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Abstract: Gait asymmetry is an important marker of mobility impairment post stroke. This study 

proposes a new gait symmetry index (GSI) to quantify gait symmetry with one 3D accelerometer at 

L3 (GSIL3). GSIL3 was evaluated with 16 post stroke patients and nine healthy controls in the Six-

Minute-Walk-Test (6-MWT). Discriminative power was evaluated with Wilcoxon test and the effect 

size (ES) was computed with Cliff’s Delta. GSIL3 estimated during the entire 6-MWT and during a 

short segment straight walk (GSIL3straight) have comparable effect size to one another (ES = 0.89, p < 

0.001) and to the symmetry indices derived from feet sensors (|ES| = [0.22, 0.89]). Furthermore, 

while none of the indices derived from feet sensors showed significant differences between post 

stroke patients walking with a cane compared to those able to walk without, GSIL3 was able to 

discriminate between these two groups with a significantly lower value in the group using a cane 

(ES = 0.70, p = 0.02). In addition, GSIL3 was strongly associated with several symmetry indices 

measured by feet sensors during the straight walking cycles (Spearman correlation: |ρ| = [0.82, 0.88], 

p < 0.05). The proposed index can be a reliable and cost-efficient post stroke gait symmetry 

assessment with implications for research and clinical practice. 
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1. Introduction 

Stroke is the fifth leading cause of death in the United States [1]. About 80% of stroke survivors 

are affected by hemiparesis [1], characterized by muscle weakness and extensor spasticity in the 

lower extremities that can severely influence mobility in post-stroke patients. One of the typical 

impairments caused by this hemiparesis is gait asymmetry. In post-stroke rehabilitation programs, 

considerable focus is placed on the equalization of weight bearing through the lower extremities and 

the capacity to shift weight between the lower extremities during gait [2]. Symmetry is a target gait 

function to restore and is an useful outcome measure of the rehabilitation [2–6]. Despite its clinical 

interest and importance, there is currently no standardized method to measure gait symmetry [6,7]. 

Camera-based motion capture system, and pressure mats and insoles are used to analyze kinetics 

and kinematics of gait [4,6,8–10], and fewer studies reported different methods for gait symmetry 

assessment using inertial sensors [10–12]. Regardless of the tool used to measure gait, the assessment 

of symmetry remains a simple comparison of different spatiotemporal gait parameters between left 

and right sides (such as stance and swing phase, step length, etc.). To our knowledge, only one study 
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has reported an alternative method other than aforementioned studies based on spatiotemporal gait 

parameters to analyze symmetry [13]. Using inertial sensors fixed on each shank, the method first 

applied quantization of raw sensor signals with a symbolic segmentation, then symmetry is 

determined by the difference ratio between the symbols of left and right side. However, a user-

defined threshold on the mean squared error to determine the quantization resolution a priori limits 

this method’s accuracy. In a recent study, we developed two simple gait symmetry indices estimated 

by the linear correlation coefficient and the normalized sample distance between the left and right 

foot pitch angular velocity [14]. The developed indices demonstrated high and comparable 

discriminative power than gait symmetry estimated with spatiotemporal gait parameters. 

Importantly, these novel methods assess gait symmetry based on signal profiles corresponding to 

step alternation from two sides without estimation of specific spatiotemporal gait parameters, which 

usually requires sophisticated signal processing and a gait model. Such a gait model is usually 

developed for healthy gait patterns and its reliability becomes questionable in applications with 

pathological gait. 

Analyzing step alternation from sensor signal profile might be applicable to other sensor 

configurations as well. For example, one study [12] reported that asymmetry estimated by the trunk 

movement showed significant difference between chronic stroke patients and healthy controls, 

whereas comparison of side-to-side symmetry in spatiotemporal parameters did not differ between 

groups. However, the study reported a comparison of symmetry outcomes with only two 

spatiotemporal gait patterns. It is not fully clear whether the trunk movement is superior to feet 

kinematics for gait asymmetry estimation in post stroke patients. 

