of triethylamine (TEA) the fluorescence emission
spectral changes of Q1 are found to be reversible. Q1 shows color changes from blue to green in basic
and acidic medium, respectively. The paper strip test was developed for making Q1 a colorimetric
and fluorometric indicator.

Keywords: colorimetric; fluorescent; proton sensor; quinoxaline; reversible sensor

1. Introduction

In live cells the intracellular and extracellular pH are changed by variations in physiological
processes. It is well reported that inflammation and tumor growth may be associated with an acidic
pH in living systems [1], making pH sensors are useful for cellular analysis or diagnosis. In recent
year researchers have developed several pH sensors to determine glucose [2], urea [3], penicillin [4],
acetylcholine [5], creatinine [2], halogenated hydrocarbons [6] and organophosphorus pesticides [7].
A literature search reveals that many pH sensors have been employed in numerous fields such as
environmental monitoring, bioprocessing and biomedical applications [8-13]. pH is measured by
using large number of analytical tools such as glass electrodes and photometric methods and are many
are commercialized. Though these methods are well established, they have several disadvantages
such as the need for frequent calibration of pH electrodes, corrosion caused by alkaline solutions or
fluoride ions and the electrodes’ susceptibility towards interference leading to limited usefulness [14].
To overcome these disadvantages scientists have directed their efforts towards the development of
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optical sensors [15] particularly fiber-optic pH sensors [16-19]. In recent years fluorescence techniques
have been employed to measure pH with high sensitivity [20-22]. Fluorescence changes have been
observed due to the protonated and deprotonated state of a chromophore, which in turn displays
change in color of a dye [23]. Such colorimetric and fluorescent pH sensors are appropriate for the
living samples because of their high signal-to-noise ratio and also their physical stability. For real-world
applications, simple design and easy synthesis of a fluorescent chromophore as sensor is an important
field of research. A literature search revealed that quinoxaline derivatives have been employed for
various applications such as organic photovoltaics, organic light emitting diodes (OLEDs) and dye
sensitized solar cells, etc. [24-27].

Quinoxaline chromophores have been also used as an anion sensor, colorimetric and ratiometric
cation sensor [28-30]. Duke and co-workers reported a bisquinoxaline amidothiourea-based anion
sensor [31]. Zhang et al. reported preparation of a quinoxaline-based thin film and its use as a
solid-state pH sensor for organic acids, amine and amino groups [32]. Quinoxaline derivatives
are also used as a pH sensor [33-36]. Therefore, we have chosen a malononitrile-functionalized
quinoxaline derivative. In this manuscript, we report the synthesis and sensing properties of
quinoxaline chromophore Q1. The proton sensing properties were monitored through optical, UV-vis
and fluorescence spectroscopic changes. On the basis of our findings, finally we employed the system
to prepare paper strip and tested it for the detection of protons via a colorimetric method.

2. Experimental Details

2.1. Materials and Methods

All the reactions were carried out under nitrogen atmosphere, solvents used for the reactions were
dried using appropriate drying agents. Solvents for column chromatography used as received without
further purification and all other reagents were used as supplied by commercial vendors without
further purification, unless indicated. Anhydrous DCM was prepared for cyclic voltammetry using
an Innovative Pure Solve solvent purification, typically, DCM kept overnight on calcium chloride.
Then decant and reflux over phosphorous pentoxide for 1 h, distilled and collected over activated
molecular sieves (4A). Thin layer chromatography (TLC) was performed aluminum coated silica
gel (40-60 pum, F254) and visualized either using UV light (254 and 365 nm) or iodine indicator.
Compounds were purified by column chromatography on 40-60 silica gel. 'H-NMR spectra were
recorded at 400 MHz and the following abbreviations are used to explain multiplicities: d = doublet,
m = multiplet, dd = doublet of doublets. '>*C-NMR spectra were recorded at 100 MHz, as indicated.
Both 'H and 3C calibrated using residual non-deuterated solvent as an internal reference and are
reported in parts per million () relative to tetramethylsilane (6 = 0). Melting points were measured
using a digital melting point apparatus. IR-Spectra were recorded using a Nexus 670 spectrometer
(Thermo Nicolet, Boston, MA, USA) using non-hygroscopic KBr pellets.

2.2. Synthesis

The quinoxaline Q1 derivative was prepared in two steps. Step-by-step synthesis details and full
characterisation data can be seen in the Supplementary Information.

