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Abstract: A joint space-time array for communication signals is constructed in this paper to settle
the contradiction between the performance of angle estimation and the array aperture. It introduces
Doppler information caused by platform motion into the signal processing to obtain favorable
performance with limited array aperture. We analyze the theoretical performance in the aspects
of distinguishable source number, spatial resolution and Cramér-Rao bound (CRB), respectively.
Both theoretical analysis and simulation results demonstrate that the proposed space-time array can
give rise to a significant enhancement in achievable array performance.
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1. Introduction

Direction of arrival (DOA) estimation is an important branch of array signal processing.
The performance of DOA estimators mainly depends on the aperture of the array. In the modern
electromagnetic environment, antenna arrays may be deployed on moving platforms (e.g., airplanes,
satellites, ships) to enhance their maneuverability [1]. However, apertures of those arrays are generally
restricted by the size of platform they attached to, which could lead to degradation on DOA estimation
performance if not of a suitable size [2].

Various methods have been proposed to solve this problem, for instance, high order cumulant [3],
cyclostationarity [4] and non-circularity [5] of the signal were exploited to improve DOA performance.
These techniques rely on temporal properties of the signal waveform, so they are only suitable for
specific signals. Algorithms based on intelligent processing were also developed for DOA estimation.
In [6], a deep neural network (DNN) was designed and satisfactory DOA performance were observed.
The above algorithms have their respective advantages, but they are not effective when array apertures
are limited.

In other studies, some compressive sensing (CS)-based DOA estimation algorithms take the
moving array condition into consideration. Reference [7] formulated the DOA estimation problem
as a Multiple Measurement Vectors (MMV) problem and solved it by minimizing a mixed Euclidean
norm approximation. Liu [8] also adopted Euclidean norm minimization approach to estimate the
DOA, but divided the range of interest into low-resolution grids, which conspicuously reduced the
computation complexity. Reference [9] employed a second order core (SOC) programming method to
solve the optimization problem. However, CS technique algorithms are mainly designed to deal with
sample limitation problems. They cannot figure out the raised problem where a limited array aperture
is available.
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Alternatively, the synthetic aperture (SA) technique, which utilizes Doppler information
to improve DOA performance, has received increasing attention in moving array systems.
This technique was firstly used in cooperative scenarios for radar imaging [10,11] and then extended
to non-cooperative acoustic processing [12–14]. However, the applications of the SA technique in
communication signal processing have not been addressed often. Unlike radar or sonar where the
signal source is under the control of the receiver, communication signals have complicated modulation
patterns and unknown data sequences, which generate unpredictable phase fluctuations in the signal
Doppler information. Researchers then modified the SA technique and proposed space-time signal
processing methods for the purpose of applying the SA technique to communication signals [15]. These
space-time processing methods mainly focus on the scenario where a static array detects a moving
target [16]. Reference [17] analyzed the performance of such space-time signal models.

To the best of our knowledge, methods intended for communication signals with moving array
have not received much attention. On the basis of the existing SA techniques, we propose a space-time
array model for moving arrays in this paper. Its performance is thoroughly analyzed for comparison
with a conventional array. First, the distinguished source number is derived under different conditions.
Then we utilize the Euclidean norm to analyze the array spatial resolution enhancement. Finally,
the Cramér-Rao bound (CRB) is computed in order to evaluate the estimation accuracy. The theoretical
results are further discussed so as to cope with the parameter selection problem for space-time arrays.
In contrast to conventional arrays, the proposed space-time array introduces Doppler information into
the DOA estimation and manifests superior performance. Numeric simulations are also provided to
demonstrate its effectiveness.

The paper is organized as follows: Section 2 presents some assumptions and the space-time array
model. In Section 3, we evaluate the performances of space-time array through distinguishable source
number, spatial resolution and CRB of such three aspects. The performance comparison and some
theoretical conclusions are also involved in this section. In Section 4, several numerical simulations are
presented to verify the theoretical derivation. Finally, Section 5 presents our conclusions and identifies
future work.