In this study, we proposed and evaluated a gait symmetry index derived from a single 3D 

accelerometer worn at the midline of the lower back (approximately at the level of L3). The primary 

outcome of this study was the discriminative power of the single low back accelerometry based gait 

symmetry index in post-stroke patients. We compared the discriminative power to the gait symmetry 

indices estimated using two feet sensors that have been validated in previous studies, namely the 

method based on the difference ratio of various spatiotemporal gait parameters and the method 

based on the pitch angular velocity signal profile. The secondary outcome was the association 

between gait symmetry estimated by one low back accelerometer and the symmetry measured with 

two feet sensors. 

2. Materials and Methods 

2.1. Data Acquisition 

Sixteen consecutively consenting post-stroke patients (nine males and seven females, average 

age 54 years with range 23–74, 6 using a cane) and nine healthy controls (five males and four females, 

average age 35 years with range 25–48) participated this study at the Physical Medicine & 

Rehabilitations Section and in the Department of Neurology & Neurological Sciences, at Stanford 

University. Six patients suffered from subcortical stroke and 10 suffered from cortical stroke. The 

stroke etiology was hemorrhagic in one patient and ischemic in the others. The time after stroke 

varied from 5 months to 11 years with a median of 20 months. Patient self-reported outcome of stroke 

impact scale (SIS) [15] was between 190 to 288 points with a median of 219.5 (the higher the point, the 

higher the impact). The ethical committee for Human Subjects Research at Stanford University 

approved this study. Written informed consents were obtained from the patients in the study.  

Participants performed gait assessment in Six-Minute-Walk-test (6-MWT) with their 

comfortable walking speed under the supervision of an experienced clinical researcher. The 6-MWT 

is a reliable and easy to administer assessment widely used for walking function assessment 

following stroke [16]. At our location, the 6-MWT was conducted in a rectangular set of corridors 

between 15 to 25 m long linked together by 90-degree turns. During the test, patients wore a wireless 

inertial sensor (MTw Awinda, Xsens, Enschede, The Netherlands [17]) on top of each shoe and in the 

midline of the low back (approximately at the level of L3). Each sensor was held in position with an 

elastic band. Study participants were provided instruction before the walking assessment. When 
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ready at the starting position (standing straight in front of the starting line), data recording started 

with the countdown 5 seconds prior to the command ‘Start’ from the clinical researcher. Recording 

stopped when the participant completed the 6-MWT and stood quietly at the end of the trial. Raw 

sensor data were transmitted to a Windows laptop via Bluetooth during the assessment. To assure 

good connection, a researcher walked with the laptop behind the participants during the entire 6-

MWT. Meanwhile, the researcher marked down the time when the participants reached the first 90-

degree turn at the end of the corridor (ca. 14 m). The sensor data collection application running on 

the laptop synchronized the data and exported a data file for each assessment containing 3D 

acceleration and 3D gyroscope data sampled at 100 Hz.  

2.2. Gait Symmetry Assessment with Two Feet Sensors 

2.2.1. Symmetry of Spatiotemporal Gait Parameters 

We used validated algorithms [18–21] to extract spatiotemporal gait parameters from the feet 

sensors. Prior to processing, data were resampled to 200 Hz using linear interpolation to be consistent 

with the validated algorithms. In specific, gait cycles were detected based on the timing of two 

consecutive foot-flats [19]. Velocity and position of the foot were estimated by the numerical 

integration of the gravity-free acceleration data in the global frame and drift removal technique using 

the zero velocity update during the foot-flat period [22]. Subsequently, path length, ratio between the 

actual 3D path and the stride length, were estimated [22]. Heel strike and lift off angles were 

estimated based on the de-drifted angular velocity data [21]. Maximum angular velocity of the foot 

and various temporal parameters were extracted from the angular velocity signals [19]. Cycles with 

a turning angle between two foot-flats less than 20 degrees were considered as straight walking cycles 

[18]. Symmetry index (SI) was estimated using the difference ratio of the spatiotemporal parameters 

(listed in Table 1) of each gait cycle n according to Equation (1): 

𝑆𝐼(𝑛) =  
𝑃𝑎𝑟𝑎𝑚𝑙𝑒𝑓𝑡(𝑛)  − 𝑃𝑎𝑟𝑎𝑚𝑟𝑖𝑔ℎ𝑡(𝑛)

0.5 ∗ [𝑃𝑎𝑟𝑎𝑚𝑙𝑒𝑓𝑡(𝑛)  +  𝑃𝑎𝑟𝑎𝑚𝑟𝑖𝑔ℎ𝑡(𝑛)]
∗ 100% (1) 

Table 1. Spatiotemporal parameters analyzed for each foot in one gait cycle. 