2.3. UV—vis Measurements

UV-vis absorption experiments were performed in a quartz cell with a 1 cm path length.
An aliquot of the stock solution of Q1 (0.2 mL, conc. = 1073 M in dichloromethane) mixed with
additional 3 mL dichloromethane and after allowing to equilibrate for 2 h then the absorption spectra
was measured.
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2.4. Fluorescence Measurements

Fluorescence spectra were measured on a RF-6000 spectrofluorophotometer (Shimadzu,
Nakagyo-ku, Kyoto, Japan) using a quartz cell with a 1 cm path length (Aex = 350 nm).

2.5. Time Resolved Fluorescence Studies

The fluorescence lifetime measurements were carried out by the time correlated single
photoncounting technique (TCSPC) with a micro channel plate photomultiplier tube (MCPPMT)
as the detector and a nanosecond laser as the excitation source (model 5000 U, IBH, Glasgow, UK).

2.6. Cyclic Voltametry Measurement

These measurements were carried out on a BASI Epsilon EcSoftware system (Autolab Instrument,
West Lafayette, IN, USA) in a 3-electrode single compartment cell with Pt disc working electrode
(@ = 0.5 mm), a platinum wire counter electrode (& = 0.5 mm) and a silver wire pseudo reference
electrode, all these cells and electrodes are custom made. The reduction potentials were referred to
SCE using ferrocene (Fc) as internal reference (E1/2 Fc SCE = +0.48 V) after the measurements.

2.7. Theoretical Calculations

The theoretical calculations were performed by using B3LYP and basis set 6-311+G(d,p) method.

2.8. Paper Strip Experiments

Paper test strip was prepared by using Wattman filter paper 44. The prepared strip from
dichloromethane solution of Q1 (1 mM) is exposed to TFA and TEA vapours. The naked eye color
change is noted.

3. Results and Discussion

3.1. Synthesis and Characterization

The quinoxaline Q1 derivative was synthesized in two-steps as shown in Scheme 1. In the
first step, 1,2-bis(4-bromophenyl)ethane-1,2-dione (1) was treated with the (3,4-diaminophenyl)-
(phenyl)methanone (2) in acetic acid at 110 °C for 8 h to yield the (2,3-bis(4-bromophenyl)
quinoxalin-6-yl)(phenyl)methanone derivative 3. Compound 3 was further reacted with malononitrile
in pyridine at 115 °C for 16 h to yield the desired 2-((2,3-bis(4-bromophenyl)quinoxalin-6-yl)-
(phenyl)methylene)malononitrile (Q1). The obtained product Q1 was characterized by FT-IR, 'H- and
I3C-NMR and ESI mass spectral techniques. In the FT-IR spectra of Q1 the characteristic peak for
the nitrile functional group appeared at 2224 cm~!. Q1 showed very good solubility in CHCls,
dichloromethane and THF.

Br.
O H,N Acetlc acid
!’ " *
H,N 110 °C, 8h Pyrldme,
Br 115°C, 16h g,

1 2 3

Scheme 1. Synthesis of 2-((2,3-bis(4-bromophenyl)quinoxalin-6yl)(phenyl)methylene) malononitrile (Q1).
3.2. Colorimetric Response

A naked-eye experiment was recorded in the dichloromethane solution by the addition of 50
equivalents of the TFA to the receptor Q1 solution (Figure 1). The receptor solution showed a color
change in color from colorless to yellow under visible light and blue to fern green under UV light
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(365 nm), respectively. These observations suggest that Q1 showed sensitivity towards TFA via
protonation of ring nitrogen atoms.
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Figure 1. Photograph of the color changes of Q1 (dichloromethane solution) by treatment with TFA;
(a) under visible light; (b) under UV light of 365 nm.

3.3. UV-vis and Emission Spectral Changes

The UV-vis absorption spectra of Q1 recorded in dichloromethane solutions with increasing
added TFA are displayed in Figure 2a. Q1 showed two absorption peaks centred at 310 nm and 377 nm.
Interestingly, upon addition of TFA to the dichloromethane solution of Q1, absorption bands at 310 nm
and 377 nm showed a significant red shift to 319 nm with an increase in intensity and at 389 nm with a
decrease in intensity, respectively. With increasing TFA concentration in Q1 solution, a new absorption
bands appeared at 284 nm and 434 nm. The broad and intense absorption band at 284 nm 434 nm is
ascribed to the electronic transition in the -molecular system and clearly indicates formation of two
protonated states [37] such as monoprotonation Q1.H* and diprotonation Q1.2H* of the receptor Q1.

a) 0.6)
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b) x10?
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Figure 2. (a) Absorption spectra of compound Q1 (10 uM) and (b) Fluorescence emission spectra of
compound Q1 (10 uM, Aexe = 350 nm) in dichloromethane.