2. Scenario Description and Space-Time Array Modeling

Assume that a uniform linear array is equipped on a moving platform. The array is composed of
M sensors with an inter-element spacing d (d is equal to half the wavelength), and the platform moves
along its baseline at a constant velocity v. The scenario is demonstrated in Figure 1.
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We assume that Q far-field plane waves impinge on the array from directions θq(q = 1, 2, · · · , Q)

with frequencies centered at f 0, which is known to the observer. c is the velocity of the electromagnetic
wave. Because of movement of the array, a Doppler shift fdop = f0

v sin θ
c is generated and added to the

carrier frequency.
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Regarding the first sensor as a reference, we can express the observation signal of the m-th sensor
at time t as:

rm(t) =
Q
∑

q=1
sq(t) exp

(
j2π f0

(
1− v sin θq

c

)(
t− (m−1)d sin θq

c

))
+ nm(t)

=
Q
∑

q=1
sq(t) exp

(
j2π f0

(
t− v sin θq

c t− (m−1)d sin θq
c +

v(m−1)d sin2 θq
c2

))
+ nm(t)

(1)

where f0
v sin θq

c is the Doppler shift, sq(t) is the signal waveform of the q-th source with power σ2
sq,

nm(t) is zero-mean, spatially and temporally white noise with power σ2
n . In addition, the noise is

assumed to be uncorrelated with signals, and signals are assumed to be uncorrelated.

Since v � c, the term v(m−1)d sin2 θq
c2 in Equation (1) is approximated to zero. Moreover, as f0 is

known, we can down-convert the observation signal to obtain:

xm(t) =
Q

∑
q=1

sq(t) exp
(
−j2π f0

(
v sin θq

c
t +

(m− 1)d sin θq

c

))
+ nm(t) (2)

where xm(t) represents the observation signal after down-conversion.
From Equation (2), we can find that the time domain samples constitute a geometric sequence

like a uniform linear array manifold, so we consider creating a manifold structure in the time domain
which is similar to the space domain for obtaining the space-time array.

Supposing that K samples are available, the total samples can be divided into P equal time
segments. Every segment has J(J = K/P) samples. To ensure the coherence of signals in a segment,
we assume that the duration of a segment is less than the coherence time of the signal. This assumption
enables us to ignore the phase fluctuation generated by sq(t) in the same segment.

Then in the p-th segment, the observed signal of the m-th sensor at the j-th sample moment can be
expressed as:

xm,j(p) =
Q

∑
q=1

sq(p) exp
(
−j2π f0

(
v sin θq

c
[(p− 1)J + (j− 1)]Ts +

(m− 1)d sin θq

c

))
+ nm,j(p) (3)

where Ts represents the sample interval. We can define lq(p) = exp
(
−j2π f0

v sin θq
c (p− 1)JTs

)
as the

initial phase of the p-th segment. Besides, the phase shift of every sample moment during the same
segment can make up a vector as follows:

b
(
θq
)
=

[
1, exp

(
−j2π f0

v sin θq

c
Ts

)
, · · · , exp

(
−j2π f0

v sin θq

c
(J − 1)Ts

)]T
(4)

The vector b
(
θq
)

is similar to spatial manifold vector a(θq), so we can recognize b
(
θq
)

as the
temporal manifold vector and its dimension is J. Then supposing that zm(p) is the observation signal
of the m-th sensor in the p-th segment, we can represent zm(p) as:

zm(p) =
Q
∑

q=1
sq(p)lq(p)b(θq) exp

(
−j2π f0

(m−1)d sin θq
c

)
+ ξm(p)

=
Q
∑

q=1
γq(p)b(θq) exp

(
−j2π f0

(m−1)d sin θq
c

)
+ ξm(p)

(5)

where γq(p) = sq(p)lq(p) is the space-time input of the q-th source.

