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Abstract: This paper considers the parameter estimation problem under non-stationary environments
in sensor networks. The unknown parameter vector is considered to be a time-varying
sequence. To further promote estimation performance, this paper suggests a novel diffusion
logarithm-correntropy algorithm for each node in the network. Such an algorithm can adopt both the
logarithm operation and correntropy criterion to the estimation error. Moreover, if the error gets larger
due to the non-stationary environments, the algorithm can respond immediately by taking relatively
steeper steps. Thus, the proposed algorithm achieves smaller error in time. The tracking performance
of the proposed logarithm-correntropy algorithm is analyzed. Finally, experiments verify the validity
of the proposed algorithmic schemes, which are compared to other recent algorithms that have been
proposed for parameter estimation.

Keywords: non-stationary; sensor networks; parameter estimation; diffusion logarithm-correntropy
algorithm; tracking performance

1. Introduction

Sensor networks are useful tools for disaster relief management, target localization and tracking,
and environment monitoring [1–4]. Distributed parameter estimation plays an essential role in sensor
networks [5–7]. The objective of the parameter estimation is to estimate some essential parameters from
noisy observation measurements through cooperation between nodes. Moreover, distributed strategies
are of great significance to solve the problem of parameter estimation in sensor networks, due to their
robustness against imperfections, low complexity, and low power demands.

Among these distributed schemes, in the incremental strategy [8], a cyclic path is defined over the
nodes and data are processed in a cyclic manner through the network until optimization is achieved.
However, determining a cyclic path that runs across all nodes is generally a challenging (NP-hard) task
to perform. In the consensus strategy [9], vanishing step sizes are used to ensure that nodes can reach
consensus and converge to the same optimizer in steady-state. In the diffusion strategy, information is
processed locally and simultaneously at all nodes. The processed data are diffused through a real-time
sharing mechanism that ripples through the network continuously [10,11]. The diffusion strategies are
particularly attractive because they are robust [12–15], flexible, and fully distributed compared with
incremental and consensus strategies, so we adopt diffusion strategies in this paper.
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Most prior literature is mainly concerned with the case where nodes estimate the parameter
vector collaboratively in the stationary case over sensor networks [10,16]. However, in the real world,
the non-stationary case is normal. In this work, we mainly consider the parameter estimation in the
non-stationary case, where the parameter is always time-varying. The observation data are nonlinear
and non-Gaussian, since the data may be disturbed by changing communication links or outliers under
the non-stationary environments.

Inspired by the differentiability and mathematical tractability of logarithm functions, we introduce
the logarithm function as the error cost function [17]. Moreover, the correntropy criterion is a nonlinear
measure of similarity between two random variables [18], which is a robust optimality criterion has
been successfully used in the field of non-Gaussian signal processing. To make the error cost function
more suitable for non-stationary environments, we propose a diffusion signal processing framework
with a logarithm-correntropy cost function to solve the parameter estimation problem, which can
elegantly and gradually adjust the cost function in its optimization based on the error amount.

A. Related Works

The tracking behavior of a wide range of adaptive networks under non-stationary conditions
was thoroughly investigated in [19–22]. In stationary conditions, based on the p norm error
criterion, a diffusion minimum average p-power (dLMP) was proposed to estimate the parameters in
wireless sensor networks [23]. To estimate the mean-square weight deviations under the zero-mean
stationary measurement noise, the proportionate-type normalized least mean square algorithms were
proposed in [24]. The diffusion normalized least-mean-square algorithm (dNLMS) was proposed
for parameter estimation in a distributed network [25], and the variable step size of the dNLMS
algorithm was obtained by minimizing the mean-square deviation to achieve fast convergence rate.
The gradient-descent total least-squares (dTLS) algorithm is a stochastic-gradient adaptive filtering
algorithm that compensates for error in both input and output data [26]. The steady-state analysis
of gradient-descent total least-squares was inspired by the energy-conservation-based approach
to the performance analysis of adaptive filters. When measurement noise involves impulsive
interference, Ni, Chen, and Chen [27] designed a diffusion sign-error LMS (dSE-LMS) to solve
the parameter estimation. The tracking performance of a variable step-size diffusion LMS algorithm
is considered in non-stationary environment [28], but this research did not get the closed-form
expression of steady-state mean-square deviation (MSD) or excess mean-square error (EMSE) of the
network. Consequently, the theory and simulation do not match well. To date, the performance
of distributed estimation algorithms has been predominantly studied under stationary conditions.
However, the performances of these algorithms may degrade in non-stationary environments.

