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Abstract: Service robots operating in indoor environments should recognize dynamic changes from
sensors, such as RGB-depth (RGB-D) cameras, and recall the past context. Therefore, we propose a
context query-processing framework, comprising spatio-temporal robotic context query language
(ST-RCQL) and a spatio-temporal robotic context query-processing system (ST-RCQP), for service
robots. We designed them based on spatio-temporal context ontology. ST-RCQL can query not
only the current context knowledge, but also the past. In addition, ST-RCQL includes a variety of
time operators and time constants; thus, queries can be written very efficiently. The ST-RCQP is
a query-processing system equipped with a perception handler, working memory, and backward
reasoner for real-time query-processing. Moreover, ST-RCQP accelerates query-processing speed by
building a spatio-temporal index in the working memory, where percepts are stored. Through various
qualitative and quantitative experiments, we demonstrate the high efficiency and performance of the
proposed context query-processing framework.

Keywords: intelligent service robot; robotic context query; context ontology

1. Introduction

Dey [1] defined context knowledge in a broad sense as “any information that can be used to
characterize the situation of an entity”. However, for intelligent service robots, the concrete context
knowledge of the robot’s domain needs to be redefined. Turner [2] defined context knowledge for
intelligent agents into three categories, based on which Bloisi [3] redefined robot-oriented context
knowledge: environmental knowledge, task-related knowledge, and self-knowledge. Environmental
knowledge includes physical-space information about the environment outside the robot, such as
the locations of people and objects and an environmental map. Task-related knowledge includes
tasks that can be performed by robots and the constraints of these tasks. Self-knowledge includes
the internal conditions of robots, such as joint angle and battery level. According to the definition by
Bloisi, the context knowledge of robots includes not only static knowledge, such as common sense,
but also dynamic knowledge that has high time dependency as it continuously changes in real time.
This context knowledge is indispensable for the generation of robot task plans (task planning) [4,5],
human-robot collaboration or multiple robot collaboration [6,7], and context-knowledge-providing
services [8,9]. Therefore, the performance and application scope of robots depends on how diverse
and complex the context knowledge that the service robot can recognize and understand is.

Among the many different types of context knowledge, this study focused on context knowledge
related to the environment, and in particular, on the locational information of individual objects and
the three-dimensional (3D) spatial relations among objects in a home environment. The locational
information (pose of individual objects) is sub-symbolic knowledge obtained from sensors, such as
RGB-depth (RGB-D) cameras, and 3D spatial relations are abstracted symbolic knowledge that must
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be derived from this locational information. Three-dimensional spatial relations are comprehensive
knowledge commonly required in most robot domains and are essential prior knowledge for deriving
complex context knowledge, which is more difficult to determine; for example, the intention of external
agents [10,11]. However, 3D spatial relations must be tracked in real time because they continuously
change time independently of the robot and must be able to store and retrieve past context knowledge.

To examine examples of applications of 3D spatial relations, first, the preconditions of each task
must be satisfied for robots to generate a task plan. For example, to generate a task plan for delivering
a drink to a person, the following preconditions must be satisfied: a cup is filled with the drink and the
robot is holding this cup. In another example, a context-knowledge-providing service must provide
various context knowledge requested by the user in an indoor environment. For example, the user
requests context knowledge such as “is there orange juice in the refrigerator now?” and “where is
the tumbler, which was on the table yesterday, now?” These examples show that in terms of service,
the context knowledge ultimately required by a robot is abstracted symbolic knowledge.

A service robot must be able to retrieve context knowledge stored in the working memory anytime
or infer abstracted context knowledge when necessary. The retrieval of context knowledge requires a
context query language and processing method for accessing the working memory inside the robot
and manipulating knowledge. The important requirements of a context query language can be found
in [12,13]. Typically, context knowledge is closely related to the physical spatial relations and has high
time dependency as it frequently changes over time. Therefore, the context query language must have
high expressiveness to query context knowledge of various periods. Furthermore, as the main purpose
of context query is to retrieve and infer abstracted symbolic knowledge, the grammatical structure of
the query language must be designed to write highly concise and intuitive queries.

As the grammatical structure of a query language is greatly dependent on the knowledge
representation model for storing context knowledge, the knowledge representation model must
be defined first. The general knowledge representation method of knowledge-based agents, such
as service robots, involves the use of description logic-based ontology [14-17]. Every knowledge
in ontology is represented in a statement composed of a subject, a predicate, and an object. Thus,
the query language and processing method for retrieving context knowledge depends on this triple
format. However, as the triple format can only express one fact, representing when this fact occurs and
whether it is valid is difficult. For example, the triple format of “<red_mug> <on> <table>" cannot
express that this fact was valid yesterday but is no longer valid today because the red mug has been
moved to the shelf.

The existing work on robot context query includes OpenRobots Ontology (ORO) [16], KnowRob [17],
and SELECTSCRIPT [18]. ORO provides a knowledge-query API (Application Programming Interface)
based on SPARQL (a semantic query language able to retrieve and manipulate data stored in RDF
(Resource Description Framework)) [19], which is a semantic Web query language, and ORO can thus
retrieve and manipulate knowledge written in RDF (Resource Description Framework). However,
ORO does not have a specific knowledge representation method to specify the valid time of knowledge
and does not consistently maintain past context knowledge. Hence, ORO is limited in allowing only
the current context knowledge to be queried. KnowRob provides prolog query predicates based on
first-order logic in accordance with the semantic Web library of SWI-Prolog (a free implementation of
the programming language Prolog) [20]. KnowRob provides query predicates for expressing the valid
times of perception information obtained from sensors and for querying and inferring the context
knowledge of various periods. However, KnowRob does not support time operators and time constants
for querying various periods and requires comple, inefficient queries. SELECTSCRIPT is an SQL
(Structured Query Language)-inspired declarative query language of the script format. It provides
embedded unary and binary operators to enable the context knowledge to be queried. However, as
with ORO, SELECTSCRIPT does not have a specific knowledge representation method to specify the
valid time of knowledge and does not consistently store past context knowledge. Thus, SELECTSCRIPT
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is also limited in allowing only the current context knowledge to be queried. For these three works,
efficient query-processing methods, such as spatio-temporal indexing, have not been considered.