ξm(p) =
[
nm,1(p), nm,2(p), · · · , nm,J(p)

]T is the space-time noise of the m-th sensor. We define σ2
γq

and σ2
ξ as the power of space-time input and noise, respectively. From the structure of γq(p) and
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ξm(p), we can know that σ2
γq = σ2

sq and σ2
ξ = σ2

n . Utilizing the result of Equation (5), we can get an

MJ-dimensional space-time array observation vector z(p) =
[
zT

1 (p), zT
2 (p), · · · , zT

M(p)
]T , which can

be written as:

z(p) =
Q
∑

q=1

[
a(θq)⊗ b(θq)

]
γq(p) + ξ(p)

=
Q
∑

q=1
ϕ(θq)γq(p) + ξ(p)

(6)

where a(θq) =
[
1, exp

(
−j2π f0

d sin θq
c

)
, · · · , exp

(
−j2π f0

(M−1)d sin θq
c

)]T
is the spatial manifold vector.

ϕ
(
θq
)
= a(θq)⊗ b(θq) is the space-time manifold vector. ξ(p) =

[
ξT

1 (p), ξT
2 (p), · · · , ξT

M(p)
]T is the

space-time noise vector. ⊗ represents the Kronecker product.
To express Equation (6) in matrix form, we define A(θ) =

[
a(θ1), a(θ2), · · · , a(θQ)

]
, B(θ) =[

b(θ1), b(θ2), · · · , b(θQ)
]
, γ(p) =

[
γ1(p), γ2(p), · · · , γQ(p)

]T , then the signal model becomes:

z(p) = (A(θ) ◦ B(θ))γ(p) + ξ(p)
= Φ(θ)γ(p) + ξ(p)

(7)

where ◦ is the Khatri-Rao product. The MJ ×Q-dimensional space-time manifold matrix is Φ(θ) =

A(θ) ◦ B(θ) =
[
ϕ(θ1),ϕ(θ2), · · · ,ϕ(θQ)

]
.

The modified model transforms temporal samples into virtual sensors, which is equivalent to
changing an M sensors uniform linear array (ULA) into an MJ sensors linear array (not always
uniform).

3. Performance Analysis

This section presents the performance analysis of the space-time array. The comparison with
a conventional array is implemented to demonstrate its advantages in the aspects of distinguishable
source number, spatial resolution and CRB.

3.1. Distinguishable Number of Sources

The number of sources that an array can specify is mainly dependent on its sensor number and
the rank of the source sample-correlation matrix. As the equivalent sensor number of a space-time
array is enlarged, the distinguishable source number is supposed to increase. We provide a detailed
analysis below.

Wax and Ziskind have deduced relevant conclusions in [18]. Their work takes into account the
case that signals are correlated and have strong universality. In this paper, we have assumed that
signals are uncorrelated. Meanwhile, for simplicity, we suppose that the sample number is sufficient,
thus the source sample-correlation matrix is full rank, whose rank is equal to the source number Q.
Then using the results from [18], we can easily get that the maximum distinguishable source number
of a conventional array is:

Qmax = M− 1 (8)

For space-time arrays, the condition is slightly more complicated. The maximum of Q is in the
range of the following condition [19]:

Qmax ∈ [M + J − 2, MJ) (9)

We note that the distinguishable source number of he space-time array is increased, which
coincides with our expectation. However, its maximum is not equal to the virtual sensor number MJ,
but a range from M + J − 2 to MJ. This condition results from the selection of the sample interval
Ts(1/ff). Equation (4) indicates that the equivalent element spacing of b(θ) is vTs. When vTs = d,
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the elements of b(θ) will overlap with those of a(θ), which causes that the virtual array ϕ(θ) has only
M + J− 1 distinct elements and leads to the least case. On the other hand, when the time domain array
is a sparse ULA comprising J elements with interelement spacing Md (i.e., vTs = Md), the virtual
array is a filled-element (MJ) ULA. This case leads to the result that the maximum number of sources
that can be uniquely identified by a space-time array is J times larger than that of a conventional array.

