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Abstract: This work shows the feasibility of calibrating an industrial robot arm through an automated
procedure using a new, low-cost, wireless measuring device mounted on the robot’s flange. The device
consists of three digital indicators that are fixed orthogonally to each other on an aluminum support.
Each indicator has a measuring accuracy of 3 µm. The measuring instrument uses a kinematic
coupling platform which allows for the definition of an accurate and repeatable tool center point
(TCP). The idea behind the calibration method is for the robot to bring automatically this TCP to three
precisely-known positions (the centers of three precision balls fixed with respect to the robot’s base)
and with different orientations of the robot’s end-effector. The self-calibration method was tested
on a small six-axis industrial robot, the ABB IRB 120 (Vasteras, Sweden). The robot was modeled
by including all its geometrical parameters and the compliance of its joints. The parameters of the
model were identified using linear regression with the least-square method. Finally, the performance
of the calibration was validated with a laser tracker. This validation showed that the mean and the
maximum absolute position errors were reduced from 2.628 mm and 6.282 mm to 0.208 mm and
0.482 mm, respectively.

Keywords: precision; robot calibration; robot accuracy; autonomous calibration; closed-loop
calibration; self-calibration

1. Introduction

In the past two decades, metrology equipment and methods for industrial robot arm
calibration [1] have progressed tremendously, fueled by an ever-increasing demand for higher accuracy.
Most manufacturers no longer want to teach robot poses manually and rely solely on the high
repeatability of industrial robots. This approach is inflexible and time-consuming.

One alternative to reduce the costs associated with this method is to use offline programming
software to plan the robot movements. However, because industrial robots are precise but not accurate,
this method often results in poor accuracy when the program is transferred to the real robot and
requires numerous touchups. Therefore, a calibration procedure is required to increase the robot’s
accuracy. Unfortunately, most calibration methods involve expensive measuring devices such as laser
trackers. However, this problem can be solved by designing new calibration instruments and methods
that, hopefully, provides similar results after calibration at a low cost.

The ideal robot calibration method should be fully-automated, executable on-site, quick to set up
and perform and, of course, highly effective. At the same time, the measuring instruments used for
robot calibration should not only be accurate (volumetric accuracy better than 0.1 mm), but also easy
to use and affordable.
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Current robot calibration methods can be classified into two main categories: open-loop methods
and closed-loop methods [2]. Open-loop methods make use of external metrology equipment to
measure the partial or full pose of the robot’s end-effector when identifying the robot’s parameters.
Over time, researchers have used different metrology systems such as acoustic sensors [3], mechanical
coordinate-measuring machines (CMM)s [4], theodolites [5], laser trackers [6–8], optical CMMs [9],
combinations of the latter two [10], and ballbars [11] for open-loop calibration. These instruments
allow for good calibration performances but have significant drawbacks. They require training and
are more expensive than devices used for closed-loop calibration. Finally, the measurements can be
time-consuming, unless fully-automated, which is not always possible [12].

Closed-loop calibration, also known as self-calibration or autonomous calibration, can be defined
as the automated process of identifying the robot’s parameters by using its internal sensors only [13]
and possibly a sensor attached to the robot’s end-effector. Researchers have used various devices
mounted on a robot’s flange such as ballbars [14], touch probes [15], optical sensors [16], and cable
transducers [17] to use as internal sensors. However, the efficiency of such methods has never
been excellent.

In this paper, a novel self-calibration method is presented using a new 3D measuring sensor
attached to the robot’s flange. The method is almost as effective as the standard calibration procedure
involving a laser tracker, but is more affordable. The measuring principle is similar to that proposed
in [18]. However, instead of manually constraining the robot’s tool center point (TCP) to a mechanical
coupling (e.g., a ball in a socket), the proposed measuring device is used to automatically drive the
robot’s TCP to coincide with the center of a datum sphere. This seemingly minor difference is in fact a
significant improvement since no frequent manual back-and-forth jogging or force control capability is
required and the method can be fully-automated. Furthermore, three datum spheres instead of one are
used for measurements, and they form a permanent world reference frame. Thus, the robot’s accuracy
is improved with respect to this physical reference frame, not with respect to some imaginary frame as
usually done.

On the one hand, instruments similar to the proposed position measuring device already exist,
namely ROSY [19] by Teconsult GmbH, Bayreuth, Germany (based on two cameras) and Laser LAB by
Wiest AG, Neusäß, Germany (based on five laser sensors). However, not only is the accuracy of these
two devices relatively poor (as low as 0.1 mm) but they are used as error measurement devices rather
than replacements of a position’s physical constraint. This means that the robot’s TCP is never exactly
at the center of the datum sphere, but as far away as 10 mm. While this offset is taken into account in
the calibration, it is not measured with high accuracy.

On the other hand, far more accurate devices based on the same principle have been used
for calibrating machine tools. Some researchers have proposed a device called the R-Test [20],
which uses three analog linear probes and has an uncertainty of 1.7 µm for a measurement range of
less than 0.5 mm. A very similar device has also been proposed in [21], but using four probes. Later,
these researchers expanded upon their “chase-the-ball” concept by calibrating a five-axis machine [22].
Finally, the company IBS Precision Engineering (Stuttgart, Germany) offers the Trinity contact-free
probe, which can measure the offset of the center of a special datum sphere (expensive and fragile)
within a range of up to 3.5 mm (still too small for robotics) and with an accuracy of less than 0.001 mm.
Unfortunately, all these devices are relatively expensive (the Trinity costs about $15,000), because
they need to be built with great accuracy and calibrated before use. They are an excellent measuring
solution for machine tools, but inadequate for industrial robots.