Parameter [Unit] Description 

Spatial 

PathLength 

[% stride length] 

Ratio between the length of the real path of the foot in 3D space (including both 

stride length and width) and stride length of one cycle. 

StrikeAng [deg] Angle between the foot and the ground at heel strike in sagittal plane. 

LiftOffAng [deg] Angle between the foot and the ground at toe off in sagittal plane. 

MaxAngVel [deg/s] Maximum pitch foot angular velocity during swing phase. 

Temporal 

StanceRatio [%] Percentage of the gait cycle during which the foot is in stance phase. 

LoadRatio [%] 
Percentage of the stance corresponding to loading phase defined as the time 

between heel strike and toe strike  

FootFlatRatio [%] Percentage of the stance corresponding to the foot-flat phase  

PushRatio [%] 
Percentage of the stance corresponding to push phase defined as the time between 

heel off and toe off. 

2.2.2. Symmetry of Foot Pitch Angular Velocity 

Gait symmetry was computed using the recently published algorithms [14]. The algorithms 

assessed symmetry using the foot pitch angular velocity signals of each gait cycle. The pitch angular 

velocity signal was smoothed with a 2nd order Butterworth low-pass filter (cut-off frequency of 10 

Hz). The maximum lag between the signals from both feet was estimated based on cross correlation, 

and one signal was shifted to align left and right gait cycles. The aligned signals were segmented to 

individual gait cycles based on detected gait cycle of the right foot leading to two signals ωleft(n) and 

ωright(n) of cycle n [19]. The gait symmetry between the left and the right signals was assessed for each 
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cycle based on (a) Pearson correlation coefficient (denoted by GSIcorr) and (b) the normalized sample 

distance (denoted by GSIdist). GSIdist was the mean absolute difference between each left and right 

signal sample of cycle n divided by the mean range of the signals in the cycle (Equation (2)). Mean 

values of GSIcorr and GSIdist of all straight walking cycles in the entire 6-MWT were calculated. The 

detection of gait cycle and the selection of straight walking cycles were based on the same algorithms 

mentioned in Section 2.2.1: 

𝐺𝑆𝐼𝑑𝑖𝑠𝑡(𝑛) =  
𝑚𝑒𝑎𝑛(|𝜔𝑙𝑒𝑓𝑡(𝑛)  −  𝜔𝑟𝑖𝑔ℎ𝑡(𝑛)|)

0.5 ∗ [𝑟𝑎𝑛𝑔𝑒 (𝜔𝑙𝑒𝑓𝑡(𝑛))  +  𝑟𝑎𝑛𝑔𝑒 (𝜔𝑟𝑖𝑔ℎ𝑡(𝑛))]
∗ 100% (2) 

2.3. Gait Symmetry Assessment with a Single 3D Accelerometer at the Low Back 

Gait cycles can be measured by analyzing the repetitive movement pattern of the center of mass 

(CoM) [23]. Low back (approximately L3) accelerations, which are assumed to correspond to CoM 

during walking, were first smoothed with a 2nd order Butterworth low-pass filter with the cut-off 

frequency of 10 Hz. Autocorrelation coefficients of vertical (ARv), frontal (ARf) and lateral (ARl) 

accelerations at the low back were computed as the function of time lag (t), respectively. The biased 

form of autocorrelation was used to suppress the amplitude of the coefficients while t increased [23]. 

