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Abstract: High-voltage n-channel lateral-diffused metal-oxide-semiconductor field-effect transistor
(nLDMOS) components, fabricated by a TSMC 0.25-µm 60-V bipolar-CMOS-DMOS (BCD) process
with drain-side embedded silicon-controlled rectifier (SCR) of the n-p-n-arranged and p-n-p-arranged
types, were investigated, in order to determine the devices’ electrostatic discharge (ESD)-sensing
behavior and capability by discrete anode engineering. As for the drain-side n-p-n-arranged type with
discrete-anode manners, transmission–line–pulse (TLP) testing results showed that the ESD ability
(It2 value) was slightly upgraded. When the discrete physical parameter was 91 rows, the optimal
It2 reached 2.157 A (increasing 17.7% compared with the reference sample). On the other hand,
the drain-side SCR p-n-p-arranged type with discrete-anode manner had excellent SCR behavior,
and its It2 values could be increased to >7 A (increasing >281.9% compared with the reference DUT).
Moreover, under discrete anode engineering, the drain-side SCR n-p-n-arranged and p-n-p-arranged
types had clearly higher ESD ability, except for the few discrete physical parameters. Therefore,
using the anode discrete engineering, the ESD dissipation ability of a high-voltage (HV) nLDMOS
with drain-side SCRs will have greater effectiveness.

Keywords: discrete modulation; electrostatic discharge (ESD); n-channel lateral-diffused MOSFET
(nLDMOS); secondary breakdown current (It2); silicon-controlled rectifier (SCR)

1. Introduction

Integrated-circuit (IC) technologies progress with each passing day. Trendily, the physical size
of components decreases, the gate-oxide layer of transistors becomes thinner, and the junction depth
becomes shallower. Consequently, smaller transistors are more vulnerable to the electrostatic-discharge
(ESD) transient, and have a considerably higher failure rate [1–6]. The laterally-diffused
metal-oxide-semiconductor field-effect transistor (LDMOSs) are often used in many integrated
circuits of automotive electronics, power management circuits, power electronics, and communication
modules [7–12] under high-voltage operation situations, owing to their distinguished characteristics,
including being able to operate at a high blocking voltage and high conduction current. Because the
device structure of a high-voltage (HV) LDMOS is complicated, designing an ESD protection unit
into HV circuits is challenging [13–19]. ESD reliability is increasingly valued today—unfortunately,
compared with low-voltage processes, HV processes have a lower robustness for ESD and electrical
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overstress (EOS) [20–24]. Thus, the design of HV ESD protection is worthy of innovation. This study
addresses an HV nLDMOS as a fundamental structure with which to combine different drain-side
SCR embedded architectures for improving ESD ability. A silicon-controlled rectifier (SCR) was built
into the drain side, and discrete modulations were then employed on the anode region to even out the
ESD transient current. In other words, this study utilized the discrete-anode method in the drain-side,
thin-oxide definition (OD) region, together with a drain-side parasitic SCR, to strengthen the ability of
the HV (60 V) nLDMOS to sense and resist the ESD pulse.

2. Testing Devices Layout

2.1. 60-V High-Voltage n-Channel Lateral-Diffused MOSFET Reference Device

Conventional nLDMOSs often serve as ESD sensing and protection devices at the input or
output ends of HV circuits because of their low on-resistance. However, nLDMOSs have an obvious
weakness: they cannot be completely turned on in a multi-finger layout structure. Consequently,
their ESD capability per unit width is very low, even at a very wide device width. Figure 1 shows
the three-dimensional (3D) structure diagram and device cross-section view of the original HV
nLDMOS (the reference device). The tested components were fabricated by a TSMC 60-V 0.25-µm
bipolar-CMOS-DMOS (BCD) process. The source and bulk were with a non-butted structure, and the
nLDMOS transistor had a multi-finger layout pattern. The channel length (L) was 2 µm, the width of
every finger (Wf) was 100 µm, and the finger number (M) of each transistor was 6, leading to a total
channel width (Wtot) of 600 µm.
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Figure 1. (a) Three-dimensional (3D) structure diagram, and (b) device cross-section view of an
n-channel lateral-diffused MOSFET (nLDMOS) (reference device).