To find the optimal adaptation step sizes over the networks, Abdolee, Vakilian, and Champagne [29]
formulated a constrained nonlinear optimization problem and solved it through a log-barrier Newton
algorithm in an iterative manner. By using the optimal step size at each node, the performance
of diffusion least-mean squares (DLMS) could be improved in non-stationary signal environments.
Compared with this research, the proposed algorithm can respond immediately by taking relatively
steeper steps when the error gets larger, and as a result, the new algorithm can perform well in
non-stationary environments without finding the optimal step size at each node.

B. Our Contributions and Organization

To further promote estimation performance in non-stationary environments over sensor networks,
a novel algorithm needs to be designed. In this paper, the random-walk model is introduced for
non-stationary environments. We proposed the logarithm-correntropy algorithm for parameter
estimation in sensor networks under the non-stationary environments. This algorithm can adopt both
the logarithm operation and correntropy criterion to the estimation error. Moreover, if the error gets
larger due to the non-stationary environments, the algorithm can respond immediately by taking
relatively steeper steps. Thus, the proposed algorithm achieves smaller error in time. The tracking
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performance of the proposed algorithm was analyzed. Simulation results are presented to evaluate the
proposed algorithm.

The rest of this paper is organized as follows. In Section 2, we describe the estimation problem in
a non-stationary environment. Section 3 introduces the adapt-then-combine (ATC) diffusion diffusion
logarithmic-correntropy algorithm. In Section 4, the tracking performance analysis of the proposed
algorithm is presented. Simulation results are presented in Section 5. Finally, conclusions are drawn in
Section 6.

Notation: In what follows, let bold letters denote random variables and non-bold letters
represent their realizations. Operators (.)T and E [.] denote transposition and expectation, respectively.
Im denotes an m×m identity matrix. 1 is an N × 1 all-unity vector. |.| is the absolute value of a scalar.

2. Estimation Problem in a Non-Stationary Environment

Consider a network with N nodes (sensors) deployed to observe some physical phenomena
and specific events in a special environment. It is fundamentally necessary to consider and analyze
parameter estimation under non-stationary conditions with the intent of employing them for practical
applications. One challenge confronted in real-world applications is the non-stationary nature of the
underlying parameters. For this purpose, a data model with a varying parameter is required. In this
paper, we use the random walk model in [19] to depict the non-stationary condition.

Assumption 1. (Random Walk Model): The parameter vector varies based on the following model:

w∗i = w∗
i−1

+ ηi, (1)

where w∗i−1 is a random variable with a constant mean, where i is the time index. ηi is a zero-mean random
sequence with a covariance matrix Rη .

Assumption 2. The sequence ηi is independent of uk,i and nk,i for all k and i.

Assumption 3. The initial conditions w∗−1 are independent of all dk,i , uk,i , nk,i, and ηi.

At every time i, every node k can only exchange information with the nodes from its
neighborhoods Nk (including node k itself), and takes a scalar measurement dk,i according to:

dk,i = (w∗i )
Tuk,i + nk,i, (2)

where uk,i denotes the M× 1 random regression input signal vector and we assume I > M, nk,i is
the Gaussian noise with zero mean and variance σ2

n,k. The problem is to estimate an M× 1 unknown
varying vector w∗i at each node k from collected measurements. The objective of the network is to
search for all unknown variable w and find the best estimation w∗ at the end by minimizing the MSE
cost function in a distributed manner as follows:

Jk (w) = E
∣∣∣dk,i − wTuk,i

∣∣∣2. (3)

The cost function of the global network can be described as:

min
(w)

Jglobal (w) =
N

∑
k=1

E
∣∣∣dk,i − wTuk,i

∣∣∣2. (4)