The maximum time lag was 4 s (400 samples), which is about 2.5 times a single stride duration in post 

hemiplegic stroke patients [24]. This window length was chosen to capture the repetition of stride 

cycles in very slow walking. Coefficient of stride cycle repetition (Cstride) was the sum of positive 

autocorrelation coefficients of the three axes as a function of t (Equation (3)). Coefficient of step 

repetition (Cstep) was the norm of autocorrelation coefficients as a function of t (Equation (4)). One 

stride time (Tstride) equals to t, when Cstride had the maximum value. The hypothesis was that, in a 

perfect symmetric gait pattern, two consecutive steps have the same step duration of 0.5 * Tstride. The 

maximum value of Cstep was √3 when autocorrelation coefficient of each acceleration axis was 1 at 

zero-lag (t = 0). The gait symmetry index (GSIL3) was Cstep (0.5 * Tstride) normalized to its value at zero-

lag (Equation (5)), so that the maximum value of GSIL3 was 1 in a perfect symmetric gait pattern: 

Cstride(t) = 𝐴𝑅𝑣(𝑡) + 𝐴𝑅𝑓(𝑡) + 𝐴𝑅𝑙(𝑡); if AR(t) < 0, AR(t) = 0 (3) 

Cstep(t) = √𝐴𝑅𝑣(𝑡) + 𝐴𝑅𝑓(𝑡) + 𝐴𝑅𝑙(𝑡)2  (4) 

GSIL3 = Cstep (0.5 * Tstride)/√3 (5) 

2.4. Statistical Analysis 

Symmetry indices (SI) of each spatiotemporal gait parameter estimated by the feet sensors listed 

in Table 1, GSIcorr, GSIdist and GSIL3 (estimated by the low back accelerometer) were computed for each 

post-stroke patient and each healthy control. For SI, GSIcorr and GSIdist, mean values over all gait cycles 

during straight walking in the entire 6-MWT assessment period were computed. GSIL3 was computed 

for the entire 6-MWT assessment period and for the first straight course of the assessment (GSIL3straight). 

Given the small sample size in this study, non-parametric statistics were applied for the analyses. 

Wilcoxon rank sum test was used to test whether there are significant differences in various sensor-

derived gait symmetry indices between post-stroke patients and control group. In addition, effect 

size (ES) calculator Cliff’s Delta was used to determine the discriminating power of various symmetry 

indices [25]. Cliff’s Delta calculates the proportion of non-overlapped samples in the groups. ES = 1 

or −1 indicates the two groups have no overlap. Whereas, ES = 0 means the two groups are not 

separable. According to a study by Romano et al., ES less than 0.147 is negligible, between 0.147 and 

0.33 is small, between 0.33 and 0.474 is medium, and more than 0.474 is a large effect [26]. The 

correlations between the low back sensor derived symmetry indices (GSIL3 and GSIL3straight) and the 

feet sensor based symmetry indices (SI, GSIcorr and GSIdist) were analyzed with Spearman rank 

correlation coefficient (ρ). 

3. Results 
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3.1. Discriminative Power of Gait Symmetry as Measured by Various Indices 

Comparison between the synchronized feet pitch angular velocity signals and the low back 

acceleration signals revealed that the CoM movement repeated with the gait cycles. Figure 1a shows 

the sensor signals of a healthy control. The vertical acceleration showed stronger repetitive patterns 

than frontal and lateral accelerations at each step corresponding to the foot pitch angular velocity of 

left and right steps, which had high similarity in this healthy control. Whereas, the lateral acceleration 

shows a strong repetitive pattern with each stride (two steps).  

 

 

Figure 1. Synchronized pitch angular velocity signals from feet sensors and 3D acceleration signals 

from low back sensor. (a) Synchronized signals from a healthy control. (b) Synchronized signals from 

a post-stroke patient. Upper plot shows foot pitch angular velocity on the left (red) and right (blue) 

side during walking. Lower plot shows lower back acceleration on the vertical (blue), frontal (yellow) 

and lateral (red) axis. The dotted vertical lines indicate of each gait cycles detected by the feet sensors. 

In (a), time phases of foot-flat, push-up, swing and loading in one cycle of the left foot are indicated 

in the pitch angular velocity signal. Axes of the accelerometer at the low back are illustrated next to 

the acceleration signals. 