Against this backdrop, this study proposes the spatio-temporal robotic context query language
(ST-RCQL), which allows the query of time-dependent context knowledge of service robots, and the
spatio-temporal robotic context query-processing system (ST-RCQP), which allows the real-time
query-processing. The ST-RCQL proposed in this paper assumes that the 3D spatial relations among
objects are retrieved from the individual spatio-temporal perceptions of indoor environmental objects
obtained from RGB-D cameras. However, although this type of assumption is adopted by many
spatial query systems, it has a disadvantage in that a very complex query must be written to obtain
symbolic knowledge [21,22]. As service robots require more abstract symbolic knowledge, in this study,
query grammar was designed to allow very concise and intuitive queries instead of complex queries.
For actual query-processing, query translation rules were designed to automatically translate queries to
complex queries for internal processing. Furthermore, query grammar was designed to enable queries
involving context knowledge of various periods by providing time operators based on Allen’s interval
algebra. The query-processing was accelerated using a spatio-temporal index by considering the
characteristics of service robots with a real-time property from the perspective of a query-processing
system. Furthermore, it is more appropriate for robots to obtain specific context knowledge required
at some time point rather than always inferring and accumulating all context knowledge explicitly.
Therefore, we adopted a query-processing method based on backward chaining [23]. To verify the
suitability of the proposed ST-RCQL as a robot context query language and the efficiency of ST-RCQP,
a query-processing system was implemented using SWI-Prolog and JAVA programming language,
and the results of qualitative and quantitative experiments using this system are introduced in the
following sections.

2. Related Works

2.1. Repesentation and Storage of Context Knowledge

The OpenCyc [14] provides OWL-DL (a sublanguage of OWL (Web Ontology Language) based
on description logic)-based upper ontology that the semantic Web community agrees on. To express
knowledge about the specific domain of a robot, ORO [16] and Knowrob [17] expand the upper
ontology of OpenCyc in a robot-oriented manner. ORO expands the upper ontology of OpenCyc to
represent specific objects and actions that appear in scenarios, such as packing and cleaning a table.
The context knowledge stored by ORO comprises spatial relations, including topological, directional,
and distance relations, as well as abstracted symbolic knowledge such as visibility of agents and
reachability of objects. For storing context knowledge in working memory, the triple store of OpenJena
is used. The perception information collected from sensors is used for inferring context knowledge but
is not stored in the working memory. For efficient management of working memory, ORO separately
stores short-term, episodic, and long-term knowledge. The short-term and episodic knowledge are
deleted every 10 seconds and five minutes, respectively, but the long-term knowledge is not deleted.
Examples of short-term, episodic, and long-term knowledge are spatial relations, actions, and TBox,
which is an ontology schema, respectively.

KnowRob expands the upper ontology of OpenCyc for specific objects, tasks, actions,
and perception information, which are observed in scenarios occurring at home, such as making
a pancake in the kitchen. The context knowledge stored by KnowRob is mostly perception information,
such as the pose and bounding box of objects obtained from sensors. It does not store abstracted
symbolic knowledge such as spatial relations. For storing context knowledge in the working memory,
rdf_db triple store, which is included in the semantic Web library of SWI-Prolog, is used.

Ontology-based Unified Robot Knowledge (OUR-K) [15] is another context knowledge
representation model. OUR-K categorizes knowledge into context, spaces, objects, actions, and features
classes and each class has three layers. Among them, the bottom layer inside the context class represents
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a spatial context, which represents the spatial relations between objects. The spatial context combines
with the temporal context in the middle layer and leads to more abstracted contexts.

2.2. Context Query Language

ORO provides an API for context query, with find as the main function. As a SPARQL engine is
present at the backend of the find function, context knowledge can be retrieved from the triple pattern
by inheriting the expressive power of the SPARQL as it is. However, ORO cannot query past context
knowledge because it always stores and maintains only recent spatial relations.

For context query, KnowRob expands the semantic Web library of SWI-Prolog and supports
the prolog predicates that can construct queries that include the valid time of knowledge. The main
predicate for knowledge retrieval is holds; it can retrieve context knowledge valid at a specific time in
the present or past. This is because it is possible to enter the context predicate and valid time of the
triple pattern as arguments. However, in the holds predicate, the valid time can be entered only as a
time point and only at is supported for time operator, resulting in very complex queries.

Another query language is SELECTSCRIPT [18], which constructs queries for XML (eXtensible
Markup Language)-based simulation files that are continuously updated. In particular, SELECTSCRIPT
supports embedded binary operators that can query spatial relations in the WHERE clause and
supports the function to obtain the results in the form of prolog predicate logic. However, one
limitation of SELECTSCRIPT is that it cannot query past context knowledge because it always updates
and maintains the simulation file as latest information.