In contrast, our device (Figure 1) is based on three off-the-shelf digital indicators which have an
accuracy of 3 µm. Such devices have already been used for measuring repeatability, i.e., for measuring
offsets, albeit very small ones [23]. However, our device is not used to measure offsets with high
accuracy, but only to iteratively guide the robot’s TCP towards the center of a datum sphere until all
indicators are nearly zeroed. For that reason, it does need tight manufacturing tolerances. However,
it requires an affordable means of defining the TCP (the location at which all indicators are zeroed).
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Therefore, the main novelty of our device and approach is the design and use of a special calibrator
plate for defining this TCP.

The proposed measuring device and its accessories (ball plate, kinematic coupling platform) are
affordable (cost about $5000) and inexpensive to repair (in the event of a collision), but can be used to
position the robot’s TCP onto the center of a datum sphere with an offset of less than the repeatability
of the robot (in our study, 0.010 mm). This means that if the coordinates of sufficiently many datum
spheres are measured on a CMM, our measurement scheme can be as accurate as when using a laser
tracker. Of course, in practice, dozens of such spheres cannot be used, so an important objective is
to find a reasonably low number of datum spheres. This keeps the performance of this approach
comparable to the performance of robot calibration using a laser tracker.

This device was first described in [24], where it was used to calibrate a small industrial robot.
However, the results for the robot’s position accuracy after calibration were rather poor when validated
in the robot’s whole workspace. In this paper, there have been significant improvements compared
to our previous work. Firstly, the post-calibration results are greatly improved due to the use of a
comprehensive mathematical model for the robot. This mathematical model is more complete with
the addition of a parameter for consecutive parallel axes. Using this parameter in combination with
the level 3 non-kinematic parameters on joints 2–6 yields much better calibration results in the entire
workspace of the robot. In other words, it is demonstrated that the measuring device, when used
in combination with an appropriate mathematical model and an optimal set of robot configurations,
can provide calibration results in the complete workspace of the robot that are more than five times
better than the results that were presented in our previous paper. Secondly, a novel methodology
was used to validate the performance of each set of parameters found, which is to do multiple
identifications (i.e., more than 2000 identifications) of the robot’s parameters. Usually, the authors
present the results of their calibration with only one identification of the parameters, which might have
been the best results achieved after multiple optimizations, or just plain luck. Besides, most authors
present validation results in only a few poses (typically less than 100). This new method to characterize
the calibration performance of a measuring instrument gives much more credibility to the results as it
shows the impact of the number of configurations selected and what is the range of post-calibration
accuracy that can really be achieved with such a device. When a device like the TriCal is used in
industry, it is not possible to validate the performance of the calibration with a laser tracker due to
budget constraints. Therefore, the engineer must rely on the probabilities that the calibration will be
successful. Our new method provides insight into how to evaluate the probabilities of a successful
calibration based on the number of measurements.

This paper is structured as follows. First, the proposed device and reference artifacts, the measuring
procedure and uncertainty estimation, and the method and the theory used for identifying the robot’s
parameters are described in Section 2. Section 3 presents the experimental results. Finally, the discussion
and conclusion are presented in Section 4.

2. Materials and Methods

2.1. TriCal and Its Accessories

TriCal, the novel device used in our work (Figure 1), is mounted on the flange of a robot and
measures the relative position of stationary 12.7 mm (0.5 in) precision balls (Figure 2) with the help
of three digital indicators. It is, however, important to understand that the accuracy of TriCal is not
uniform. The device is highly accurate only when the center of the ball is in the vicinity of the TCP,
where all digital indicators show no more than a few micrometers. In other words, TriCal is a device
used only to bring the robot’s TCP to a known position with respect to the robot’s base.

TriCal (Figure 1) consists of three Mitutoyo ID-C112XB indicators (Kanagawa Prefecture, Japan).
Each indicator has an accuracy of 0.003 mm and a measuring range of 12.7 mm. The indicators are
supported by an aluminum conical bracket and are orthonormal to each other. Finally, three magnetic
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nests for 12.7 mm balls (from Hubbs Machine and Manufacturing) are fixed at the extremities of the
conical bracket.