2.2. 60-V High-Voltage n-Channel Lateral-Diffused MOSFET-Silicon-Controlled Rectifier:
Anode-Discrete Modulations

The original wide-enough region on the drain side was used without adding any additional
layout area for these HV LDMOSs with embedded SCRs. Meanwhile, from a circuit point of
view, the electrical characteristics of this composite component can be changed little by appropriate
optimization engineering, but the ESD reliability capability can be greatly improved. The drain side
in an nLDMOS was planed in order to have three stripe zones. The zone-2 area was implanted
with P+ dosages, which was equal to the sum of the zone-1 and -3 areas. Thus, an nLDMOS with
an n-p-n-arranged SCR in the drain end was formed. Figure 2a shows the 3D structure of the HV
nLDMOS-SCR drain-side stripe of the n-p-n-arranged type. In the same way, if the zone-1 and -3 areas
were implanted with P+ dosages, but N+ dosages remained in the zone-2 area, and the areas sum of
the zone-1 and -3 areas was equal to that of the zone-2 area, an nLDMOS with a p-n-p-arranged SCR in
the drain end was fabricated. Figure 2b illustrates the 3D structure of the HV nLDMOS-SCR drain-side
stripe p-n-p-arranged type.

Commonly, a traditional SCR has a notable disadvantage: its Vh value is very low. To improve
the Vh and solve the current non-uniform distributed problems, the zone-2 area (the anode) on the
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drain side only of an nLDMOS with an n-p-n-arranged SCR structure was discretized. Then, each thin
oxide definition (OD) area was set at 0.7-µm in length and width, and its center fabricated with a
contact measuring 0.3 µm in length and width. Every OD with its central contact was defined as a
discrete contact, and each row had six discrete contacts for the n-p-n-arranged and p-n-p-arranged
types. The discrete number at the marked end represents the discrete row number at the embedded
SCR anode end (drain side). In other words, as the discrete number decreases, the proportion of
OD at the SCR anode end decreases. Here, there are six sets of different groups for the SCR’s anode
placement: 2, 3, 25, 47, 69, and 91. Figure 3a,b shows the schematics of the OD discrete groups DIS_3
and DIS_91 in an HV nLDMOS-SCR n-p-n-arranged type at the drain side. Similarly, Figure 4a,b shows
the schematics of a 60-V HV nLDMOS-SCR p-n-p-arranged type at the drain side, with the OD discrete
groups for the same parameters.
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Figure 2. 3D structure diagram of an nLDMOS-silicon-controlled rectifier (SCR) stripe:
(a) n-p-n-arranged and (b) p-n-p-arranged.
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3. Transmission–Line–Pulse Testing Equipment

For experimental measurement, a transmission–line–pulse (TLP) testing system was applied
and controlled by the LabVIEW environment platform. It manages the electronics subsystem and
ultimately achieves the goal of fully automated testing. The output of this machine can provide a
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gradually increasing step-high voltage to a sample, and the short rising time for this square wave
can also approximate the transient pulse of an ESD event. Then, this human-body model (HBM)-like
equipment (TLP machine) can export testing waveforms with less than 10 ns rising/falling times and
100 ns pulse widths to evaluate the current-voltage (I-V) response of the DUT sample. Eventually,
the precise ESD It2 value of the DUT is then obtained, and determined by whether the DUT leakage
current is greater than 1 µA.

4. Measurement Results and Discussion

4.1. 60-V High-Voltage nLDMOS-Silicon-Controlled Rectifier: The Discrete n-p-n-Arranged Type