The optimization problem in Equation (3) can be solved by the diffusion strategies proposed
in [30,31]. In these strategies, the estimate for each node is generated through a fixed combination
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strategy, which refers to giving different weights to the estimation of k’s neighbors to minimize the
local function as follows:

Jlocal
k (w) = ∑

l∈Nk

clkE
∣∣∣dl,i − wTul,i

∣∣∣ , (5)

where clk is the combination coefficient. For simplicity and good performance, we use the Metropolis
rule in our work. The description of the Metropolis rule is:

cl,k =



1
max (nk,nl)

, if l ∈ Nk\k,

1− ∑
l∈Nk\k

clk, if l = k,

0. if l /∈ Nk,

(6)

where nk is the degree of node k (the number of nodes connected to node k). The combining coefficients
clk also satisfy the following conditions: ∑

l∈Nk∪k
clk = 1 and clk = 0 i f l /∈ Nk, CI = I, ITC = IT ,

where C is an N × N matrix with non-negative real entries {clk}.

3. Diffusion Logarithmic-Correntropy Algorithm

In the non-stationary case, the parameter is always time-varying. We propose a new
logarithmic-correntropy method to solve the parameter estimation problem. In order to solve
Equation (3), since nodes in sensor networks have access to the observed data, we can take advantage
of node cooperation by introducing a distributed diffusion learning manner.

In this paper, we are inspired from the recent developments in the information theoretic learning
(ITL) related to the “logarithmic cost function” and the “correntropy”-based approaches [17,32].
The logarithmic function is differentiable, which makes it mathematically tractable. We introduce
the logarithmic function as an efficient cost function in the adaptive algorithm. In this framework,
we introduce an error cost function using the logarithmic function given by:

J (ek,i) = F (ek,i)−
1
α

ln (1 + αF (ek,i)) , (7)

where α > 0 is a a small systemic parameter and F (el,i) is a conventional cost function of the estimation
error ek,i on each node k. The estimation error is ek,i = dk,i − wTuk ,i. In this paper, we introduce the
correntropy criterion to formulate the conventional cost function F (.). The correntropy is a similarity
measure based on the ITL criterion. Given two random variables X and Y, the corresponding
correntropy between them can be defined by [33]:

V (X, Y) = E [kσ (X−Y)] =
∫

kσ (x− y)dFXY (x, y) , (8)

where kσ (.) is a continuous, symmetric, positive-definite function with bandwidth σ, also called the
Mercer kernel. E is an expectation operator. The joint distribution function of X and Y is FXY (x, y).
The Gaussian kernel is mainly concerned in this paper.

kσ (x− y) = exp

(
− (x− y)2

2σ2

)
(9)

For each node k, based on the correntropy criterion, the instantaneous conventional cost function
F (ek,i) is:

F (ek,i) = kσ (ek,i) = exp

(
−
(
dk,i − wTuk,i

)2

2σ2

)
= exp

(
− (ek,i)

2

2σ2

)
. (10)
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In non-stationary conditions over networks, the communication among nodes is subject to link
noise, and it is natural that the observation vectors are affected by noise. The total least squares (TLS)
method for estimation can have desirable performance by reducing the noise effect from both the
observation vector and the data matrix [34]. We briefly explain the TLS method as follows:

Consider the linear parameter estimation problem Ax ≈ b, where A is the data matrix, b is the
observation vector, and x is the unknown parameter vector. The least squares (LS) approach considers
that the observation vector is noisy while the data matrix is noiseless. However, the total least squares
(TLS) approach considers that both the observation vector and the data matrix are noisy [35]. The LS
approach seeks the estimate of the unknown parameter vector x by minimizing a sum of squared
residuals expressed by:

min
x

(Ax− b)2, (11)

while the TLS approach minimizes a sum of weighted squared residuals expressed by:

min
x

(Ax− b)2

(x)2 + 1
. (12)

From the matrix algebra viewpoint, the total least squares (TLS) approach is a refinement of the
LS method when there are errors in both the observation vector and the data matrix. Inspired by the
desirable features of the TLS method, to make the logarithm-correntropy method more suitable for
non-stationary environments, we rewrite the conventional cost function as:

F̃ (ek,i) = exp

(
−
(
dk,i − wTuk,i

)2

2σ2 (w2 + 1)

)
= exp

(
− (ek,i)

2

2σ2 (w2 + 1)

)
. (13)

To demonstrate the superiority of the proposed logarithm-correntropy method, we introduce
different stochastic cost functions, such as the least mean square cost e2 and absolute difference cost
|e|. Figure 1 compares these cost functions with the proposed cost function logarithm-correntropy
(e). It can be observed that the proposed cost function logarithm-correntropy (e) is less sensitive
to tiny interference on the error, and shows comparable steepness for quite large error interference.
Furthermore, this new logarithm-correntropy cost function benefits from mapping the original input
space into a potential higher-dimensional “feature space”, where linear methods can be employed.
Particularly, if the error gets larger due to the non-stationary environments, the algorithm can respond
immediately by taking relatively steeper steps. Thus, the proposed algorithm achieves smaller error in
time and takes more gradual steps in space.

Given the data model, all nodes can observe data generated by the data model in Equation (2).
It is natural to expect collaboration between nodes to be beneficial for a distributed sensor network.
This means that neighbor nodes can share information with each other as permitted by the network
topology. Therefore, according to Equations (7) and (13), we define the global cost function so that all
nodes in the sensor network can be adapted in a distributed manner, then the new global function can
be built as follows:

Jglobal (w) =
Nk
∑

k=1

(
F̃ (ek,i)− 1

α ln
(
1 + αF̃ (ek,i)

))
=

Nk
∑

k=1

(
exp

(
− (ek,i)

2

2σ2(w2+1)

)
+ 1

α ln
(

1 + α exp
(
− (ek,i)

2

2σ2(w2+1)

)))
.

(14)
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To develop the distributed diffusion logarithm-correntropy algorithm in non-stationary
environments over sensor networks, we can build the following new diffusion Logarithm-Correntropy
Algorithm (dLCA) local cost function at every node k as:

Jlocal
k (wk,i) = ∑

l∈Nk

clk

(
F̃ (el,i)− 1

α ln
(
1 + αF̃ (el,i)

))
= ∑

l∈Nk

clk H (el,i)

= ∑
l∈Nk

clk

(
exp

(
− (el,i)

2

2σ2
(
(wl,i)

2
+1
)
)
+ 1

α ln

(
1 + α exp

(
− (el,i)

2

2σ2
(
(wl,i)

2
+1
)
)))

,

(15)

where wk,i is the local estimate obtained by node k at time i, el,i = dl,i − (wl,i)
Tul,i is the estimation

error at node l, l denotes any neighbor node of node k, H (el,i) = F̃ (el,i)− 1
α ln

(
1 + αF̃ (el,i)

)
, and the

cl,k denote combining coefficients, which also is subjected to the Metropolis rule.
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Figure 1. (a) The value of cost function; (b) The gradient of cost error function.

To reach the minimum w∗i , it is a natural thought to use the steepest-descent method. Taking the
derivative of Equation (15), we have

∂Jlocal (wk,i)

∂wk,i
= ∑

l∈Nk

clk
∂H (el,i)

∂wl,i
= ∑

l∈Nk

clk

(
τl,i +

τl,i

1 + αζl,i

)
, (16)

where ξl,i = exp

(
− (el,i)

2

2σ2
(
(wl,i−1)

2
+1
)
)

and τl,i=

(
exp

(
− (el,i)

2

2σ2
(
(wl,i−1)

2
+1
)
)

.
el,i(ul,i+dl,iwl,i)

σ2
(
(wl,i−1)

2
+1
)2

)
.