Each digital indicator is connected through a statistical process control (SPC) cable to a Mitutoyo
U-WAVE-T wireless transmitter which transmits the measurements to a Mitutoyo U-WAVE-R wireless
receiver. The receiver, which is connected through a universal serial bus (USB) cable to a personal
computer (PC), stores the data from the transmitters as soon as a measurement changes. This outcome
is achieved by setting the transmission parameters to “Event Driven Mode.” In order to retrieve
the measurements stored in the receiver’s memory, an American Standard Code for Information
Interchange (ASCII) string is sent from MATLAB 2014a. The information acquired in MATLAB is then
sent to the robot’s controller via a local area network. The communication setup between the robot,
the PC and TriCal is presented in Figure 3.
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As already mentioned, TriCal is used to bring a virtual TCP to a specific position. Therefore,
a crucial step is the ability to precisely define this TCP with respect to the TriCal’s body. This is achieved
through the use of a special kinematic coupling platform (Figure 4), which is essentially a star-shaped
aluminum fixture holding a magnetic nest in its center (from Hubbs Machine and Manufacturing,
Cedar Hill, AL, USA) and three vee-blocks (from Bal-tec, Los Angeles, CA, USA) at its extremities.
The purpose of the kinematic platform is to locate a 12.7 mm precision ball at the TCP of the device
described in the previous section, in a highly repeatable manner. Once the kinematic platform is
positioned over the measuring device, as shown in Figure 4, all three digital indicators are zeroed
(with their “set” buttons). It has been demonstrated that this TCP position is highly repeatable by
coupling and decoupling the kinematic platform from the TriCal’s body multiple times and reading
the measurement values on the three digital indicators. Those values were still 0.000 mm every time
the kinematic coupling platform was constrained between the vee-grooves. The same configuration,
out of the three possible mating configurations, must be used for the repeatability to be 0.000 mm.
Therefore, the location of the TCP can be measured precisely by a CMM by making sure that the same
configuration is used.
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Finally, an arbitrary number of datum spheres is required for gathering measurements with
the TriCal. In this paper, for simplicity, only three datum spheres are used, because their relative
positions can be measured promptly using a ballbar from Renishaw (Gloucestershire, UK). Furthermore,
the placement of those three datum spheres is not optimized with respect to the robot’s base.
The problem of choosing the optimal number of datum spheres and their optimal placement will be
studied in the future.

The ball plate (Figure 2) used in this study is composed of an aluminum triangular platform
with three magnetic nests for 12.7 mm balls mounted on risers from Renishaw. The plate is mounted
on an articulating platform from Thorlabs (Newton, NJ, USA), which allows the operator to vary
the orientation of the platform. The nests are placed approximately 300 mm apart so that the exact
distance between them can be measured with a telescoping ballbar from Renishaw. Furthermore, nests
and balls are utilized instead of tooling balls, so that they are used to easily validate our work with a
ION laser tracker from FARO (Lake Mary, FL, USA), by replacing the balls with 12.7 mm spherically
mounted reflectors.

2.2. Measurement Procedure

The measurement procedure can be divided into two main operations: semi-automated steps and
a fully-automated centering procedure. Note that several semi-automated steps are needed only the
first time the device is used on a particular robot cell. The whole calibration process was executed on
an ABB IRB 120 robot equipped with the new measuring device, as depicted in Figure 2. This particular
setup will be referred to as setup 1 (measurements for identification).

The measuring device is used to gather measurements, but before it can be used safely and in an
automated fashion, three semi-automated steps should be executed. The first semi-automated step
is performed to define a reference position on each of the digital indicators by using the kinematic
platform. To do so, three 12.7 mm precision balls are positioned on the magnetic nests of the measuring
device. Then, the vee-grooves of the kinematic platform are mated to the precision balls. The operator
resets each indicator to zero (0.000) when the platform is fully-constrained onto the measuring device.
This step takes approximately one minute to complete.

The second semi-automated step is performed to identify the position of the TCP with respect to
the wrist of the robot. This procedure requires four robot configurations. To register each of the required
joint targets, the operator must jog the robot until the three stems of TriCal are in contact with any one of
the three precision balls of the ball plate. Then, the operator can start an automated centering procedure.
This procedure is programmed both in MATLAB and in RAPID and is explained later. Its purpose is to
move the measuring device until all three digital indicators display “0.000”. Once reached, the current
joint target (robot configuration) is saved in the robot’s controller. This process is repeated three times
on the same precision ball that was selected for the first measurement. The position of the TCP with
respect to the wrist can be found by minimizing the Cartesian errors at the end-effector. This can be
accomplished by using the forward kinematic equations and an approximate TCP position, as is usually
done by industrial robot manufacturers to identify the TCP location. The second semi-automated step
takes approximately 15 min to complete.

Once the TCP has been found, it is used to identify the positions of each of the three precision
balls on the ball plate in the robot’s internal coordinate system. The measuring device must be brought
to each of the three balls by jogging. Then, on each ball, the automated centering procedure is executed.
When all three indicators show “0.000”, the robot pose is saved. The step takes approximately 20 min.

As soon as the semi-automated steps are completed, the measurements can be collected
automatically on each of the three 12.7 mm precision balls through an automated centering procedure
(i.e., once the robot’s TCP coincides with the center of one of the three balls, we take the angle readings
of the six joints). The algorithm is shown in Algorithm 1. For the experiment, the maximum error, ε,
was set at 0.010 mm. Ideally, this value should be 0. However, if the value is below the robot’s position
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repeatability, the time to measure one configuration will double in some cases. At ε = 0.010 mm, each
robot configuration takes approximately 20 s to be measured.