2.3. Context Reasoning

From the spatial reasoning and knowledge (SPARK), which is a geometric reasoning module,
ORO infers abstracted context knowledge. SPARK infers spatial relations among objects, robots, and
the user, as well as visibility and reachability from the perception information obtained from sensors,
such as 2D fiducial marker tracking and human skeleton tracking, whenever perception information is
inputted from sensors. SPARK is a forward reasoning method that infers context knowledge, delivers
the result to the ontology module of ORO and stores it in the working memory. When storing context
knowledge in the working memory, it performs consistency checks by using the Pellet reasoner.

KnowRob infers abstracted context knowledge from a spatio-temporal reasoning module
developed through SWI-Prolog. This module infers spatial relations between objects from the bounding
box and the center of objects obtained from sensors. Unlike the forward reasoning method of ORO,
KnowRob employs the backward reasoning method, which infers context knowledge only when
requested by a query using a computable predicate.

Another estimator is the QSRIib (a library that allows computation of qualitative spatial relations
and calcul) [24], which is a software library implemented using Python, and it can be embedded
in various intelligent systems. QSRIib provides geometric reasoning for distance relations, such as
qualitative distance calculus [25]; directional relations, such as cardinal direction (CD) [26] and ternary
point configuration calculus [27]; and topological relations, such as rectangle algebra [28] and region
connection calculus [29], from video information obtained from RGB-D cameras. In addition, it also
provides geometric reasoning for the movements of objects such as qualitative trajectory calculus [30].

3. Expression and Management of Robot Context Knowledge

3.1. Knowledge Representation

As a context query language depends on a knowledge representation model for representing and
storing context knowledge, the model must be defined before the context query language is designed.
For this purpose, we constructed a context ontology, as shown in Figure 1, in accordance with the
standard semantic Web language, RDF/OWL. The RDF/OWL based on descriptive logic (DL) can
define facts or knowledge of the triple format for logical reasoning. Figure 1 (left) shows class hierarchy



Sensors 2018, 18, 3336 50f 19

and properties for representing time-related knowledge. Representative classes include the Event class
for representing the individual spatio-temporal information of objects, such as the VisualPerception
class, indicating the pose of objects and the TimePoint, Timelnterval class, indicating the valid time of
specific events. As startTime and endTime properties are defined for the TemporalThing class at the top,
subclasses, such as VisualPerception, can inherit these properties to represent valid time of event.

is-a
Spat|aITh|ng I MathematicalThing
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c;bjectActedQ';l HumanScaleObject "\,‘ @
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Figure 1. A part of ontology for context knowledge.

~ eventOccursAt

Figure 2 shows the visual perception instances of objects created by referring to the ontology
in Figure 1. The box above of visual perception instances shows the basic information about each
object, such as class type, depth, width, and height, which the service robot knows in advance.
Then, when visual perception of the object occurs, the visual perception instances of the object
(visualPerception_492w, visualPerception_3nd8, ...) are created. These instances include information
about the class type (type), perceived object (object ActedOn), perceived pose of object (eventOccersAt),
and perceived time (startTime). This representation method can effectively represent the spatial
information of objects according to the valid time and is advantageous for building the spatio-temporal
index. The center of Figure 1 shows class hierarchy and properties to represent objects in the
indoor environment and the 3D spatial relations. The representative classes include container classes
(ContainerArtifact), such as DrinkingGlass, Tray and furniture classes such as Table and Shelf.

mugCup4d tray2
type: Mug type: Tray
depth: 0.5 depth: 3.0
width: 0.5 ') width: 4.5 ﬁ
height: 0.6 height: 0.05
visualPerception_492w visualPerception_3nd8
type: VisualPerception type: VisualPerception
cbjectActedOn : mugCupd cbjectActedOn : tray4
eventOccursAt rotationMatrix3D_38 eventOccursAt rotationMatrix3D_821
startTime :timepeint_3928405921 3D 30 startTime timepeint_3928405921 3D 822
| STanme Tmepont_3928205923 BD 40 | STanme Tmepont_3928205923 BD 823
| startnme Tmepomi_3928405925 | Startnme Tmepomt_392840508925

Figure 2. An example of visual perceptions.

Figure 3 shows the 3D spatial relations among the objects created from the ontology in Figure 1.
The top part of Figure 3 shows the visual perception instances of the mug cup (mugCup4) and tray
(tray4) perceived at t1 (timepoint_3928405921) and t2 (timepoint_3928405925). The middle part of
Figure 3 shows the semantic map instance for the table (tablel) comprising the visual perception
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information. The representation method for the semantic map instances is similar to that of visual
perception instances. However, the objects that belong to semantic map instances are assumed to
be always stationary. The bottom part of Figure 3 shows expressions of 3D spatial relations among
the objects: “The mug cup is on the table (mugCup4 on-Physical table1)” and “The tray is on the table
(tray4 on-Physical tablel).” These spatial relations are inferred from poses and geometries in the visual
perception instances and the semantic map instances. The spatial relations of the mug cup and
furniture, which are the result of inference, implicitly include time dependency on ¢1 and {2, which are
time points when the poses of the mug cup were perceived. For example, the valid time of the mug
cup on the table is t1, and the valid time of the mug cup on the tray is t2. The properties of spatial
relation considered in this study are shown in Figure 4.

visualPerception_492w visualPerception_3nds visualPerception_492w visualPerception_3nd3
objectActedOn : mugCup4 objectActedOn : trayd objectActedOn : mugCup4 objectActedOn - tray4
eventOccursAt rrotationMatrin3D_38 eventOccursAt rrotationMatrin3D_s21 eventOccursAt rrotationMatrix3D_38 eventOccursAt rotationMatrix3D_821
startTime timepoint_3928405921 startTime timepoint_3928405921 stariTime timepoint_3928405925 startTime timepoint_3928405925