The snapback I-V curves and corresponding physical parameters of the nLDMOS-SCR
n-p-n-arranged type are presented in Figure 5 and Table 1. When the embedded SCR of the
n-p-n-arranged type were inserted into the drain side of the nLDMOS, then the LDMOS and the
embedded SCR form two parallel composite components. Since to the LDMOS drain-to-source
distance is closer than that of the parasitic SCR anode to the cathode (source end) terminal, most of
the ESD current flows to the LDMOS (the area occupied by this part became smaller compared to the
reference DUT), and a small portion of ESD current was passed to the SCR. Consequently, the voltage
had to be increased to trigger the component to conduct an ESD current. Therefore, the nLDMOS
with the drain side-inserted SCR stripe n-p-n-arranged type required a higher trigger voltage (Vt1)
than the reference DUTs. When discrete modulation was applied to the anode end of the component’s
drain-side parasitic SCR, the component’s Vt1 increased. The discrete method increased the SCR anode
end’s parasitic resistance, which was the main reason for the increase in Vt1. Therefore, except for the
discrete parameter 2 (DIS_2; the smallest area of the SCRs), Vt1 increased as the discrete parameter
was decreased. Figure 6 shows the trend in Vt1. Meanwhile, the holding voltage (Vh) was also related
to on-resistance (Ron). When the SCR’s anode end was discrete, as Figure 6 indicates, except for DIS_2,
Vh slowly and gradually increased as the discrete parameter was decreased.

The trend for the secondary breakdown current (It2) is shown in Figure 7. The drain side of the
nLDMOS embedded with a stripe or discrete SCR n-p-n-arranged type formed a parallel composite circuit.
Therefore, the It2 values of the stripe or discrete n-p-n arrangement were higher than the reference DUT,
except for the DIS_2 sample. Moreover, the It2 values of nLDMOS-SCR discrete n-p-n-arranged type tends
to decrease with the smaller discrete parameters, mainly due to the reduction of the area occupied by
these embedded SCRs. For the discrete homogeneous DIS_91 sample, the It2 value is highest, and higher
than that of the nLDMOS-SCR n-p-n-arranged stripe type sample (It2 = 2.096 A). This is due to the silicon
substrate being a positive temperature coefficient material, and the discrete architecture helps to increase
the conduction area. Therefore, the ESD (It2) capability of DIS_91 has an optimum value of 2.157 A,
which is 17.7% higher than the reference group It2 = 1.833 A.
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Table 1. Snapback key parameters of the nLDMOS-SCR (n-p-n-arranged) tested samples.

nLDMOS + Drain SCR Vt1 (V) Vh (V) It2 (A)
(mean ± σ)

Ref. DUT (nLDMOS) 92.941 11.587 1.833 ± 0.083

nLD-SCR npn Stripe type 93.114 12.006 2.096 ± 0.214

n-p-n-type

DIS_91 93.313 12.138 2.157 ± 0.034

DIS_69 93.494 12.148 2.144 ± 0.078

DIS_47 93.518 12.175 2.121 ± 0.163

DIS_25 93.559 12.378 2.034 ± 0.019

DIS_3 93.683 12.616 1.936 ± 0.066

DIS_2 93.41 12.472 1.792 ± 0.024
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4.2. 60-V High-Voltage nLDMOS-Silicon-Controlled Rectifier: The Discrete p-n-p-Arranged Type

The snapback I-V curves and corresponding physical parameters of nLDMOS-SCR p-n-p-arranged
type are presented in Figure 8 and Table 2. Similarly, when the embedded SCR of the p-n-p-arranged
type was inserted into the drain side of the nLDMOS, then the LDMOS and the embedded SCR formed
two parallel composite components. It can be seen from Figure 8 and Table 2 that the nLDMOS with a
drain-side parasitic SCR of the p-n-p-arranged type has obvious SCR characteristics, whether it is the
stripe or discrete type. This is because the SCR conduction path in the p-n-p-arranged type from the
anode terminal to the cathode (source end) is shorter than the conduction path of the nLDMOS—most
of the ESD current flows to the SCR. Therefore, there is a very strong ESD (It2) capacity per unit
width for these samples. In addition, the HV SCR has a lower on-resistance than the same-process
LDMOS; the trigger voltage (Vt1) of the p-n-p-arranged stripe type will be lower than that of the
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reference nLDMOS [25]. This study also discovered that when the anode end of an nLDMOS-SCR in
the p-n-p-arranged type was discretely modulated, the component’s Vt1 increased. However, the Vt1
and Vh values increased as the discrete number decreased in the p-n-p-arranged discrete type, as shown
in Figure 9. Here, Vh was related to Ron—as the SCR’s anode end was discrete, Vh values slowly
and gradually increased. Finally, the ESD (It2) capability of the nLDMOS-SCR p-n-p-arranged type
is shown in Figure 10; It2 values are higher than 7 A (due to the power limitation of the TLP testing
system, measurement was stopped when the current of DUTs was >7 A), except for the DIS_3 and
DIS_2 parameters (SCR conduction areas were too small).