Figure 1b shows sensor signals of a post-stroke patient. The foot pitch angular velocity profiles 

between the left and right steps had visible differences, which were reflected in the movement of the 

CoM as well. The vertical acceleration at the low back had poor similarity between the successive 
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steps, but was visible between successive stride cycles. The aforementioned signal patterns were 

captured by the autocorrelation coefficients, Cstride and Cstep as illustrated in Figure 2. The healthy 

control (a) had a shorter stride duration (ca. 1.05 s at maximum Cstride) compared to the post-stroke 

patient (b) (ca. 1.90 s). The coefficient of step repetition (Cstep) of the healthy control at half stride time 

was higher than that in the post-stroke patient, which indicated a higher gait symmetry.  

 

 

Figure 2. Autocorrelation coefficients of 3D acceleration of lower back. (a) Coefficients of a healthy 

control. (b) Coefficients of a post-stroke patient. Autocorrelation coefficients in vertical (blue), lateral 

(red) and frontal (yellow) axis are computed with increased lag from 0 to 400 samples (4 s). Cstride 

(dotted black line) and Cstep (solid black line) in the bottom plot are computed as a function of time 

lag. 

Table 2 summaries the discriminative power of various gait symmetry indices. Gait symmetry 

measured with two feet sensors demonstrated a significant difference between healthy controls and 

post-stroke patients (except for symmetry of foot loading and flat ratios), among which, GSIdist had 

the largest effect size. Gait symmetry measured with the low back accelerometer was significantly 

lower in post-stroke patients during the entire 6-MWT and during the shorter straight walk of the 

assessment. The effect size was the same as GSIdist, the best spatiotemporal parameter derived from 

the feet angular velocity signals. Boxplots in Figure 3 show the differences in various symmetry 

indices between post-stroke patients walking with and without a cane. Interestingly, GSIL3 was 

significantly lower in post-stroke patients walking with a cane compared to those able to walk 
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without. There were no significant differences between GSIL3straight and any symmetry estimates 

provided by the feet sensors.  

Table 2. Mean ± standard deviation and effect size (ES) as estimated by Cliff’s Delta of various 

symmetry indices. 

Symmetry Index (SI) Control Group Post-stroke ES 

Gait symmetry based on spatiotemporal gait parameter 

PathLength 0.54 ± 0.07 4.30 ± 5.69 −0.85 *** 

StrikeAng 8.50 ± 4.53 35.78 ± 30.85 −0.79 ** 

LiftOffAng 3.78 ± 1.33 42.80 ± 37.27 −0.88 *** 

MaxAngVel 6.31 ± 3.78 44.86 ± 39.23 −0.81 ** 

StanceRatio 3.06 ± 2.27 12.19 ± 8.06 −0.79 ** 

LoadRatio 22.36 ± 9.42 32.36 ± 22.06 −0.22 

FootFlatRatio 5.99 ± 2.28 7.18 ± 4.98 −0.13 

PushRatio 6.88 ± 3.67 25.76 ± 25.57 −0.71 ** 

Gait symmetry based on feet angular velocity signal profile 

𝑮𝑺𝑰𝒄𝒐𝒓𝒓 0.97 ± 0.01 0.76 ± 0.24 0.85 *** 

G𝑺𝑰𝒅𝒊𝒔𝒕 6.84 ± 1.23 16.87 ± 7.70 −0.89 *** 

Gait symmetry based on low back accelerometry 

𝐆𝐒𝐈𝐋𝟑 0.74 ± 0.06 0.35 ± 0.22 0.89 *** 

𝐆𝐒𝐈𝐋𝟑𝐬𝐭𝐫𝐚𝐢𝐠𝐡𝐭 0.69 ± 0.09 0.36 ± 0.19 0.89 *** 

*** indicates p < 0.001, ** indicates p < 0.01. 

3.2. Correlations between Gait Symmetry Measured with Low Back Accelerometry and That Measured with 

Two Feet Sensors 

Correlation analysis shown in Figure 4 indicated good consistency between gait symmetry 

measured with single 3D accelerometer at the low back and those measured with two feet sensors 

during the straight walking cycles of entire 6-MWT (ρ = −0.88 with SILiftOffAng, ρ = 0.87 with SIcorr and ρ 

= −0.82 with GSIdist). Gait symmetry derived from the low back accelerometer when the participants 

walked through a short straight path (GSIL3straight) were significantly correlated with feet sensor based 

symmetry measures as well (ρ = −0.84 with SILiftOffAng, ρ = 0.80 with GSIcorr and ρ = −0.79 with GSIdist).  