N -

semanticMapPerception 03
objectActedOn: tablel
eventOccursAt : rotationMatrix3D_03
startTime : timepoint_1456100052

mugCup4 on-Physical tray4

mugCup4 on-Physical tablel
tray4 on-Physical table1

tray4 on-Physical table1

spatial relations spatial relations

Figure 3. An example of 3D spatial relations between objects.

spatiallyRelated

‘topo\og\'ca\Relat\'ons | ‘ directionalRelations |

gy =
‘aboveof | | belowOf ‘ ‘toTheS\'deOf ‘

‘ in-ContGeneric l/| inCenterOf ‘

‘ on-Physical | ‘ outsideOf ‘ ‘ behind | ‘ inFrontOf | ‘toTheLef‘tOf ‘ |toTheRightOf |

Figure 4. Properties of 3D spatial relation.

Figure 4 shows the sub-properties of the spatiallyRelated property for representing the 3D spatial
relations in Figure 1. The properties of spatial relation are largely divided into topological, directional and
distance relations. The topological relation properties include on-Physical, in-ContGeneric, in-CenterOf,
and outsideOf, whereas the directional relation properties include toTheLeftOf, inFrontOf-Generally,
and aboveOf-Generally. Finally, Distance relation properties include very-close, close, far, and very-far.

3.2. Knowledge Management

This study followed the RDF/OWL triple format for unified representation and smooth sharing
of context knowledge; however, the knowledge is internally stored after being translated into prolog
facts based on first-order logic. This is because of the geometric reasoning to infer 3D spatial relations
from the positions of individual objects. Prolog is an advanced logic programming language that
enables ontology-based logical inference according to description logic, horn logic, etc., and enables
geometric reasoning based on arithmetic operations.

As shown in Figure 5, the context knowledge stored inside the robot follows the static context
ontology, which exists in the ontology file format, and represents dynamic visual perception instances,
which are perceived in real time through the RGB-D camera, and semantic map instances, which are
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made in advance. The context ontology and semantic map instances are loaded into the working
memory when the robot is started, and the perception information is newly stored at each perception.
This study employed the backward reasoning method to present the 3D spatial relations among objects
only as responses to query requests without storing them in the working memory. Considering the
hardware limit, real-time property, etc., of the robot, obtaining only the context knowledge specifically
demanded at a specific time point is more appropriate for the robot than to identify and accumulate all
abstracted context knowledge whenever perception information is input. The backward reasoning
adopted in this study is illustrated in Figure 6.

context ontology perceptions semantic map

7 L X

working memory

rdf("type" "visualPerception_122" "VisualPerception");
rdf("cbjectactedOn” "visualPerception_122" "cupl”);
rdf("eventOccursAt” “visualPerception_122" “rotationMatrix3D_3");
rdf("startTime" “visualPerception_122" "timepoint_1456117552";

Prolog facts
Figure 5. Translating context knowledge in the form of RDF/OWL to Prolog facts.

@ Prolog query for 3D spatial relation

. @ Check computable predicate
@ Inquiry rdf_triple(on-Physical, ?Object, 'table01’) }'\

computeOn-Physical
type: ComputablePredicate

target: on-Physical
command:Fomp_on_physical

| (® Call reasoning rule
4

working memory

, o , ) (3 Result
rdf("type” “visualPerception_122" “VisualPerception™);
rdf("objectActedOn” “visualPerception_122" "cup1"); —-
rdf("eventOccursat” “visualPerception_122" “rotationMatrix3D_3");
rdf("startTime” “visualPerception_122" “timepoint_1456117552";

comp_on_Physical(Top, Bottom){
® Result synthesis | ...

s | (BY - 0.5*BW) =< TY,

(BY + 0.5*BW) >=TY,
TopW=Bottom.

}

Buissasoid A1end

Prol |
Object = cup05 rolog rule
Object = document03

@ Query reply

Figure 6. Backward reasoning using computable predicate.

Figure 6 shows the backward reasoning method using a computable predicate [13]. As shown
in this figure, when a Prolog query (rdf_triple (‘on-Physical’, ?Object, ‘table01’)) is input for 3D spatial
relations, it retrieves working memory, and then checks whether on-Physical, which is the predicate of
the query, is registered as the computable predicate in the context knowledge ontology. If the predicate
of the query is not registered as a computable predicate, the query is processed by just retrieving the
working memory through the triple pattern. However, if it is registered, not only is it retrieved, but the
built-in reasoning rule is also invoked, and the result is included in the response to the query.

4. Design of Robot Context Query Language

As the 3D spatial relations change continuously over time, a context query language with time
dependency is required. Furthermore, as the context knowledge mainly required of robots in terms of
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service is abstracted symbolic knowledge, such as 3D spatial relations rather than low-level values,
such as object poses, the context query language must be written very concisely and intuitively.
To satisfy these requirements of the context query language, we propose the grammatical structure of
the context query language in Figure 7; this structure is written in the extended Backus Naur form.

<query> ::= (context <query pattern> {<query pattern>})

<query pattern> ::= <simple query pattern> | <temporal query pattern>
<simple query pattern> ::= (<predicate> <subject> <object>)

<predicate> ::= <uri> | <var>

<subject> ::= <uri> | <var>

<object> = <uri> | <literal> | <var>

<temporal query pattern> ::= (<simple query pattern> <temporal condition>)
<temporal condition> ::= <time point condition> | <time interval condition>
<time point condition> ::= <time point operator> <time point>

<time point operator> ::= EQUALS | BEFORE | AFTER

<time point> ::=<uri> | <literal>

<time interval condition> ::= <time interval operator> <time interval>

<time interval operator> := EQUALS | BEFORE | AFTER | OVERLAPS |...
<time interval> ::= <uri> | <time point> <time point>

Figure 7. Grammar structure of the context query language.