Since nodes in the sensor networks have access to all observed data, we can take advantage
of node cooperation by introducing a diffusion strategy to estimate the parameter wk,i in a fully
distributed manner. This paper concerns the Adapt-then-Combine (ATC) scheme of the diffusion
strategy. As Figure 2 shows, in the ATC scheme, nodes in networks combine information from their
immediate neighbors firstly, and then employ updates by the following steps:

(1) Adaptation: In order to obtain an intermediate estimate, we introduce a step-size parameter µ.
Each node updates its current estimate for the true parameter value by taking steepest-descent method.
We can obtain an intermediate estimate ϕk,i as follows:

ϕk,i = ϕk,i−1 − µ
∂H (ek,i)

∂wk,i−1
= ϕk,i−1 − µ

(
τl,i +

τl,i

1 + αξl,i

)
. (17)
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(2) Combination: This step is also called the diffusion step, to obtain a new estimate, each node
aggregates its own intermediate estimate from all its neighbor nodes as follows:

wk,i = ∑
l∈Nk

clk ϕl,i. (18)

For the purpose of clarity, we summarize the procedures of the diffusion Logarithm-Correntropy
Algorithm (dLCA) (Algorithm 1) as follows:

Algorithm 1: diffusion Logarithm-Correntropy Algorithm

Initialize: Start with
{

wl,−1 = 0
}

for all l, initialize wk,0 for each node
k,step-size µ, and cooperative coefficients clk. Set α > 0, σ > 0.
for t = 1 : T

for each node k:
Adaptation.

ξl,i = exp
(
− (el,i)

2

2σ2((wl,i−1)
2+1)

)
τl,i=

(
exp

(
− (el,i)

2

2σ2((wl,i−1)
2+1)

)
. el,i(ul,i+dl,iwl,i)

σ2((wl,i−1)
2+1)

2

)
.

ϕk,i = ϕk,i−1 − µ
∂H(ek,i)
∂wk,i−1

= ϕk,i−1 − µ
(

τl,i +
τl,i

1+αξl,i

)
Communication.
Transmit the intermediate ϕk,i to all neighbors in Nk.
Combination.

wk,i = ∑
l∈Nk

clk ϕl,i

Nk are the neighbor nodes of node k in the communication subnetwork.

Node k  (node 1)

Node k 

1

2

34

Figure 2. Adapt-then-Combine (ATC) diffusion strategies. Step 1 depicts a sensor network working in
a non-stationary environment. In the adaptation stage 2, each node is using observed data

(
uk,i, dk,i

)
to

update its intermediate estimate ϕk,i. Step 3 shows the information exchanging process between nodes.
In the combination stage 4, each node collects the intermediate estimates from its neighbors.
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4. Tracking Performance Analysis

The tracking performance of the proposed diffusion logarithm-correntropy algorithm is analyzed
in this section. The convergence condition is first studied with w̃i, defined as the error signal, which is
a time-varying parameter under the random walk model:

w̃i , w∗i −wk,i. (19)

It has been proven that subtracting w∗i from both sides of the update procedure on a node and
then taking the expectation value leads to the following relation under stationary conditions in [10]:

Ew̃i =

[
I − µ

Nk

∑
k=1

Ru,k

]
E {w̃i−1} . (20)

Then, considering the Assumptions 2 and 3 of the random sequence {ηi}, we observe that w∗i
has a constant mean and hence E

[
w∗i
]
= E

[
w∗i−1

]
under the relation in Equation (1). Taking the

expectation value leads to the following relation under non-stationary conditions in Equation (1).
We obtain

Ew̃i =

[
I − µ

Nk

∑
k=1

Ru,k

]
E {w̃i−1 + ηi} . (21)

In Equation (21), ηi is a zero-mean variable sequence with covariance matrix Rη . Our purpose is to
achieve mean square deviation (MSD) and excess mean square error (EMSE) for each node, which are
defined as:

MSDk = E
∥∥w̃k,∞

∥∥2
I . (22)

EMSEk = E
∥∥w̃k,∞

∥∥2
Ru,k

. (23)

In the proposed algorithm in Equation (17), the error signals can be defined as follows:

ψ̃k,i , w∗i −ψk,i, (24)

ek,i , dk,i − uk,iψ̃k−1,i. (25)

In the non-stationary case with w∗i = w∗
i−1

+ ηi, based on the definition in Equation (15), Jlocal
k (w)

is twice continuous differentiable when w 6= 0. Then we obtain the Hessian matrix of Jlocal
k (w),

which is defined as ∇2
w Jlocal

k (w).
From Lemma 1 and Theorem 1 in [12], the bound Hessian is: λk,min IM ≤ ∇2

w Jlocal
k ≤ λk,max IM and

0 ≤ λk,min ≤ λk,max.
Equations (16)–(18) cause gradient error. The error recursion is then given by