3.2. Spatial Resolution

Resolution is one of the important indexes for measuring the array performance. The spatial
resolution of an array is closely correlated with the changing rate of the steering vector. To intuitively
compare the resolution of different arrays, a scalar η(θ) can be defined to represent the resolving
ability [20]:

η(θ) = ‖dµ(θ)

dθ
‖ (10)

where µ(θ) is the steering vector, ‖·‖ represents the Euclidean norm of a vector.
Here we suppose that ηO(θ) and ηsp(θ) are the resolution of conventional array and space-time

array, respectively. To avoid the presence of the cross terms, we set the centers of spatial and temporal
steering vector to be the reference point. The final expressions are:

ηO(θ) = 2π f0
cos θ

c

√
M
12

[(M2 − 1)d2] (11)

ηsp(θ) = 2π f0
cos θ

c

√
MJ
12

[
(M2 − 1)d2 + (J2 − 1)(vTs)

2
]

(12)

Proof. See Appendix A. �

We can observe that ηsp(θ) contains a term introduced by time domain information in the
numerator while ηO(θ) does not contain it. Besides, ηsp(θ) possesses MJ as the coefficient which
is J times that of ηO(θ), so the relationship between ηO(θ) and ηsp(θ) is guaranteed to be:

ηO(θ) < ηsp(θ) (13)

Equation (13) indicates that the space-time array can improve the spatial resolution in the scenario
assumed in this paper. Moreover, we can find that ηsp(θ) will increase when Ts, J or v increases. Hence,
longer duration of the time segment and higher velocity are beneficial to the resolution.

3.3. CRB

In this section, we derive the DOA estimation CRB of conventional and space-time array model.
Then a comparison is provided to provide some in-depth conclusions about the performance.

The derivation of CRB generally relies on random signal (Gaussian) model or nonrandom
(conditional) signal model. In this paper, we consider that the sources are nonrandom.

We define CRBO(θ) as the CRB of the conventional array model. According to the work of [21],
the value of CRBO(θ) is computed as:

CRBO(θ) =
σ2

n
2K

{
Re
[
H�RT

s

]}−1
(14)

in which � represents the Hadamard product. Rs = E
[
s(k)sH(k)

]
is the source covariance matrix.

The matrix H is defined as:

H = WH(θ)

[
IM −A(θ)

(
AH(θ)A(θ)

)−1
AH(θ)

]
W(θ)
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W(θ) =
[
w(θ1), w(θ2), · · · , w

(
θQ
)]

,

(
w
(
θq
)
=

∂a
(
θq
)

∂θq

)
where I denotes the identity matrix and the subscript is its dimension.

The CRB of space-time array model can also be obtained in a similar way. From Equations (6) and
(7), we know that the dimension of the space-time observation signal z(p) is MJ × P, where MJ is the
equivalent sensor number and P is the equivalent sample number. Designating CRBsp(θ) as the CRB
of space-time array model, it can be given by:

CRBsp(θ) =
σ2

ξ

2P

{
Re
[
G�RT

γ

]}−1
(15)

where Rγ = E
[
γ(p)γH(p)

]
is the covariance matrix of space-time input. G is similarly defined as H,

that is:

G = YH(θ)

[
IMJ −Φ(θ)

(
ΦH(θ)Φ(θ)

)−1
ΦH(θ)

]
Y(θ)

Y(θ) =
[
y(θ1), y(θ2), · · · , y

(
θQ
)]

,

(
y
(
θq
)
=

∂ϕ
(
θq
)

∂θq

)
To be convenient to make contrast between the CRB of two models, CRBO(θ) and CRBsp(θ) can

be further deduced to become:

CRBO(θ) ≈ 6
MK diag

{
α1 α2 · · · αQ

}
αq = 1

SNRq

(
2π f0

cos θq
c

)2
[(M2−1)d2]

q = 1, · · · , Q (16)

CRBsp(θ) ≈ 6
MK diag

{
β1 β2 · · · βQ

}
βq = 1

SNRq

(
2π f0

cos θq
c

)2
[(M2−1)d2+(J2−1)(vTs)

2]
q = 1, · · · , Q (17)

In Equations (16) and (17), SNRq is the signal-to-noise ratio (SNR) of the q-th signal and its value
is σ2

sq/σ2
n (equal to σ2

γq/σ2
ξ ).