This grammatical structure is interpreted as follows. A query is a repetition of a query pattern,
which is either a simple or temporal query pattern. A simple query pattern is a triple format consisting
of a predicate, a subject, and an object. The predicate and subject are a URI (uniform resource identifier)
or variable, and the object is a UR], literal, or variable. The temporal query pattern is composed
of a simple query pattern and a temporal condition, which is composed of a time-point condition
and a time-interval condition. The time point condition is composed of a time-point operator and a
time point. The time-point operators include EQUALS, BEFORE, and AFTER, while the time point
is a URI or literal. The time-interval condition is composed of a time-interval operator and a time
interval. Thirteen time-interval operators are present and are based on Allen’s theory; these include
EQUALS, BEFORE, AFTER, and OVERLAPS. The time interval is a URI or consists of two time points.
The grammatical structure of the context query language in Figure 7 can be used to write context
queries, as shown in Figures 8-10. Figure 8 shows a context query using a time-point operator.

(context
(“rcql:on-Physical” $Object “rcql:table01” “AT” “2018-07-07T12:00:00”)
)
Figure 8. An example of a context query using a time-point operator.
(context

(rcql:on-Physical $Object “reql:table01” “DURING” “2018-07-07T12:00:00” “2018-07-07T14:00:00")

)

Figure 9. An example of a context query using a time-interval operator.



Sensors 2018, 18, 3336 9of 19

(context
(regl:on-Physical $Milk “rcql:table01” “DURING” “2018-07-07T12:00:00” “2018-07-07T14:00:00")
(rdf:type $Milk “reql:Milk”)
(regl:on-Physical “reql:milk01” $Furniture “DURING” “NOW”)

)

Figure 10. An example of a multiple context query using time-interval operators.

Figure 8 represents the query “What is the object on the table at 12:00?” In this example, the first
three elements after the header context are a predicate (rcql:on-Physical), a subject ($Object), and an
object (rcql:table01), respectively. Here, the subject is a variable. The fourth element is the time-point
operator EQUAL and the last fifth element is the time literal value (2018-07-07T12:00:00), which is the
operand of the time-point operator. Figure 9 illustrates a context query using a time-interval operator.

Figure 9 represents the query, “What is the object that was on the table between 12:00 and 14:00?”
The fourth element in this query is the time-interval operator DURING and the fifth and sixth elements
represent the start time (2018-07-07T12:00:00) and end time (2018-07-07T14:00:00), respectively, for the
operand of the time-interval operator. Finally, Figure 10 illustrates a multiple context query using
time-interval operators.

As shown in Figure 10, a multiple context query refers to a query consisting of two or more query
patterns. The query in this figure represents “Where is the milk that was on the table during lunch
between 12:00 and 14:00 now?” In this query, the first query pattern queries about the objects that were
on the table during lunch by using a time-interval operator. The second query pattern only queries
about the milk among the objects queried in the first query pattern. The last query pattern queries
about the furniture on which the milk (queried about in the second query pattern), is placed presently.
Here, NOW is the time constant that dynamically receives the current time.

The query languages of ORO and SELECTSCRIPT can only query about the current context
knowledge because the valid time of context knowledge cannot be specified. However, ST-RCQL
can query context knowledge that is valid at specific times both in the past and present. Similarly,
KnowRob allows the query of a valid past context knowledge. However, KnowRob provides only one
time-operator, whereas ST-RCQL provides a rich set of 13 time-operators following the Allen’s interval
theory, thus allowing very efficient queries of context knowledge in different periods. Furthermore,
more concise and abstracted queries are possible as ST-RCQL supports time constants such as NOW
and TODAY.

5. Robot Context Query-processing System

5.1. System Structure

The core context query-processing abilities required in this study are to retrieve the context
knowledge of the valid time satisfying the time operator and the inference of 3D spatial relations
among objects from poses of the individual object. Therefore, in this study, context query language
was translated to Prolog queries, which were then processed. Arithmetic operations, such as geometric
operations, can be included in the reasoning rules because the advanced logic programming language,
Prolog, programs procedural languages, such as C, by using a logical language. Furthermore, to quickly
process queries of service robots working in real time, spatio-temporal indices were built in the
working memory and referenced to accelerate query-processing by increasing the knowledge access
and reasoning speeds. Figure 11 shows the structure of the context query-processing system that meets
these requirements.
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Spatio-Temporal
Indexing Rules

context query query reply
Query Processor
Query Query Query Result
Parser Translator Executer Synthesizer
inquiry l linvoke
Working Memory Hybrid Reasoner
Spatial Index refer
Knowledge t
Base
i ™ Temporalindex |
it [t
Perception Handler -
Object Perception
Creation Rules Creation Rules

T 1 refer
percepts Context
Ontology
Figure 11. Structure of context query-processing system.

In the context query-processing system, the perception handler stores the visual perception
information (percepts) received in the working memory, which is an internal storage, in real time.
When storing the visual perception information in the working memory, the system refers to the
context ontology and dynamically updates the spatio-temporal indices. When a context query is
inputted in this situation, the query processor translates the context query into a Prolog query and
retrieves context knowledge in the working memory or derives the result of the query by using the
hybrid reasoner. Then, it replies the final result to the query by synthesizing these results.