Algorithm 1 Automated Centering Procedure

1: Procedure AutoCenter(qd) # qd is the desired joints configuration to measure
2: MAX_EPSILON← 0.010 # 0.010 mm = position repeatability
3: Move the robot to qd # from MATLAB to Controller
4: Wait 1 s # to ensure effective communication
5: Send data request # from MATLAB to U-WAVE-R
6: rx ← Measurement of indicator along the tool X # from U-WAVE-R to MATLAB
7: ry ← Measurement of indicator along the tool Y # from U-WAVE-R to MATLAB
8: rz ← Measurement of indicator along the tool Z # from U-WAVE-R to MATLAB
9: r←

[
rx, ry, rz

]
10: while(norm(r)) >= MAX_EPSILON do
11: Move the robot’s TCP by vector r # from MATLAB to Controller
12: Wait 1 s # to ensure effective communication
13: Send data request # from MATLAB to U-WAVE-R
14: rx ← Measurement of indicator along the tool X # from U-WAVE-R to MATLAB
15: ry ← Measurement of indicator along the tool Y # from U-WAVE-R to MATLAB
16: rz ← Measurement of indicator along the tool Z # from U-WAVE-R to MATLAB
17: r←

[
rx, ry, rz

]
18: return qa ← Actual joints configuration # from Controller to MATLAB

The only measurements that can be collected with Setup 1 are the positions of the centers of the
three balls with respect to {W}. Let pW

T be the position vector of {T} with respect to {W}, and let dij be
the distance measured between the centers of balls i and j (i = 1, 2, 3; j = 1, 2, 3; i 6= j). The three position
vectors that can be measured, which represent the centers of balls 1, 2, and 3, are:

pW
T,1 = [0, 0, 0], (1)

pW
T,2 = [d12, 0, 0], (2)

pW
T,3 = [px, py, 0], (3)

where:

px =
d2

12 + d2
13 − d2

23
2d12

, (4)

and:
py =

√
d13

2 − px2. (5)

The distances between each pair of magnetic nests were measured with a Renishaw QC-20W
ballbar. The rationale for using a ballbar instead of a traditional CMM is that it is more accurate but
also much cheaper.

A total of 360 randomly-generated robot configurations (120 robot configurations per precision
ball) were subsequently measured with this experimental setup.

The measurement uncertainties of this new calibration method are caused by the inaccuracy of the
digital indicators, the mechanical tolerances on each component, the experimental conditions and the
measuring procedure. Specifically, Tables 1 and 2 show the uncertainty estimation associated with each
source of errors for the measuring device and the measuring procedure, respectively. The TriCal is used
as a constraining device, thus some of the sources of errors are negligible or can be reduced significantly
by adjusting the parameters and conditions of the calibration process. For instance, the maximum
angular deviation (0.122◦) of the digital indicators might seem important. However, when considering
that the robot constrains the measuring device within 0.010 mm with respect to the center of the
12.7 mm precision ball, the projected source of error is orders of magnitude smaller than the other
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sources of errors. Also, if the calibration can be performed in a temperature-controlled environment,
the sources of error related to thermal expansion can be neglected. Furthermore, if more time can
be spent on the calibration, the automated centering tolerance ε can be lowered to 0, thus reducing
the sources of errors. In these conditions, and assuming the fact that those errors represent a worst
case scenario (i.e., all those sources of errors add up), the measuring device’s absolute accuracy is
approximately 9 µm, which is less than the robot‘s repeatability (10 µm). It is important to note that the
uncertainty associated with the hysteresis and the friction of very small end-effector displacements was
not quantified within the automated centering error. The negative effects of this type of uncertainty
can be diminished by moving the robot with larger movements. More precisely, the robot end-effector
can be moved away significantly from the target precision ball, with the condition that it should
maintain contact with it. Then, using the measurements on the three indicators, another single
movement attempt can be made to move the end-effector directly on the target within the desired
tolerance. This procedure can be repeated until the robot is finally at the desired location. However,
the calibration would take more time to perform. The combined maximum error would be less than
27 µm if the sources of errors of the measuring procedure are added to those of the measuring device.

Table 1. Sources of errors of the measuring device.

Sources of Errors Uncertainty

Accuracy of each digital indicator ID-C112XB 3.00 µm
Tolerance on diameter of measuring balls 2.50 µm

Tolerance on diameter of contact point spheres of indicators NA
Maximum angular deviation of digital indicators (machining) 0.122◦

Projected angular deviation considering ε = 0.010 mm 0.02 µm
Combined maximum error ~9 µm

Table 2. Sources of errors related to the measuring procedure.

Sources of Errors Uncertainty

Automated centering error 10.00 µm
Accuracy of ballbar 3.70 µm

Accuracy of the coordinate-measuring machine (CMM) (MT
Mitutoyo Bright Strato 7106) 2.7 um (95% confidence interval)

Approx. thermal expansion of ball plate (∆0.2◦C) 2.07 µm
Approx. thermal expansion of measuring device (∆0.2◦C) 1.38 µm
Approx. thermal expansion of ball support stems (∆0.2◦C) 0.36 µm

Combined errors (using assumption that errors add up) 20.21 µm

2.3. Calibration Model and Identification Method

An accurate identification of the robot calibration model’s parameters is crucial to improve the
absolute position accuracy. The measurements set used for identification should also be optimal for the
identification method that is employed. To that end, an observability optimization was performed on
a large pool of robot configurations to select the optimal configurations for the identification process.
Then, the method of least squares was used to identify the robot parameters using the optimized
robot configurations.