ϕ̃k,i = [IM − µHk,i−1] w̃k,i−1 − µnk,i, (26)

w̃k,i = ∑
l∈Nk

clk ϕ̃l,i. (27)

In Equation (26), as a positive-definite random matrix, Hk,i−1 is defined as

Hk,i−1 ,
∫ 1

0
∇2

w Jlocal
k (w∗ − t � w̃k,i−1) dt. (28)

Applying Jensen’s inequality to Equation (27), the variance of w̃k,i is bounded by
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E
∥∥w̃k,i

∥∥2 ≤ ∑
l∈Nk

clkE
∥∥ϕ̃l,i

∥∥2, (29)

where ‖.‖2 is a convex function and represents the squared Euclidean norm.
Integrating both sides of Equation (26), we achieve

E
∥∥ϕ̃k,i

∥∥2
= E

(∥∥w̃k,i−1
∥∥2

Σk,i−1

)
+ µ2E

∥∥nk,i
∥∥2, (30)

Σk,i−1 , (IM − µHk,i−1)
T (IM − µHk,i−1) + µHT

k,i−1Hk,i−1. (31)

It follows from the bound Hessian and Equation (28) that

0 ≤ Σk,i−1 ≤ τ2
k IM, (32)

where
τ2

k , max
{
(1− µkλk,max (Ru,k))

2, (1− µkλk,min (Ru,k))
2
}
+ µ2λ2

k,max
(Ru,k) . (33)

According to [12], substituting Equation (32) into Equation (30), we get

E
∥∥ϕ̃k,i

∥∥2 ≤
(

τ2
k + αµ2

k

)
E
∥∥w̃k,i−1

∥∥2
+ µ2σ2

n,k
, (34)

where α ≥ 0 is a constant. The global MSD is introduced, which leads to

w̃i , col
{

E‖w̃1,i‖2, E‖w̃2,i‖2, · · · , E‖w̃N,i‖2
}

. (35)

We collect the {clk} into N × N matrices Ci , such that C = E [Ci]. The Ci is left-stochastic, that is,
CT

i 1N = 1N , 1N means the N × 1 all one vector. From Equations (29) and (35), it holds that

w̃i ≺
−

CTΓw̃i−1 + CTΞ1N , (36)

where � denotes element-wise ordering and

Γ , diag
{

τ2
1 + αµ2, · · · τ2

N + αµ2
}

, (37)

Ξ , diag
{

µ2σ2
n,1

, · · · , µ2σ2
n,N

}
. (38)

In order to ensure the stability of the proposed algorithm in the mean sense, according to
Theorem 1(mean− squarestability) in Reference [12], it should hold that

µk < min

{
2λk,max (Ru,k)

λ2
k,max (Ru,k) + α

,
2λk,min (Ru,k)

λ2
k,min (Ru,k) + α

}
. (39)

Since λ2
k,min (Ru,k) + λ2

k,max (Ru,k) ≥ λ2
k,min (Ru,k). As i→ ∞, which indicates

lim
i→∞
‖w̃i‖∞ ≤

‖Ξ‖∞
1− ‖Γ‖∞

=
maxk

(
µ2σ2

n,k

)
1−maxk

(
τ2

k + αµ2
) , (40)

where ‖.‖∞ is the l∞ norm. When the step-sizes {µ} are sufficiently small, we can further yield the
conclusion that

lim
i→∞
‖w̃i‖∞ ≤

σ2
n,k

2 min
1≤k≤N

(λk,min)

µ2
max

µmin
. (41)
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According to the bound in Equation (41), if step-sizes {µ} are sufficiently small, the MSD of each
node is E‖ω̃k (i)‖2, which can become sufficiently small.

5. Simulation Results

In this section, to verify the performance of the proposed diffusion logarithm-correntropy
algorithm, we considered a network consisting of 20 nodes and 50 communication links. The topology
is shown in Figure 3. The sensor nodes were randomly deployed in an area of 100× 100 and the
communication distance between nodes was set as 35. All results below were averaged over 150
independent Monte Carlo simulations with randomly generated samples.