5.2. Spatio-Temporal Index

For the real-time property of the service robot, the 3D spatial relations must be quickly inferred
from the visual perception instances of the objects inputted to the working memory at a rate of
10 frames per second. The largest costs in this process are the costs of accessing the visual perception
instances and inferring 3D spatial relations from them. In this study, to reduce the cost of accessing the
visual perception instances, as shown in Figure 12, a time index was built from the valid times of the
visual perception instances, and a spatial index was built from the poses of objects to reduce the cost of

inferring 3D spatial relations.

working memory

mugCup4
type: Mug

depth: 0.5
width: 0.5 '3
height: 0.6
A\ 2D spatial index

visualPerception_492w
type: VisualPerception
objectActedOn : mugCup
eventOccursAt JrotationMatrixsD 33

i -
SE@EImE Tmepont_3928405923 oo T— —  0— 000
e Thep 90— [HI—Ad—
visual perceptions 1D time index

Figure 12. Building of spatio-temporal index for visual perception instances.
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The time index in Figure 12 was built by using a 1D R-tree [31]. This time index is referenced
when visual perception instances satisfying the time operator are accessed. The spatial index was
built by using the 2D R*-tree [32]. Although the pose of object is 3D spatial information, the spatial
index was built in a 2D R*-tree because the 3D plane viewed from the top can sufficiently represent the
locality of the objects in an indoor environment. Furthermore, it is much faster to update a 2D spatial
index than a 3D spatial index when considering the cost of updating the spatial index whenever the
poses of objects is inputted in real time.

5.3. Translation of Context Query

In this study, the query grammar was designed to enable very concise and intuitive context
queries to be written for retrieving abstracted symbolic knowledge. However, to process actual queries
that include time operators and geometric operations, such as 3D spatial reasoning, the inputted
context query must be translated into a Prolog query for internal processing. Accordingly, the query
translation rules were designed, as shown in Table 1.

Table 1. Rules of query translation.

Query Pattern Translation to Prolog Query

rdfs_individual_of(Subject, rcql:’SpatialThing),
rdfs_individual_of(Object, rcql:’SpatialThing’),

latest_detection_of_instance(Subject,
LatestDetectionS),
latest_detection_of_instance(Object,
LatestDetectionO),

(context (SpatialPredicate $Subject $Object))

rdf_triple(SpatialPredicate, LatestDetectionS,
LatestDetectionO).

rdfs_individual_of(Subject, rcql:"SpatialThing’),
rdfs_individual_of(Object, rcql:’SpatialThing’),

rdf_triple(knowrob: objectActedOn’, SP, Subject),

(context (SpatialPredicate $Subject $Object rdf_triple(knowrob:’objectActedOn’, OP, Object),

“TimePointOperator” “TimePoint”))

time_point_operation(TimePointOperator,
TimePoint, SP, OP),
rdf_triple(SpatialPredicate, SP, OP).

rdfs_individual_of(Subject, rcql:’SpatialThing),
rdfs_individual_of(Object, rcql:’SpatialThing’),

(context (SpatialProperty $Subject $Object rdf_triple(knowrob:’objectActedOn’, SP, Subject),
“TimelntervalOperator” “TimePointS” rdf_triple(knowrob:’objectActedOn’, OP, Object),
“TimePointE"))

time_interval_operation (TimeIntervalOperator,
TimePointS, TimePointE, SP, OP),
rdf_triple(SpatialPredicate, SP, OP).

The query translation rules in Table 1 are divided into simple spatial queries not comprising time
operators, spatio-temporal queries comprising time-point operators, and spatio-temporal queries
comprising time-interval operators. First, for the context query translation rule for queries not
comprising time operators, the most recent visual perception information of objects was retrieved and
the query was translated into a Prolog query for verifying the spatial relation predicate from the poses
of objects.

For example, if the context query, “What is the object on table01?” in Figure 13 is inputted,
the semantic map instance of table01 and the most recent visual perception instances of other objects
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is retrieved, and the spatial relation predicate between the poses of table01 (BVP in Figure 13) and
the other objects (TVP in Figure 13) is verified, while the remaining objects satisfying this query are
returned as the result.

Context Query:
(context (on-Physical $Object “rcql:table01”))

Translated Prolog Query:
rdfs_individual_of(Object, rcql’SpatialThing’),
rdfs_individual_of(rcql:‘table01’, rcql’Spatial Thing’),
latest_detection_of_instance (Object, TVP),
latest_detection_of_instance (rcql:‘table01’, BVP),
owl_has(rcql:’on-Physical’, TVE, BVP).

Figure 13. Illustration of translation for simple spatial query pattern. BVP is the visual perceptions of
base object (fable01) and TVP is the visual perceptions of target objects (not include table01).

Next, the query comprising a time-point operator retrieves visual perception instances of the
period satisfying the time-point operator, and the query is translated into a Prolog query for verifying
the spatial-relation predicate from the poses of these objects.

For example, when the context query “What is the object on table01 after 12:00 p.m. on 7 July
2018?” is inputted, as shown in Figure 14, the visual perception information of table01 and other objects
after 12:00 p.m. on 7 July 2018 is retried. Then, the spatial relation predicate on-Physical between the
pose of table01 (BVP in Figure 14) and poses of other objects (TVP in Figure 14) is verified and the
objects satisfying this condition are retrieved again.