Proof. See Appendix B. �

It is worth noting that CRBsp(θ) contains a time domain information term in the denominator.
To concisely make comparison between CRBO(θ) and CRBsp(θ), we take the single signal case as the
example. Then the relationship between the CRB of the two array models can be expressed as:

CRB−1
sp (θ) = CRB−1

O (θ) +
MKSNR

(
2π f0

cos θ
c

)2(
J2 − 1

)
(vTs)

2

6
(18)

Obviously, when J > 1 and v > 0, the temporal array can bring array gain and yield
CRBsp(θ) < CRBO(θ), which demonstrates that the space-time array model can reduce the CRB.
Meanwhile, the increase of Ts, J or v can enlarge the temporal array gain and lead to lower CRB.

Remark 1. As concluded above, Ts and J are important factors impacting the performance. However, Equation
(4) indicates that the coherent processing interval is JTs. This duration is subject to the signal coherent
time. Thus parameter Ts and J cannot increase infinitely and should be carefully selected based on signal
temporal coherence.
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Remark 3. The condition vTs = Md can lead to optimal distinguishable source number MJ. Nonetheless,
the increase of Ts may decrease J when the signal coherent time is unchanged, which makes the improvement of
the distinguishable source number inconspicuous. Hence it is suggested to enlarge v for multi-signal cases.

Remark 3. Expressions of resolution and CRB have similar forms. ηsp(θ) has a time domain information
term in the numerator while CRBsp(θ) has this term in the denominator. Therefore, from the perspective of
expressions, enhancement results from the simultaneous employment of spatial and temporal information.

Remark 4. ηsp(θ) is mainly impacted by the temporal manifold vector dimension J since it possesses J as the
coefficient rather than JTs. Therefore, we can properly enlarge J and decrease Ts when we need higher spatial
resolution, and this operation will not degrade the DOA estimation accuracy (CRB preserved).

4. Simulation

In this section, some computer simulations are presented to verify our deduction about space-time
arrays and demonstrate its performance. In the figures of this section, the curves with postfix
‘conventional’ and ‘ST’ denote the performance curves of a conventional array and a space-time
array, respectively. We consider a uniformly linear array with nine sensors. The array is equipped on
an airplane and moves along its baseline at a constant velocity of 200 m/s.

First, we resort to the MUSIC algorithm to check the resolving ability of the space-time array (the
specific operations of the algorithm can be seen in Appendix C). Assume that two narrow-band signals
are impinging on the array from angles of 10◦ and 13◦, respectively. The carrier frequency is 300 MHz.
The dimension of the temporal manifold vector is 20 (J = 20). The sample number is 1200 and the
sample interval (Ts) after down-conversion is set to satisfy vTs = d. Figure 2 displays the spatial
spectrum of two arrays for different SNRs. In Figure 2a, only the space-time array can distinguish the
two sources. In Figure 2b, when the SNR is high, the two arrays can both distinguish them.
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Figure 1. Spatial spectrum for different SNRs: (a) SNR = 2dB; (b) SNR = 10dB. Figure 2. Spatial spectrum for different SNRs: (a) SNR = 2dB; (b) SNR = 10dB.