The robot was modeled using the Denavit-Hartenberg (D-H) parameters as per Craig’s
convention [25]. Furthermore, an additional parameter was added to consider consecutive parallel
axes [26]. Figure 5 shows all the link frames. The base frame is denoted by {0}. The robot’s nominal
parameters are shown in Table 3.
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Table 3. ABB IRB120 nominal parameters.

i αi−1 (◦) ai−1 (mm) di (mm) θi (◦) βi−1 (◦)

1 0 0 290 q1 -
2 −90 0 0 q2 − 90 -
3 0 270 0 q3 0
4 −90 70 302 q4 -
5 90 0 0 q5 -
6 −90 0 72 q6 + 180 -

The homogeneous matrix linking each successive pair of frames of the robot is represented as:

Ti−1
i = RX(αi−1)DX(ai−1)RY(βi−1)RZ(θi)DZ(di), (6)

where αi−1, ai−1, θi, and di are the D-H parameters, sθi = sin θi, cθi = cos θi, RQ is the homogeneous

rotation matrix around axis Q, DQ is the homogeneous translation matrix along Q, and Tj
i is the

homogeneous matrix representing the pose of frame {i} with respect to frame {j}. The rotation parameter,
βi−1, addresses the problem of the proportionality of the model [27]. To obtain the homogeneous
matrices of the base frame {0} with respect to the world frame {W}, and of the tool frame {T} with
respect to the flange frame {6}, the following equation was used:

T(χ) = DX(x)DY(y)DZ(z)RZ(α)RY(β)RX(γ), (7)

and the parameters are presented in Table 4.

Table 4. Tool and base nominal parameters.

Frame x (mm) y (mm) z (mm) α (◦) β (◦) γ (◦)

ToolχT x6
T y6

T z6
T α6

T β6
T γ6

T
WorldχB xW

0 yW
0 xW

0 αW
0 βW

0 γW
0
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The calibration model includes a total of 31 parameter errors: 26 kinematic parameters and 5
non-kinematic parameters, as seen in Tables 5 and 6. The parameter errors associated with link 1 are not
considered, because they are dependent on the base parameters. Also, axes 2 and 3 are parallel, so only
one of either δd2 or δd3 should be included in the calibration model. Therefore δd2 was arbitrarily
chosen for removal. The tool parameters are also not included for identification because the position
of the tool is measured with a 3-axis CMM with respect to the robot’s last axis frame. Note that these
parameters do not need to be measured frequently, as long as TriCal is manipulated with care. The tool
orientation parameters cannot be incorporated into the model because the measuring instrument
provides only three-dimensional position measurements.

Table 5. Robot calibration parameters.

i αi−1(◦) ai−1 (mm) di (mm) θi (◦) βi−1(◦)

1 α0 + δα0 a0 + δa0 d1 + δd1 q1 + θoffs,1 + δθoffs,1 + c1τ1 -
2 α1 + δα1 a1 + δa1 d2 + δd2 q2 + θoffs,2 + δθoffs,2 + c2τ2 -
3 α2 + δα2 a2 + δa2 d3 + δd3 q3 + θoffs,3 + δθoffs,3 + c3τ3 β2 + δβ2
4 α3 + δα3 a3 + δa3 d4 + δd4 q4 + θoffs,4 + δθoffs,4 + c4τ4 -
5 α4 + δα4 a4 + δa4 d5 + δd5 q5 + θoffs,5 + δθoffs,5 + c5τ5 -
6 α5 + δα5 a5 + δa5 d6 + δd6 q6 + θoffs,6 + δθoffs,6 + c6τ6 -

Table 6. Tool and base calibration parameters.

Frame x (mm) y (mm) z (mm) α (◦) β (◦) γ (◦)

Tool x6
T + δx6

T y6
T + δy6

T z6
T + δz6

T α6
T + δα6

T β6
T + δy6

T γ6
T + δγ6

T
World xW

0 + δxW
0 yW

0 + δyW
0 zW

0 + δzW
0 αW

0 + δαW
0 βW

0 + δβW
0 γW

0 + δγW
0

The compliance in each gearbox is modeled as a linear torsional spring, as presented in [6].
The compliance in the gearbox of the first joint is not included because no torque is applied to this
joint when the robot is not moving, as the joint axis is vertical. The torque on each of the other five
joints is calculated with the iterative Newton-Euler algorithm [25].

First, let us define the vector of all constant parameters of the robot model to be:

ρ =
[
α a d θoffs c χB χT β2

]T
, (8)

where χB and χT are the vectors of the parameters of the base and the tool, respectively. Then, by using
forward kinematics, the pose of {T} with respect to {W} can be expressed as a function of the constant
parameters (ρ) and the variable parameters (q,τ):

TW
T (ρ, q,τ) = TW

0 T0
6T6

T . (9)

Now, the position vector of the homogeneous matrix can be defined to be:

x =

 TW
T 1,4

TW
T 2,4

TW
T 3,4

 =

 xW
T

yW
T

zW
T

. (10)

By assuming that the parameter errors are small, the difference between the position
measurements of one configuration (i.e., xmes, ymes, zmes) and the position obtained by calculating
the forward kinematics (i.e., x, y, z) of the calibrated model is: xmes − x

ymes − y
zmes − z

 =

 ∆x
∆y
∆z

 = ∆x =
∂x
∂ρ

∆ρ = J∆ρ, (11)
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where J is the Jacobian matrix of x. The concatenation of all the n measurements that are used for
identification is expressed as: 

∆x1

∆x2
...