In this simulation part, firstly, the performance of the proposed algorithm was verified in
a non-stationary environment over sensor networks and the communication links were ideal.
In Figure 4, the regression inputs {uk (i)} are independent identically distributed (i.i.d.), which
are zero-mean Gaussian vectors with covariance matrices Ru,k = σ2

u,kIM, and the σ2
u,k is the input

variance. The background noises {nk (i)} are drawn independently of the regressors and are i.i.d. The
unknown parameter vector w∗i is time-varying, as Figure 5 shows. The fixed step-size µ = 0.002 is used
in the simulations.
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Figure 3. The topology of sensor network with 20 nodes.

The MSD learning curves are plotted in Figure 6. It shows that the proposed dLCA algorithm
obtained the fastest convergence rate when compared with the dSE-LMS, dLMP, dTLS, and
dNLMS algorithms. It also shows that the dLCA algorithm could achieve relatively good performance
in terms of the network MSD. The proposed algorithm had relatively smaller MSD than the mentioned
algorithms. From these simulation results, it can be seen that diffusion logarithm-correntropy algorithm
exhibited better tracking ability in non-stationary environments than the existing classical algorithms.
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(a) (b)

Figure 4. (a) Regressor statistics; (b) Noise variances.
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Figure 5. The desired time-varying vector, w∗i .
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Figure 6. A comparison of simulated MSD learning curves in a non-stationary environment over
sensor networks for the diffusion sign-error least-mean-square (dSE-LMS), diffusion minimum average
p-power (dLMP), gradient-descent total least-squares (dTLS), diffusion normalized least-mean-square
algorithm (dNLMS), and diffusion logarithm-correntropy algorithm (dLCA) algorithms.
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Figure 7 compares the steady-state EMSE performances of related algorithms on each node in
the sensor networks. It can be observed that a large difference was observed at some nodes that
achieved low EMSE. By averaging over 150 experiments and over 50 time samples after convergence,
the steady-state EMSE values were obtained. The proposed algorithm captured a better trend of the
steady-state performance than other algorithms.

Secondly, to further simulate the non-stationary scenarios in sensor networks, the link was
assumed to change at time 4000. The unknown parameter vector w∗i was time-varying with link
changing, as Figure 8 shows.
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Figure 7. Estimated accuracy comparison in terms of excess mean-square error (EMSE) on each node
for the dSE-LMS, dLMP, dTLS, dNLMS, and dLCA algorithms.

From the simulation results shown in Figure 9, in non-stationary environments over sensor
networks with links changing, the diffusion logarithm-correntropy algorithm had smaller MSD than
other related algorithms, such as dSE-LMS, dLMP, dTLS, and dNLMS algorithms. It further shows
that the proposed dLCA algorithm had better tracking ability in non-stationary environments.

Finally, we compared the simulated network MSD curves with theoretical results under
Equation (41) in Figure 10. One can see that theoretical network MSD curves of the proposed algorithm
showed good match with its simulated MSD curves.
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Figure 8. The desired time-varying vector with link changing, w∗i .
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Figure 9. A comparison of simulated MSD learning curves of the global network for the dSE-LMS,
dLMP, dTLS, dNLMS, and dLCA algorithms in non-stationary environments over sensor networks
with links changing.
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Figure 10. Theoretical and simulated MSD curves of the proposed dLCA algorithm under Equation (41).

6. Conclusions

To solve the problem of parameter estimation in non-stationary environments over sensor
networks, each node in the sensor networks was equipped with the logarithm-correntropy cost
function. The proposed algorithm can gradually adjust the cost function in its optimization
based on the estimation error amount. We investigated the tracking behavior of the proposed
algorithm under non-stationary conditions. Furthermore, the simulations were implemented in the
non-stationary environments, where the parameters were time-varying with link changing. Simulation
experiments were conducted to verify the analytical results, and illustrated that the proposed algorithm
outperformed existing algorithms, such as dSE-LMS, dLMP, dTLS, and dNLMS algorithms.
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