To further demonstrate the spatial resolution enhancement, we plot the probability of the target
resolution curves for different values of J in Figure 3, where the input SNR changes from −6 dB to
12 dB and other conditions are maintained. From the figure, we can see that the space-time array
has better source resolution capability than the conventional array especially in the low SNR region,
and the result appears to achieve higher probability of target resolution with larger J. Hence, the array
spatial resolution can be enhanced by involving more virtual antennas. The results in Figures 2 and 3
indicate that the capability of resolving adjacent sources of a space-time array is much better than that
of a conventional array.
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Next, we verify the deduction about CRB. Figures 4 and 5 show the contrast between the CRB of
the conventional and space-time array model over SNR and sample number, respectively. In Figure 4,
we assume that a signal is impinging on the array from 15◦. The signal carrier frequency, sample
number, sample interval and platform moving velocity stay the same as the scenario in Figures 2 and 3.
The dimension of the temporal manifold vector is 10 (J = 10). The SNR changes from from −10 dB to
10 dB. In Figure 5, we fix SNR at a constant value of 5 dB. The sample number changes from 200 to
1200. Other conditions are the same as Figure 4. From the two figures, it can be observed that the CRB
of the space-time array is obviously lower than that of the conventional array, which indicates that the
space-time array can improve the estimation accuracy.
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Figure 6 shows the CRB performance of the space-time array for different velocities. We set the
same scenario as Figure 4, and the signal carrier frequency, sample number and sample interval are
also unchanged. The dimension of b(θ) is 10 (J = 10). We can observe that the CRB performance
improved with the velocity gets larger. When the velocity reaches 300 m/s, the CRB can reach below
0.01◦ for high SNR. Besides, for low SNR, the improvement is more obvious.
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Like Figure 6, we depict five curves to represent different temporal manifold vector dimensions
in Figure 7. The velocity is 200 m/s and other conditions stay the same. It can be seen that the
performance is better with more equivalent temporal array elements, but the improvement tendency
becomes slower with enlarged J. Besides, we know that the complexity of the space-time array will
extend when J increases, so it is important to make a compromise between complexity and performance
for the selection of J.

In Figures 6 and 7, specially, when v = 0 or J = 1, the performance curve is coincident with the curve
of the conventional array. Under the condition that v = 0, i.e., the array is static, there is no Doppler
shift in the signal time domain. The temporal manifold vector b(θ) = [1, 1, · · · , 1]T , which does not
contain DOA information. Therefore, although the dimension of the space-time manifold vector is
enlarged, the available information is not increased so that the performance is not improved. On the
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other hand, for the case that the signal has relatively wide bandwidth, whose coherent time is short,
the number of the samples in a time segment is limited. In the worst case (i.e., J = 1), the dimension of
the array steering vector is not extended, which means that the DOA information in time domain is
not employed, so the performance curve also converges to the curve of the conventional array.
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5. Conclusions

This paper constructs a joint space-time array model based on a moving platform. The proposed
space-time array combines spatial information with temporal information and obtains better
performance than a conventional array, which makes it applicable in those conditions assumed in this
paper. The theoretical analysis demonstrates that the space-time array improves the distinguishable
source number, spatial resolution and estimation accuracy. Numerical simulations validate our
deduction and illustrate the reliability of the space-time array performance. Nevertheless, our method
requires that the duration of the time segment be less than the coherence time of the signal. When the
signal bandwidth is relatively wide, the performance of proposed space-time array will degrade
severely. Thus, our future work will focus on developing methods for more general environment.
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Appendix A

Derivation of ηO(θ) and ηsp(θ) According to the statement in Section 3.2, the spatial and temporal
steering vector can be written as:

aη(θ) = exp
(

j2π f0
d sin θ

c

(
−M−1

2

))
a(θ)

=
[
exp

(
j2π f0

d sin θ
c

(
−M−1

2

))
, · · · , exp

(
j2π f0

d sin θ
c

(
M−1

2

))]T
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bη(θ) = exp
(

j2π f0
v sin θ

c

(
− J−1

2

)
Ts

)
b(θ)

=
[
exp

(
j2π f0

v sin θ
c

(
− J−1

2

)
Ts

)
, · · · , exp

(
j2π f0

v sin θ
c

(
J−1

2

)
Ts

)]T

respectively.
The derivative of aη(θ) is:

wη(θ) =
daη(θ)

dθ =
[

j2π f0
d cos θ

c

(
−M−1

2

)
ej2π f0

d sin θ
c (−M−1

2 ), · · · ,

j2π f0
d cos θ

c

(
M−1

2

)
ej2π f0

d sin θ
c ( M−1

2 )
]T

Then calculating the Euclidean norm of wη(θ), we can get:

ηO(θ) = ‖wη(θ)‖2 = 2π f0
cos θ

c

√
M
12

[(M2 − 1)d2] (A1)

The acquirement of ηO(θ) has been proved. Next we deduce ηsp(θ).
First, we should calculate the space-time manifold vector:

ϕη(θ) = aη(θ)⊗ bη(θ) =
[
exp

(
j2π f0

(
−M−1

2
d sin θ

c − J−1
2

v sin θ
c Ts

))
, · · · ,

exp
(

j2π f0

(
−M−1

2
d sin θ

c + J−1
2

v sin θ
c Ts

))
, · · · ,

exp
(

j2π f0

(
M−1

2
d sin θ

c − J−1
2

v sin θ
c Ts

))
, · · · ,

exp
(

j2π f0

(
M−1

2
d sin θ

c + J−1
2

v sin θ
c Ts

))]T

Then according to the same step as ηO(θ), ηsp(θ) can be obtained as follow:

ηsp(θ) = ‖
dϕη(θ)

dθ
‖

2
= 2π f0

cos θ

c

√
MJ
12

[
(M2 − 1)d2 + (J2 − 1)(vTs)

2
]

(A2)

Appendix B

Derivation of CRBO(θ) and CRBsp(θ) In this Appendix we use the steering vectors given in
Section 2.1. We can compute w

(
θq
)

utilizing a
(
θq
)

and obtain:

w
(
θq
)
=

da
(
θq
)

dθq
=

[
0,−j2π f0

d cos θq

c
e−j2π f0

d sin θq
c , · · · ,−j2π f0

(M− 1)d cos θq

c
e−j2π f0

(M−1)d sin θq
c

]T

The matrix H can be written as:

H = WH(θ)
[
IM −A(θ)

(
AH(θ)A(θ)

)−1AH(θ)
]
W(θ)

= WH(θ)W(θ)−WH(θ)A(θ)
(
AH(θ)A(θ)

)−1AH(θ)W(θ)

Some approximations are necessary to be made in the derivation process.
Before calculating H, we need to get the following results firstly [22]:

AH(θ)A(θ) ≈ diag{M, M, · · · , M}Q×Q

WH(θ)W(θ) ≈ M(M− 1)(2M− 1)
6

diag

{(
2π f0

d
c

cos θ1

)2
,
(

2π f0
d
c

cos θ2

)2
, · · · ,

(
2π f0

d
c

cos θQ

)2
}

WH(θ)A(θ) ≈ j
M(M− 1)

2
diag

{
2π f0

d
c

cos θ1, 2π f0
d
c

cos θ2, · · · , 2π f0
d
c

cos θQ

}
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Then we can obtain that H is:

H ≈
M
(

M2 − 1
)

12
diag

{(
2π f0

d
c

cos θ1

)2
,
(

2π f0
d
c

cos θ2

)2
, · · · ,

(
2π f0

d
c

cos θQ

)2
}

(A3)

Next we consider the other part of Equation (14). In this part:

Rs =
1
K

K

∑
k=1

s(k)sH(k) = diag
{

σ2
s1, σ2

s2, · · · , σ2
sQ

}
(A4)

Substituting Equations (A3) and (A4) into Equation (14), we can obtain Equation (16).
The derivation of CRBsp(θ) follows the same procedure as CRBO(θ). First, we should respectively

obtain ϕ(θq) and y(θq) as follows:

ϕ(θq) = a(θq)⊗ b(θq) =

[
1, e−j2π f0

v sin θq
c Ts , · · · , e−j2π f0

v sin θq
c (J−1)Ts , · · · ,

e−j2π f0
d sin θq

c , e−j2π f0(
d sin θq

c +
v sin θq

c Ts), · · · , e−j2π f0(
d sin θq

c +
v sin θq

c (J−1)Ts), · · · ,

e−j2π f0
(M−1)d sin θq

c , e−j2π f0(
(M−1)d sin θq

c +
v sin θq

c Ts), · · · , e−j2π f0(
(M−1)d sin θq

c +
v sin θq

c (J−1)Ts)