 

Figure 3. Boxplots of various gait symmetry indices measured in post-stroke patients with (w Cane) 

or without (w/o Cane) using cane. Effect size (ES) is measured with Cliff’s Delta and p value is 

determined by Wilcoxon rank sum test. * indicates p < 0.05. (a) Comparison and effect size of SILiftOffAng. 

(b) Comparison and effect size of GSIdist. (c) Comparison and effect size of GSIL3. (d) Comparison and 

effect size of GSIL3straight.  
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Figure 4. Correlation between gait symmetry measured with the low back accelerometer and 

symmetry measured with two feet sensors. Association is estimated with Spearman correlation. *** 

indicates p < 0.0001. 

4. Discussion 

This study developed a gait symmetry assessment with a single 3D accelerometer placed at the 

low back. Symmetry index estimated with the low back accelerometer, GSIL3, is a measure of the 

repetitiveness of the gait cycles. Thus, the more symmetric the gait is, the higher the index value. On 

the contrary, the symmetry indices based on the spatiotemporal gait parameters with the feet sensors, 

SI, are measures of the degree of difference in the bilateral movement. The value decreases when the 

difference decreases as in symmetric gaits. Thus, SI has a negative correlation with GSIL3. This is also 

the case for the gait symmetry measured with angular velocity signal profile GSIdist using the feet 

sensors, as GSIdist measures the difference between the bilateral foot angular velocity signals. GSIcorr 

with the feet sensors measures the correlation between the bilateral foot angular velocity signals. Its 

value increase when signals have higher correlation as in symmetric gaits. Hence, GSIcorr has a 

positive correlation with GSIL3. More importantly, GSIL3 has good discriminative power comparable 

to symmetry indices based on spatiotemporal parameters derived from two feet sensors. GSIL3 has 

several advantages in technical implementation and clinical practice.  

4.1. Advantages in Technical Implementation 

A quantitative measure of the degree of asymmetry is useful for post-stroke gait rehabilitation 

assessment. Computing difference ratio of left and right steps based on spatiotemporal foot 

characteristics processes accelerometer, gyroscope, and in some cases magnetometer, barometer and 

foot pressure data [27], to derive gait parameters, which are high-level descriptions of information 

contained in the raw sensor signals. Gait modeling, advanced signal processing and complex 3D 

computation are required to find accurate spatiotemporal measures [18–21]. However, the challenge 

of accurate gait parameter estimation rises when applying the model to different pathologies, which 

can deviate largely from normal gait patterns. Often observed in post-stroke patients, lower limb 

movement is impaired by stiffness and slowness, which imposes difficulty to estimates of 

displacement, speed or rotation in periodic movement based on integration of inertial sensor signals 

[28]. Thus, the reliability of spatiotemporal-derived parameters may become questionable. To avoid 

this, computing symmetry (GSIL3) is based on analysis of acceleration signals’ repetitiveness 

quantified by autocorrelation coefficients. In addition, the computation is both easier and more robust 

than the morphology-based signal processing provided by the spatiotemporal gait parameter 

estimations. Compared to symmetry indices estimated with two feet sensors, GSIL3 is easier for 

technical implementation as only a single sensor is required. The computation of GSIL3 is based on 

the norm of autocorrelation coefficients rather than analysis of individual axis as presented in two 

studies [12,23]. Different from these studies, the proposed estimation of GSIL3 does not rely on 

detection of step alternation, which can be unreliable in people with poorly symmetric gaits as shown 

in Figure 2b. The biased autocorrelation coefficients decreases while time lag increases, which allows 

the reliable detection of the immediate next stride. In addition, estimation of GSIL3 during the entire 

6-MWT as presented in this study has comparable discriminative power as those estimations using 

cleaned data (only straight walking cycles) with two feet sensors as shown in the results summarized 
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in Table 2. Ultimately, GSIL3 requires less computation and it may be more feasible and robust than 

feet sensor based gait symmetry measures in semi- or unsupervised assessment.  