Fluorescence spectroscopy was used to investigate proton detecting ability of Q1 in
dichloromethane. The emission spectra of Q1 in dichloromethane showed two sharp peaks centred at
413 nm and 436 nm upon excitation at 350 nm (Figure 2b). The titration of Q1 with TFA (0-50 equiv.)
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resulted in a decrease in the band intensity at 413 nm and at 436 nm along with the appearance of
new emission band at 515 nm. We presume that the decrease in peak intensity at 413 nm and 436 nm
may be due to formation of monoprotonated state of the Q1 as Q1.H*, which in turn leads to form
diprotonation state Q1.2H* with the incremental addition of TFA, indicating by appearance of new
emission peak at 515 nm.

3.4. Time Correlated Single Photon Counting (TCSPC) Studies

The fluorescence decay time displays the dynamic picture of the obtained fluorescence, which is
independent of concentration of solution. Time correlated single photon counting (TCSPC) method
used to study the kinetics of the emission via optical excitation of the samples, individual photon arrival
time and their detection. TCSPC of Q1 and Q1.2H* in dichloromethane with excitation at 376 nm and
emissions were recorded at 413 nm and 515 nm, respectively (Figure 3). Decay profiles of Q1 and
Q1.2H"* were fitted with bi-exponential function. In dichloromethane solutions Q1, the fluorescence
lifetime of components were 0.10 ns (7.70%) and 1.19 ns (92.30%). Fluorescence lifetime of components
for protonated state Q1.2H* were 0.17 ns (65.82%) and 1.46 ns (34.12%). For deprotonated state of Q1
the percentage weight of shorter component (0.10 ns) was less than the longer component (1.19 ns).
Whereas, for protonated state Q1.2H* the percentage weight of shorter component (0.17 ns) was higher
as compared to the longer component (1.46 ns) (Table 1). Weight percentage differences of shorter
and longer components of Q1.2H* with Q1 possibly arise from protonation of the nitrogen atoms in
quinoxaline ring of probe Q1 lead aggregates in solution.

10000 =
rompt
——Q1 (», =376 nm,x, =413 nm)
Decay fitat 413 nm
1000 - \ ——Q12H" (., =376 nm, 2 =515 nm)
Decay fitat 515 nm
Z
=
2 100-
o
10 1
0 3 6 9 12 15
Time (ns)

Figure 3. TCSPC decay histograms and fitted bi-exponential decay functions for Q1 and Q1.2H*
in dichloromethane.

Table 1. Fluorescence life time of Q1 and Q1.2H* in dichloromethane.

Sample T1 (ns) Contribution (%) T, (ns) Contribution (%)
Q1 (Aemi: 413 nm) 0.107 7.70 1.195 92.30
Q1.2H" (Aemi: 515 nm) 0.176 65.82 1.466 34.18

3.5. Electrochemistry and DFT Calculation Studies

The CV curve of Q1 (Figure 4) in dichloromethane showed two well resolved reversible reduction
waves. The position of energy levels was estimated from CV curve and UV-vis absorption spectra of
Q1. The CV curve of Q1 exhibit first reduction onset potential of —0.852 V and the LUMO energy level
can be estimated to be —3.848 eV. The low lying LUMO energy level suggests that Q1 is good potential
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n-type candidate. The absorption onset (Figure 2a) of Q1 is of 424 nm and the estimated optical band
gap to be 2.92 eV. Based on the results, optical band gap of LUMO of Q1 and the HOMO energy level
is estimated to be —6.777 eV.
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Figure 4. Cyclic voltammetry curve of Q1 in dichloromethane (electrolyte: 0.1 M nBuyNPFg, scanning
speed: 100 mV-s~1).