Table 2. Snapback key parameters of the nLDMOS-SCR (p-n-p-arranged) tested samples.

nLDMOS + Drain SCR Vt1 (V) Vh (V) It2 (A)
(mean ± σ)

Ref. DUT (nLDMOS) 92.941 11.587 1.833±0.083

nLD-SCR pnp Stripe
type 85.971 10.863 >7

p-n-p-type

DIS_91 86.189 10.358 >7

DIS_69 87.889 10.401 >

DIS_47 88.661 11.106 >7

DIS_25 91.287 11.051 >7

DIS_3 92.326 13.220 1.59 ± 0.2

DIS_2 95.445 14.434 1.618 ± 0.084
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Figure 8. Snapback I-V curves and leakage currents of nLDMOS-SCR (p-n-p-arranged) tested samples.
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4.3. High-Voltage nLDMOS and nLDMOS-Silicon-Controlled Rectifier TCAD Simulation and Verification

The value of the It2 component is actually the maximum current that can be conducted before
the component reaching the physical melting point—that is, the last moment before the component is
destroyed. Therefore, the lattice temperature of a DUT in a simulation is related to the ESD capability
value. If a component’s lattice temperature is higher as the bias conditions in simulation are kept
the same, it means that this tested sample will be less resistant to a high ESD current. Figure 11
presents the lattice temperature distribution of 60-V nLDMOS devices by the (a) reference DUT,
(b) drain-side parasitic SCR n-p-n-arranged type, and (c) drain-side parasitic SCR p-n-p-arranged
type. Clearly, the parasitic SCR structures in Figure 11b,c had low on-resistance under the same
drain trigger conditions, and thus had the characteristic of low power consumption (with more
lower-lattice-temperature distributed profiles), and eventually they could discharge higher ESD
currents. For Figure 11c especially, the nLDMOS with a drain-side parasitic SCR p-n-p-arranged type
has a shortest conduction path for the SCR, with obvious SCR characteristics. In other words, it is
found from the lattice temperature distribution diagram of Figure 11a that the reference sample has
higher lattice temperature profile than the n-p-n-type or the p-n-p-type, and the high lattice temperature
regions will concentrate on the entire drain region. As shown in Figure 11b,c, it is found that the lattice
temperature distribution of the p-n-p-type is lower lattice temperature profiles over the entire flow path
than the n-p-n-type. Unlike the n-p-n-type high lattice-temperature profile, the p-n-p-type profile has a
lower lattice temperature distribution in the drain region. Therefore, the TCAD simulation results also
confirmed that an nLDMOS parasitic SCR with a p-n-p-arranged type will more effectively enable the
protective component, in order to discharge the ESD current.
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5. Conclusions

HV nLDMOS drain-side embedded SCR n-p-n- and p-n-p-arranged types, whether strip or discrete
type (except for the small discrete number groups), can significantly improve the ESD (It2) value.
Among these, the drain-side embedded SCR p-n-p-arranged type has strong SCR characteristics,
and the ESD robustness is excellent (It2 > 7 A); for the n-p-n-arranged type, the It2 value has an
optimal value of 2.157 A (at the same group), as the discrete parameter is 91, which is higher than
the corresponding n-p-n strip type and reference DUTs. In addition, the parasitic SCR at the drain
end causes a slight decrease in Vh, especially for the p-n-p-arranged type. Generally, the stronger
the SCR characteristics, the more significant in the Vh decreasing. However, the holding voltage
(Vh) generally increases as the number of OD discrete groups decreases (and the on-resistance (Ron)
increases). Finally, it was verified by the TCAD simulation results that the drain-side parasitic SCR
structure (especially for the embedded SCR p-n-p-arranged type) has a more uniform and deeper
conduction path under the same triggering conditions than the n-p-n-arranged type. Then, combined
with low power consumption, it allows for higher ESD dissipative currents.
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