4.2. Advantages in Clinical Practice 

Gait symmetry is a biomarker of post-stroke rehabilitation [4]. Compared to assessment with 

two feet sensors, use of a single sensor worn at the low back is easier to set up in an office setting and 

less prone to disruption. Our results show that the low back sensor symmetry index estimated with 

a short straight walk is similar to that estimated with a complete 6-MWT. This implies that further 

simplification of the current clinical assessment procedure, to a brief walking assessment is possible. 

Asymmetry in spatiotemporal gait characteristics of post-stroke population, such as stance ratio, has 

been confirmed in other studies [3,29]. In this study, we demonstrate that asymmetry measure with 

a single low back accelerometer can significantly differentiate post-stroke gait from healthy gait, and 

can do so with an effect size that is larger than the difference in stance ratio and comparable to the 

best performing spatiotemporal characteristics (path length, maximum angular velocity and angle at 

toe lift off). This finding is confirmed by other studies of stroke survivors, where repetitiveness of the 

trunk accelerometry performed better than similarity between left and right step length and stride 

duration [12]. Furthermore, the developed symmetry index can discriminate severity of gait 

disturbance in the post-stroke population. In our study, the low back symmetry index could 

discriminate between gaits of post-stroke patients that required a cane from those who ambulating 

without an assistive device, comparing to the symmetry indices derived from two feet sensors that 

did not show significant difference between these two groups. These results suggest that the CoM 

accelerometry from the single low back sensor might be more sensitive to disability severity than feet 

kinematics within post-stroke patients. Accordingly, we suggest that gait symmetry assessment with 

one sensor on the low back is preferred over assessments with two feet sensors, both for in-clinic 

assessments and for long-term unsupervised assessments outside the clinic setting.  

4.3. Limitations 

The presented analyses have some limitations. We did not calibrate the low back accelerometer 

before gait symmetry estimation. Removal of static offset in acceleration signals and accurate 

alignment of axes with trunk frame may improve reproducibility of the symmetry index estimation. 

This is particularly important for gait symmetry assessment in individual patients during 

rehabilitation. In addition, test-retest reliability of the presented GSIL3 should be evaluated to 

determine the minimum detectable change using the developed index. Another limitation is with the 

selection of the maximum time lag for autocorrelation analysis. Four-second lag was chosen based 

on reported data in previous stroke study. A longer window is unlikely to affect the stride time 

detection. However, a shorter window may not accurately detect the stride repetition in extremely 

impaired stroke patients with very slow walking. A systematic examination using different window 

length will be required to determine the optimized configuration for computation with a patient 

group exhibiting large functional variations. In addition, the sample size in this study was small, yet 

our findings did reach statistical significance with effect sizes that suggest the sample was sufficient 

to support our conclusion. Still, it must be noted that age differences between the post-stroke and the 

control group may introduce some bias into the effect sizes of the various symmetry indices.  

4.4. Future Studies 

In the on-going study, we will address the clinical relevance of the developed gait symmetry 

assessment. Associations between clinical stroke diagnosis (including stroke etiology, SIS, self-

reported recovery assessment) and the developed gait symmetry index will be analyzed. The analysis 

outcome will be compared to that measured by other more traditional gait markers, such as gait 

speed. The test-retest reliability of the developed gait symmetry index will be studied to determine 

the minimum detectable change that is relevant for longitudinal gait rehabilitation assessment. 
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Future studies will also test the proposed symmetry index with large sample size to confirm the 

results of this study.  

5. Conclusions 

The proposed gait symmetry assessment with one 3D accelerometer placed on the midline of 

the low back shows high discriminative power in differentiating post-stroke patients from healthy 

controls. The outcome is comparable to the gait symmetry with spatiotemporal gait analysis using 

two feet sensors. The proposed method can be a cost-effective and reliable solution for post-stroke 

gait symmetry assessment in clinic. Assessment reproducibility and feasibility for unsupervised 

assessment is an important next step in our investigation to enable future studies using this method 

to monitor gait recovery after stroke, and to guide post-stroke gait rehabilitation.  
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