∆xn

 =


J1(ρ, q1,τ1)

J2(ρ, q2,τ2)
...

Jn(ρ, qn,τn)

∆ρ, (12)

which can also be written as:
∆X = J∆ρ (13)

To find the variation of the parameters ∆ρ, the identification Jacobian must be inverted. However,
since the identification Jacobian is not square, the following equation is used:

∆ρ = (JTJ)
−1

JT∆X, (14)

which is equivalent to:
∆ρ = J+∆X, (15)

where J+ is the expression of the Moore–Penrose inverse.
Next, an observability assessment was performed in order to obtain the best sets for identifying

the robot’s parameters. The observability index O1 [28] was selected for optimization as it had been
previously demonstrated to give better results when the robot model incorporates non-kinematic
parameters [29]. The mathematical formula for this observability index is:

O1 =
(σ1σ2 . . . σm)

1
m

√
n

, (16)

where n is the number of configurations in the set, m is the number of parameters of the model, and σi
are the singular values of the identification Jacobian matrix. To optimize the observability index of a
set of n robot configurations, the DETMAX algorithm was used [30] on a large initial pool of N robot
configurations. When the DETMAX algorithm finishes, it outputs a set of n robot configurations with
an optimal observability index. The robot’s parameters are then identified using this optimal set of
robot configurations with the least squares optimization method, as presented in Equations (11)–(15).

3. Results

In this section, a dispersion analysis of the identification procedure using multiple optimized sets
of robot configurations of various sizes is introduced. Then, the performance of the calibration using a
set of 75 optimized robot configurations for identification is presented. Next, the performance of this
new method is compared to an earlier calibration method using the same calibration device. Finally,
the results of this new calibration method are compared with the results of other works performed on
the same robot.

3.1. Calibration Dispersion Analysis

Several parameter identifications were performed to assess the dispersion of the calibration
results when using different set sizes. More precisely, a total of 360 robot configurations were initially
measured using setup 1 (i.e., using TriCal as a constraining device on the three precision balls of the ball
plate). Then, multiple sets containing between 20 and 100 robot configurations were formed using those
360 configurations. Thirty identifications were performed on each set size (i.e., in each identification,
the number of robot configurations is the same, but not the configurations themselves). Furthermore,



Sensors 2018, 18, 3380 12 of 19

for each set, the observability index was optimized using the initial pool size of 360 randomly generated
robot configurations.

The experimental setup on which the robot configurations were measured for validation purposes
is shown in Figure 6, and it is referred to as setup 2. This setup still makes use of TriCal, but with a few
modifications in order to be able to measure the position of the center ball with a laser tracker. First,
the digital indicators were removed from the conical bracket. Then, the 12.7 mm precision ball of the
calibrator was replaced by a 12.7 mm spherically mounted retroreflector (SMR), and the calibrator
was locked onto the measuring device using a kinematic coupling and rubber bands (not shown).
Using balls and an SMR of identical diameters makes it possible to measure exactly the same TCP
position with the laser tracker. Finally, the 12.7 mm precision balls of the ball plate were replaced by
12.7 mm SMRs to measure the TCP with respect to exactly the same {W}. The laser tracker was placed
at approximately two meters in front of the SMR 3. According to the manufacturer’s specifications,
this laser tracker has a point-to-point typical accuracy of 32 µm when using a 2.3 m horizontal scale
bar measurement at a measurement distance of five meters from the laser tracker. It is also important
to note that the laser tracker was used for validation purposes only, and not to acquire measurements
to identify the robot parameters.
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The absolute position errors after calibration were measured with a laser tracker at 506
randomly-generated robot configurations in the complete robot workspace (Figure 7). The only
constraint on these configurations is that the SMR is visible to the laser tracker.

The multiple means and standard deviations of the absolute position errors after calibration are
displayed as quartiles on a box and whisker plot as shown in Figures 8 and 9, respectively. On those
plots, the red crosses are outliers. It can be noted that the performance of the calibration varies
significantly for different sets of robot configurations of the same size even when the observability
index is optimized. This is especially true for smaller sets (i.e., sets composed of fewer robot
configurations used in the identification). Also, the data shows a clear trend. The sets that contain
more robot configuration for identification will generally give better calibration results. Consequently,
at 75 configurations, the calibration results are similar to those of larger sets. Table 7 shows the
descriptive statistics of the identified parameters for 30 sets of 75 robot configurations. According to
these statistics, the identified parameters are stable with low standard deviations. This outcome
correlates with the low dispersion in the calibration performances.
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Table 7. Identified parameters from 30 optimized sets of 75 configurations.