Context Query:
(context (on-Physical $Object “rcql:table01” “AFTER” “2018-07-07T12:00:00"))

Translated Prolog Query:
rdfs_individual_of(Object, rcql:’Spatial Thing’),
rdfs_individual_of(rcql:'table01’, rcql:'SpatialThing’),
owl_has(knowrob:objectActedOn’, TVE, Object),
owl_has(knowrob:‘objectActedOn’, BVF, rcql:"table01’),
after(TVD, 2018-07-07T12:00:00"),
after(BVP, 2018-07-07T12:00:00"),
owl_has(on-Physical(TVE, BVP)).

Figure 14. Illustration of translation for spatio-temporal query pattern one.

Finally, the query including a time-interval operator retrieves visual perception information of
the period that satisfies the time-interval operator and is translated into a Prolog query for verifying
the spatial relation predicate from these poses of objects.

For example, as shown in Figure 15, if the context query “What is the object on table01 between
12:00 p.m. and 14:00 p.m. on 28 November 2017?” is inputted, the semantic map instance of table01
and visual perception instances of other objects whose valid time is between 12:00 p.m. and 14:00 p.m.
on 28 November 2017 is queried first. Then, the spatial-relation predicate between the pose of table01
and poses of other objects is verified and the objects that satisfy this condition are retrieved again.
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Context Query:
(context (on-Physical $Object “rcql:table01” “DURING” “2017-11-28T13:00:00” “2017-11-28T14:00:00"))

Translated Prolog Query:
rdfs_individual_of(Object, rcql:’SpatialThing),
rdfs_individual_of(rcql:‘table01’, rcql:’Spatial Thing’),
owl_has(knowrob:’objectActedOn’, OVPE, Object),
owl_has(knowrob:'objectActedOn’, BVD, rcql:"table01’),
during(TVDP, [2017-11-28T12:00:00", 2017-11-28T12:00:00'])
during(BVD, ['2017-11-28T12:00:00', "2017-11-28T12:00:00'])
owl_has(on-Physical(TVE, BVP)).

Figure 15. Illustration of translation for spatio-temporal query pattern two.

6. Implementation and Experiment

6.1. Implementation

To analyze the performance of the context query language (ST-RCQL) and the query-processing
system (ST-RCQP) proposed in this study, ST-RCQP was implemented as follows.

ST-RCQP was implemented using Java programming language in the environment of Windows
10 on a 64-bit i5-6600 CPU. In particular, to implement the Prolog-based reasoning engine and working
memory inside the system, the Semantic Web Library 3.0 package of SWI-Prolog [20] was used, and the
Space package of SWI-Prolog was used to implement indices in the working memory. In addition,
the JPL library was used as the bidirectional interface between Java and Prolog.

6.2. Experiment

The experiments on performance analysis were largely divided into qualitative and quantitative.
First, the qualitative experiment was conducted to prove the high expressive power of ST-RCQL.
The experimental method involved writing queries by using ORO, KnowRob, SELECTSCRIPT,
and ST-RCQL to obtain answers for three spatio-temporal contexts and compare the queries.

The first context is “objects now on the table.” This context includes the temporal context of
“now” with the spatial context of “on”. According to Figure 16, all the four query languages have
the expressive power to query this spatio-temporal context. Every query includes a time operator or
spatial predicate for the spatio-temporal query. In the case of ORO and SELECTSCRIPT, the query only
includes a spatial predicate with no time operator. ORO and SELECTSCRIPT do not store past context
knowledge but continuously update and maintain the current spatial context knowledge. Thus, their
queries for the first context are valid. However, when writing a query for a past context, the occurrence
of the problem shown in the second context in Figure 17 cannot be avoided.
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Context:
Objects now on the table.

ORO query:

find(?Object isOn table01)
result:

?Object = cup01;

?Object = tray01.

SELECTSCRIPT query:
SELECT object FROM kitchen
WHERE above(table, object)

result:
object = cup01;
object = tray01.

KnowRob query:

holds(on-Physical(Object, rcql:table01), NOW).
result:

Object = cup01;

Object = tray01.

ST-RCQL query:

(context (rcql:on-Physical $Object rcql:table01 AT NOW))
result:

$Object = cup01;

$Object = tray01.

Figure 16. Comparison of spatio-temporal context queries one.

Context:
Objects that were on the table yesterday.

ORO query:
unwritable

KnowRob query:
holds(on-Physical(Object, rcql:table01), “2017-10-26T00:00:00”);
holds(on-Physical(Object, rcql:table01), “2017-10-26T00:00:01”);
holds(on-Physical(Object, rcql:table01), “2017-10-26T00:00:02”);

result:
Object = cup01
Object = cup02
Object = plate01

SELECTSCRIPT query:
unwritable

ST-RCQL query:

(context (regl:on-Physical $Object reql:table01 DURING YESTERDAY))
result:

$Object = cup01

$Object = cup02

$Object = plate01

Figure 17. Comparison of spatio-temporal context queries two.
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Compared to the first context, for the second context, “objects that were on the table yesterday,”
the time point of the queried context is in the past and not the present. As mentioned earlier, ORO
and SELECTSCRIPT do not maintain past context knowledge, and thus cannot write queries for a
past context owing to the limitation of query grammar. Although KnowRob can write the query, as it
only supports the time-point operator at, a very inefficient query is written to express the time interval
of yesterday. In contrast, as ST-RCQL supports time-interval operators, it can write a very concise,
efficient query, as shown in Figure 17. To verify the high linguistic expressive power of ST-RCQL,
a query about a spatio-temporal context, in which various time points of the past and present are
entangled, was written, as shown in the following example (Figure 18).

Context:
The place where oranges on the table for lunch were subsequently stored.