]T

y(θq) =
dϕ(θq)

dθq
=

[
0,−j2π f0

v cos θq
c Tse−j2π f0

v sin θq
c Ts , · · · ,−j2π f0

v cos θq
c (J − 1)Tse−j2π f0

v sin θq
c (J−1)Ts , · · · ,

−j2π f0
d cos θq

c e−j2π f0
d sin θq

c ,−j2π f0

(
d cos θq

c +
v cos θq

c Ts

)
e−j2π f0(

d sin θq
c +

v sin θq
c Ts), · · · ,

−j2π f0

(
d cos θq

c +
v cos θq

c (J − 1)Ts

)
e−j2π f0(

d sin θq
c +

v sin θq
c (J−1)Ts), · · · ,−j2π f0

(M−1)d cos θq
c e−j2π f0

(M−1)d sin θq
c ,

−j2π f0

(
(M−1)d cos θq

c +
v cos θq

c Ts

)
e−j2π f0(

(M−1)d sin θq
c +

v sin θq
c Ts), · · · ,

−j2π f0

(
(M−1)d cos θq

c +
v cos θq

c (J − 1)Ts

)
e−j2π f0(

(M−1)d sin θq
c +

v sin θq
c (J−1)Ts)

]T

Then the matrix G can be calculated analogously to matrix H with the knowledge of ϕ(θq)

and y(θq):

G ≈ diag
{

MJ(J2−1)
12

(
2π f0

v cos θ1
c Ts

)2
+

MJ(M2−1)
12

(
2π f0

d cos θ1
c

)2
,

MJ(J2−1)
12

(
2π f0

v cos θ2
c Ts

)2
+

MJ(M2−1)
12

(
2π f0

d cos θ2
c

)2
, · · · ,

MJ(J2−1)
12

(
2π f0

v cos θQ
c Ts

)2
+

MJ(M2−1)
12

(
2π f0

d cos θQ
c

)2
} (A5)

The value of the other factor in Equation (15) is:

Rγ =
1
P

P

∑
p=1

γ(p)γH(p) = diag
{

σ2
γ1, σ2

γ2, · · · , σ2
γQ

}
(A6)

Substituting Equations (A5) and (A6) into Equation (15), we can obtain Equation (17).

Appendix C

MUSIC algorithm for resolution comparison
To intuitively demonstrate the spatial resolution comparison between conventional and space-time

array, we employ MUSIC algorithm. The detailed steps are shown below.
First, we make an eigenvalue decomposition of the covariance matrixes and obtain:

Rx = UsΣsUH
s + UnΣnUH

n (A7)

Rz = UγΣγUH
γ + Uξ ΣξUH

ξ (A8)



Sensors 2018, 18, 3388 13 of 14

where Us contains the signal subspace eigenvectors of Rx and diagonal matrix Σs contains the
corresponding eigenvalues. Similarly Uγ contains the signal subspace eigenvectors of Rz and diagonal
matrix Σγ contains corresponding eigenvalues. Un and Uξ contain the noise eigenvectors, meanwhile
Σn and Σξ contain the eigenvalues. The MUSIC spatial spectrum is computed by:

f̂MUSIC(θ) =
1

aH(θ)UnUH
n a(θ)

(A9)

f̂MUSIC−ST(θ) =
1

ϕH(θ)UξUH
ξ ϕ(θ)

(A10)

where f̂MUSIC(θ) and f̂MUSIC−ST(θ) represent the values of the MUSIC spectrum based on
conventional model and space-time model, respectively.

We can utilize Equations (A9) and (A10) to plot the spatial spectrum and observe the circumstance
of distinguishing adjacent signals.
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