Parameters Nominal Mean StdDev Min Max

α1 (◦) −90.000 −90.034 0.001 −90.035 −90.032
α2 (◦) 0.000 −0.045 0.001 −0.046 −0.043
α3 (◦) −90.000 −90.011 0.001 −90.013 −90.009
α4 (◦) 90.000 89.998 0.000 89.997 89.999
α5 (◦) −90.000 −89.990 0.001 −89.991 −89.990

a1 (mm) 0.000 0.013 0.008 −0.010 0.032
a2 (mm) 270.000 270.146 0.004 270.137 270.153
a3 (mm) 70.000 70.120 0.007 70.106 70.131
a4 (mm) 0.000 −0.075 0.001 −0.078 −0.073
a5 (mm) 0.000 −0.012 0.003 −0.019 −0.007
d3 (mm) 0.000 −0.094 0.004 −0.104 −0.086
d4 (mm) 302.000 302.296 0.011 302.276 302.315
d5 (mm) 0.000 0.019 0.002 0.015 0.023
d6 (mm) 72.000 72.163 0.003 72.155 72.171

θoffs,2 −90.000 −89.910 0.004 −89.917 −89.899
θoffs,3 0.000 0.097 0.002 0.091 0.101
θoffs,4 0.000 −0.013 0.001 −0.014 −0.011
θoffs,5 0.000 0.062 0.001 0.060 0.063
θoffs,6 180.000 180.259 0.001 180.258 180.260

c2 (◦/Nm × 10−3) 0.000 −2.060 0.099 −2.245 −1.924
c3 (◦/Nm × 10−3) 0.000 −5.522 0.149 −5.809 −5.274
c4 (◦/Nm × 10−3) 0.000 −33.738 0.611 −34.955 −32.153
c5 (◦/Nm × 10−3) 0.000 −30.448 0.527 −31.875 −29.426
c6 (◦/Nm × 10−3) 0.000 −44.555 3.047 −51.723 −39.429

β2 (◦) 0.000 0.039 0.001 0.038 0.040
xW

0 (mm) 160.211 158.865 0.006 158.867 158.873
yW

0 (mm) −255.727 −253.835 0.013 −253.861 −253.809
zW

0 (mm) −220.548 −219.170 0.017 −219.190 −219.128
αW

0 (◦) 91.603 91.677 0.001 91.675 91.679
βW

0 (◦) 0.496 0.148 0.003 0.142 0.155
γW

0 (◦) −1.384 −1.380 0.000 −1.381 −1.379

3.2. Absolute Position Errors

The absolute position errors were plotted on the 2D scatter plot shown in Figure 10. The locations
of the 10 biggest errors are encircled. Furthermore, two linear regression analyses were performed,
one for the absolute position errors with respect to {0}, and the other with respect to the center of the
calibration zone (CCZ). The CCZ is located at the center of gravity of the triangle formed by the three
measurement positions. The regression analyses are shown in Figures 11 and 12, respectively. Finally,
Figure 13 shows the distribution of absolute position errors after calibration as well as the descriptive
statistics of the errors before and after calibration.



Sensors 2018, 18, 3380 15 of 19
Sensors 2018, 18, x FOR PEER REVIEW  15 of 19 

 

 

Figure 10. Scatter plot of absolute position errors after calibration. 

 
Figure 11. Linear regression-Distance between the TCP and the origin of the base frame. 

Figure 10. Scatter plot of absolute position errors after calibration.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 19 

 

 

Figure 10. Scatter plot of absolute position errors after calibration. 

 
Figure 11. Linear regression-Distance between the TCP and the origin of the base frame. Figure 11. Linear regression-Distance between the TCP and the origin of the base frame.



Sensors 2018, 18, 3380 16 of 19
Sensors 2018, 18, x FOR PEER REVIEW  16 of 19 

 

 
Figure 12. Linear regression-Distance between the TCP and the center of the calibration zone. 

 
Figure 13. Histogram of absolute position errors at the TCP after calibration. 

For all these analyses, the parameters of the model were identified with one optimized set of  
75 robot configurations using setup 1 (Figure 2) and validated by setup 2 (Figure 6) on the same  
506 configurations as previously described (Figure 7).  

Figure 10 shows that the largest errors are primarily located at the extremities of the robot’s 
workspace. The regression analysis presented in Figure 11 confirms the weak linear relationship 
between the distance from the TCP to the base of the robot and the absolute precision errors.  

Naturally, errors are expected to be higher when the arm is fully extended. However, Figure 12 
shows no linear relationship between the distance from the TCP to the CCZ and the absolute 
precision errors. In other words, this result shows that this calibration method provides good 
performance throughout the whole workspace even though the measurements are collected in a 
restricted volume in front of the robot. 

3.3. Comparison of TriCal with Other Calibration Methods 

Table 8 shows a comparison between different measurement methods that were performed on 
the same IRB120 robot. Our method identifies the parameters of the robot model through  

Figure 12. Linear regression-Distance between the TCP and the center of the calibration zone.

Sensors 2018, 18, x FOR PEER REVIEW  16 of 19 

 

 
Figure 12. Linear regression-Distance between the TCP and the center of the calibration zone. 

 
Figure 13. Histogram of absolute position errors at the TCP after calibration. 

For all these analyses, the parameters of the model were identified with one optimized set of  
75 robot configurations using setup 1 (Figure 2) and validated by setup 2 (Figure 6) on the same  
506 configurations as previously described (Figure 7).  