ORO:

unwritable

KnowRob:
holds(on-Physical(Object, rcql:table01), “2017-10-27T12:00:00”);
holds(on-Physical(Object, rcql:table01), “2017-10-27T12:00:01");
holds(on-Physical(Object, rcql:table01), “2017-10-27112:00:02”);

owl_has(?Object, rdf:type, rcql:Orange),

holds(in-ContGeneric(Object, Contrainer), “2017-10-27T14:00:00”);
holds(in-ContGeneric(Object, Contrainer), “2017-10-27T14:00:01");
holds(in-ContGeneric(Object, Contrainer), “2017-10-27T14:00:02”);

result:
Object = orange(1
Container = refrigerator02
SELECTSCRIPT:
unwritable
ST-RCQL:
(context (reql:on-Physicalc $Object reql:table01 DURING LUNCH)
(rdf:type $Object reql:Orange)
(reqliin-ContGeneric $object $Container AFTER LUNCH)

)

result:
$Object = orange01
$Container = refrigerator02

Figure 18. Comparison of spatio-temporal context queries three.

The third context is “The place where oranges on the table for lunch were subsequently stored.”
To determine this context, multiple queries were constructed to find the oranges present on the table
during lunch and then to find the place where they were stored after lunch. As in the second context,
this third context also includes a past time point. Thus, ORO and SELECTSCRIPT cannot be used to
write a query for this context. Although KnowRob can be used, it is still very inefficient. ST-RCQL can
be used to write this query in only three lines. The first line finds the objects that were on the table,
the second line selects oranges only among the objects present on the table at that time, and the third
line finds the place where oranges were stored after lunch.

Next, quantitative experiments were conducted to verify the efficiency of query-processing based
on backward reasoning adopted in this study (Figure 19a,b) and the acceleration of query-processing
by using spatio-temporal indices (Figure 19¢,d).
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Figure 19. Experimental result of context query-processing by using reasoning types or spatio-temporal
index (a) Reasoning time by reasoning types, (b) amount of inferred knowledge by reasoning types,
(c) temporal query-processing time and (d) spatial query-processing time with respect to index.

Figure 19a shows the reasoning times of forward and backward reasoning depending on the
number of visual perception instances stored in the working memory. All the visual perception
instances were assumed to have the same valid time. Unlike backward reasoning, forward reasoning
infers all possible context knowledge before querying; this requires considerable reasoning time.
Furthermore, we determined that the reasoning time of forward reasoning increased exponentially with
the number of visual perception instances. Figure 19b shows the volume of context knowledge inferred
after forward and backward reasoning, depending on the number of visual perception instances stored
in the working memory. Backward reasoning derives a very small volume of context knowledge,
which it derives through reasoning among the inferred context knowledge by accessing specific context
knowledge only. In contrast, forward reasoning derives a very large volume of context knowledge
because it infers all possible knowledge and stores all the results. This results in an exponential increase
in the volume of context knowledge with the increase in visual perception instances. In Figure 19b,
the space occupied by approximately eight million triples of context knowledge in the memory,
which was derived at the maximum, is approximately 1.5 GB. Visual perception instances obtained
using the RGB-D camera are generated at the rate of approximately 10 frames per second. Therefore,
approximately three minutes and 20 seconds is required to occupy 1.5 GB of memory. Furthermore,
robots also obtain other perception information in addition to visual perception instances, and thus the
memory capacity for forward reasoning is practically impossible to meet. Although not shown in the
results of the two experiments in Figure 19a,b, to actually apply forward reasoning to robots, it must
be performed ceaselessly whenever the perception occurs. This reasoning method is inappropriate for
service robots that must work in real time.

Next, Figure 19c shows the temporal query-processing time according to the number of visual
perception instances stored in the working memory. Figure 19c shows the graph of temporal
query-processing times with and without the time index. For temporal query, the temporal query
predicates in Figures 14 and 15 were used. As temporal queries are extremely fast to process, the number
of visual perception instances was increased more than in other experiments in Figure 19 to show
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a clear difference. The results in Figure 19¢ confirm that the use of a time index greatly accelerated
the query-processing speed compared to the case of not using the time index. The effect of the index
appears more conspicuously in the result of Figure 19d, which shows the spatial query-processing time
depending on the number of visual perception instances stored in the working memory. Figure 19d
shows the spatial query-processing times with and without the spatial index R*-tree. For a spatial
query, the owl_has query predicate and the computable spatial predicate were used. The result in
Figure 19d confirms that the spatial query-processing speed accelerated significantly compared to the
case where the index was not used. Furthermore, the effect increased continuously with the number of
visual perception instances.

7. Conclusions

In this paper, we proposed the context query language ST-RCQL and query-processing system
ST-RCQP for service robots working in an indoor environment. The proposed context query language
ST-RCQL was designed to query 3D spatial relations among objects at various periods based on
Allen’s interval algebra. Furthermore, the automatic query-translation rules were designed to write
very concise and intuitive queries by considering the nature of service robots, which mainly handle
abstracted symbolic knowledge in terms of service. Furthermore, to support the real-time property of
service robots, this study proposed a query-processing method of backward reasoning and a method of
accelerating query-processing by the building of spatio-temporal indices for the individual perception
information of objects. The suitability of ST-RCQL as a robot context query language and the efficient
performance of ST-RCQP were verified through various experiments.

From the perspective of storing and retrieving context knowledge, one of the problems that must
be dealt with as much care as time dependence is uncertainty, which was not addressed in this study.
In the future, we plan to research a context query language and processing method that considers both
time dependence and uncertainty of a context language.
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