To investigate the structure-electronic property relationship of Q1 employed DFT calculations
using the Gaussian 09 ab initio/DFT quantum chemical simulation package [38]. Optimization of
receptor Q1 and its protonated form Q1.2H* using hybrid density functional B3LYP model and
6-311+G(d,p)basis set was carried out in dichloromethane. The effect on geometries of Q1 and Q1.2H*
are comprised by means of the polarizable continuum model (PCM). The frequency calculations are
also carried out to ensure structures to be real. Based upon molecular geometry of the receptor Q1 and
protonated form of receptor Q1.2H*, the frontier molecular orbitals (FMO) are calculated at the same
level of theory and generated using Avogadro (Figure 5) [39,40]. Thus, the electronic distributions in
HOMO and LUMO for the receptor Q1 and Q1.2H* are as shown in Figure 5. For Q1, the electronic
density in HOMO is delocalized over the bromophenyl and central region of the quinoxaline subunit.
In the LUMO level, electron density is localized on the quinoxaline and malononitrile subunits. In the
molecule Q1, the electronic distributions of HOMO and LUMO level are not well separated, suggesting
that the electronic transitions are not pure charge transfer but may be treated as 7-7t transitions.
Furthermore, we have investigated protonated form of the quinoxaline receptor to investigate the
protonation effect on optical properties by means of optimizing the geometry. The changes in electron
distribution in the HOMO of Q1.2H* were observed and are located on bromophenyl and malononitrile
subunits i.e. away from quinoxaline subunit in the receptor. In LUMO, the electron distribution was
observed over the complete molecule, suggesting that protonation on the Q1 receptor increases
the electron-accepting ability and it lowering of HOMO and LUMO energy gaps from 3.40 eV to
2.02 eV. For the protonated state Q1.2H* aromatic conjugation mostly stabilize the LUMO and led
red-shift (higher wavelength) emission spectra (Figure 2b). The calculated band gap using DFT results
shows the trend in accordance with the experimental results and does not give the exact value due
to delocalization error [41]. This indicate the accurate calculation of band gap using DFT is one of
the challenge.
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Figure 5. Theoretically calculated frontier orbital of Q1 and Q1.2H* calculated by using DFTB3LYP/

6-311+G(d,p) basis set.

3.6. Reversibility of the Receptor

7 of 10

The reversible fluorescence emission spectrum of Q1 was monitored by addition of acid (TFA)
and base (TEA). The reversibility has been investigated by recording the fluorescence emission
intensity changes at 515 nm in dichloromethane with respect to a change in the acidic and basic
conditions through addition of TFA and TEA, respectively (Figure 6). The reversible behaviour
of the receptor Q1 is displayed in Figure 3. For the receptor Q1, the reversibility between the
protonation and deprotonation state has been observed up to three cycles without any intensity
variation. Thus, we believe that the probe may be employed for real time monitoring of protonation

and deprotonation in solution and may applicable to use in biological sciences.

12

Emission Intensity @ 515 nm
IS a ® =
=4

N

<

TFA

TEA

| |
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Figure 6. The fluorescence intensity at 515 nm of Q1 upon consecutive addition of TFA and TEA
solution for up to 3 cycles in dichloromethane (Inset at left: color change in Q1 with protonation and

deprotonation under UV light of 365 nm).
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3.7. Reversibility of the Receptor Proved by Test Strip

Herein, we report an efficient strategy for the prepartion of a proton indicator paper strip
using receptor Q1 (Figure 7). The strip was prepared by immersing Wattman filter paper 44 in
the dichloromethane solution of Q1 (1 mM). The obtained strip was first treated with TFA vapours,
and observed that the color of strip changed from cream to yellow. The change in the strip color is
almost the same as that in solution. Furthermore, when the yellow strip was treated with vapours of
TEA, it was observed that reappearance of the original strip color. It is notable that the color change of
strip in film form is very similar to that in dichloromethane solution. Thus, the proton sensitivity of
the test strip in dichloromethane was highly reversible, without the leaching of chromophore. These
results indicate that the proton response of Q1 strip was robust and highly reversible.

Figure 7. Photograph of test paper strip with Q1 for reversible proton sensing experiment. (a) none
(only Q1); (b) upon exposure with TFA vapours and (c) exposure with pure TEA vapours.

4. Conclusions

In summary, we have synthesized a new quinoxaline-based Q1 sensor. The receptor Q1 undergoes
protonation in the presence of TFA, which can be seen clearly by a change in color from colorless to
yellow under visible light and blue to fern green under UV light (365 nm), respectively. The addition
of TFA displays efficient changes in UV-vis absorption and fluorescent emission spectra. The optical
property variations were also supported by TCSPC studies and the energy band gap was calculated
by employing cyclic voltammetry and DFT. Importantly, the receptor can be reused many times,
as protonated Q1 can be easily deprotonate upon addition of TEA and is easy to monitor by the naked
eye as such color changes from blue to green in basic and vice-versa in acidic medium, respectively.
These results clearly suggested protonation of Q1 in the presence of TFA and deprotonate upon addition
of TEA. The strong proton capture capability of Q1, allowing reversible fluorescence switching in
basic and acidic medium and the emission color changes from blue to green. Furthermore, the paper
strip test was developed for making Q1 as colorimetric and fluorometric indicator for real world
applications. Thus, the quinoxaline-based chromophore can be used as a colorimetric indicator for
reversible protonation and deprotonation in dichloromethane.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/10/3433/

s1. Data SI detail synthesis on intermediate as well as Q1 and FT-IR, TH-NMR, 3C-NMR and mass spectra can be
found in ESI.
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