Figure 10 shows that the largest errors are primarily located at the extremities of the robot’s 
workspace. The regression analysis presented in Figure 11 confirms the weak linear relationship 
between the distance from the TCP to the base of the robot and the absolute precision errors.  

Naturally, errors are expected to be higher when the arm is fully extended. However, Figure 12 
shows no linear relationship between the distance from the TCP to the CCZ and the absolute 
precision errors. In other words, this result shows that this calibration method provides good 
performance throughout the whole workspace even though the measurements are collected in a 
restricted volume in front of the robot. 

3.3. Comparison of TriCal with Other Calibration Methods 

Table 8 shows a comparison between different measurement methods that were performed on 
the same IRB120 robot. Our method identifies the parameters of the robot model through  

Figure 13. Histogram of absolute position errors at the TCP after calibration.

For all these analyses, the parameters of the model were identified with one optimized set of
75 robot configurations using setup 1 (Figure 2) and validated by setup 2 (Figure 6) on the same
506 configurations as previously described (Figure 7).

Figure 10 shows that the largest errors are primarily located at the extremities of the robot’s
workspace. The regression analysis presented in Figure 11 confirms the weak linear relationship
between the distance from the TCP to the base of the robot and the absolute precision errors.

Naturally, errors are expected to be higher when the arm is fully extended. However, Figure 12
shows no linear relationship between the distance from the TCP to the CCZ and the absolute precision
errors. In other words, this result shows that this calibration method provides good performance
throughout the whole workspace even though the measurements are collected in a restricted volume
in front of the robot.

3.3. Comparison of TriCal with Other Calibration Methods

Table 8 shows a comparison between different measurement methods that were performed on the
same IRB120 robot. Our method identifies the parameters of the robot model through 30 optimized sets
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of 75 robot configurations measured with setup 1. With the TriCal, the performances were validated
with the same 506 robot configurations in setup 2.

Table 8. Comparison of TriCal with other calibration methods.

Instrument Median (mm) StdDev (mm) Max (mm) Approximate Cost ($)

TriCal 0.208 0.084 0.482 5000
Laser tracker 0.146 0.065 0.437 >100,000
Optical CMM 0.176 0.081 0.492 >50,000

In the case of C-Track, an optical CMM from Creaform (Lévis, QC, Canada), the TCP was a
half-sphere with a retroreflective target, while in the case of the laser tracker, an SMR was used (as in
the validation of setup 2) [9]. For the identification of the robot’s parameters with the laser tracker and
the optical CMM, the same least squares method and observability index optimization algorithm were
used. Once again, in all three cases, the results were validated with a laser tracker. The data show that
the performance of TriCal with three base-mounted spheres is slightly lower than the performance
of the laser tracker or the optical CMM. However, the cost of the TriCal is also significantly lower.
This comparison might seem unfair since the cost of building the prototype is compared against the
acquisition cost of those measuring devices. However, the TriCal can easily be custom built.

In reality, all those calibration methods require expert knowledge and a significant amount of time.
The time spent on each calibration method depends on many variables. Those variables are the number
of configurations required for the identification of the robot’s parameters, the number of configurations
required for the validation of its accuracy after calibration, the setup time, which can vary depending
on the work cell constraints, the experience of the user with the measuring technology, the speed of the
robot, etc. Thus, a process time comparison between the different measuring technologies is subjective
and inappropriate.

4. Discussion

In this paper a novel low-cost, three-dimensional automated measuring device (TriCal) and a
robot calibration procedure were presented. TriCal was used to calibrate a six-axis serial industrial
robot. It was shown that the TriCal device is nearly as good as a laser tracker for calibrating a small
industrial robot. Namely, it was possible to reduce the absolute position errors to 0.482 mm (maximum),
as verified in more than 500 random robot configurations.

The cost of the new 3D measuring device is significantly lower than any other used for robot
calibration in industry. For example, a laser tracker typically costs more than $100,000, while TriCal’s
prototype costs approximately $5000. Moreover, an annual calibration of a laser tracker, let alone a
repair, costs thousands of dollars whereas an accident involving TriCal would incur repair costs of no
more than several hundred dollars.

In addition to its low acquisition costs, TriCal is less sensitive to variations in atmospheric
conditions than a laser tracker. In an industrial environment where temperature, humidity and
vibrations cannot be controlled, the TriCal is a safe alternative for field calibration. The TriCal device
can even be purposed for measuring position repeatability for bigger robots.

The TriCal is arguably among the best measuring tools for performance evaluation and calibration
of industrial robots, especially for small and medium enterprises that cannot afford an expensive
measuring device for the sole purpose of robot calibration. We are in the process of commercializing
this tool.

One very important study that remains to be done, however, is on the optimal number and
placement of the datum spheres. Ideally, these datum spheres must be fixed on the same plate on
which the robot is fixed, and their positions should be measured on a CMM, with respect to the actual
base of the robot. These datum spheres should remain part of the robot cell, even after calibration.
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They can be used for automated periodical validation of both the accuracy and the repeatability of the
industrial robot.

Supplementary Materials: All procedures described in this paper, including the validation, are detailed in a
six-minute video available at https://youtu.be/Tvj-IwQmVBw.
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