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Abstract: Software-based ultrasound imaging systems provide high flexibility that allows easy and
fast adoption of newly developed algorithms. However, the extremely high data rate required for
data transfer from sensors (e.g., transducers) to the ultrasound imaging systems is a major bottleneck
in the software-based architecture, especially in the context of real-time imaging. To overcome this
limitation, in this paper, we present a Binary cLuster (BL) code, which yields an improved compression
ratio compared to the exponential Golomb code. Owing to the real-time encoding/decoding
features without overheads, the universal code is a good solution to reduce the data transfer rate for
software-based ultrasound imaging. The performance of the proposed method was evaluated using
in vitro and in vivo data sets. It was demonstrated that the BL-beta code has a good stable lossless
compression performance of 20%~30% while requiring no auxiliary memory or storage.

Keywords: medical ultrasound; lossless compression; universal code; run-length encoding

1. Introduction

Conventional ultrasound imaging systems are based on special-purpose hardware such as
application-specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs) [1–3].
These fixed-function chips can meet high data transfer rates and computation requirements for real-time
ultrasound imaging. However, the low flexibility of hardware-based ultrasound imaging systems often
requires considerable time and expense in deploying new features and applications. To mitigate the
problem, many groups have developed several platforms of ultrasound imaging using programmable
processors with high flexibility, which enable rapid prototyping and allow new applications to run on
the same imaging platforms [4,5]. These ultrasound imaging systems generally employ a PC (personal
computer) as the imaging host and graphic processing units (GPUs) or digital signal processors (DSPs)
to support the higher computational complexity [6,7].

Although the high computational demands can be alleviated by using GPUs, the large amount of
data transfer poses an additional problem that hinders the practical implementation of software-based
architecture in ultrasound imaging systems. For example, ultrasound imaging systems with
128 channels, a sampling rate of 40 MHz, and a 12-bit analog-to-digital convertor’s (ADC) resolution
require a data transfer rate of 10 GB/s. A commercially available ultrasound imaging system
(i.e., Vantage, Verasonics Inc., Kirkland, WA, USA) can support a data transfer rate up to 6.6 GB/s via
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eight PCI express lanes [8]. Although the high data transfer rate can be supported by using multiple
PCI express lanes, it would increase the cost and power consumption. Hence, this approach is only
suitable for high-end ultrasound imaging systems. To adopt a software-based architecture in low-cost
ultrasound imaging systems such as portable and hand-held ultrasound imaging systems, the data
transfer should be achieved by using a popular interface such as a Universal Serial Bus (USB) [3,9].

Data compression has been investigated to reduce the amount of ultrasound data in
software-based ultrasound imaging systems [10–12]. The MPEG (moving picture experts group)
compression method was utilized to compress radio-frequency (RF) data. However, it requires
high computation and memory resources for coding and decoding [11]. More recently, a lossless
compression method for improving the performance of GPU-based beamformers was proposed [12].
However, this method needs additional memory (e.g., address memory) for decoding, and hence
the compressed data can be larger than the original data because of the additional addresses. In
addition, this method groups several data into a batch for compression; consequently, it does not
permit independent data extraction.

A universal code is a prefix code that maps integers onto binary codewords and is widely
used in data compression [13]. The universal code is a lossless data compression method, and the
binary codewords are uniquely decodable for random integers. The main advantage of the universal
code is that it can be easily implemented through simple calculations. However, the compressed
codes generated from an equivalent number of symbols are not optimal compared to ones generated
by the dictionary method such as Huffman and Lempel–Ziv–Welch (LZW) codes [14]. To address
this limitation, the authors have proposed a new universal code, called Binary-cLuster (BL) code,
by modifying the conventional exponential Golomb code [15–17]. The proposed BL code shows better
compression performances, especially for data sets with large integers. For example, the BL code
encodes the integer 1,000,000 as a 26-bit binary number (i.e., 11100011110100001001000001), while Elias
Gamma, Fibonacci and Elias Delta codes encode the same integer as a 39-bit, 30-bit and 28-bit binary
number, respectively. In addition, the BL code can compress any sequence of integers in real time
without any overhead data in encoding and decoding.

In this paper, we propose a BL code-based ultrasound signal compression method for real-time
software-based portable medical ultrasound imaging systems. It was shown that the BL code
outperforms the exponential Golomb code regarding the compression ratio for both in vitro and
in vivo ultrasound data sets. Compression ratios of the proposed method for various signals in the
signal processing chain of the ultrasound imaging system, such as pre-beamformed, beamformed and
baseband inphase/quadrature (IQ) data, were also evaluated.

2. Method

2.1. Prefix of BL Code

For random binary data, the datum in front of “10” is separated when “10” is encountered
either from the top (left) to the bottom (right) direction or in the opposite direction. For example,
“1011101010010101111101001 . . . ” can be separated into “1011/10/10/100/10/101111/10/1001.”
These separated binary numbers are herein referred to as binary clusters. By doing so, binary clusters
can be created from any binary data that starts with “10” [15]. Table 1 shows the first ten cluster
patterns. Here, we refer the sequential index corresponding to each binary cluster as code-num.
Note that the binary cluster must start with the seed binary cluster “10”. As the code-num increases,
each bit of the binary cluster holding “0” is replaced by “1”, one at a time, from bottom to top. When all
“0” bits are flipped to “1” except for that in the seed binary cluster “10”, the bit length of the binary
cluster is increased by adding “0” on the right, and then every “1” is replaced by “0” except for the
most significant bit (MSB). By doing so, each code-num is allocated to a distinct binary cluster and can
be used for a universal code.
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The group index K in Table 1 represents the bit length (excluding the MSB) of the binary cluster
for each code-num (M). For example, the binary cluster of M = 5 is “1001”; therefore, K is 3. We used
this group index K for encoding and decoding. It can be found that K and M satisfy inequality
K(K− 1)/2 < M ≤ K(K + 1)/2, which is equivalent to

(
−1 +

√
1 + 8M

)
/2 ≤ K <

(
1 +
√

1 + 8M
)
/2.

Hence, we can obtain K from a code-num M as

K =

[
1 +
√

1 + 8M
2

]
, (1)

where [X] returns the largest integer that is smaller than X.
Now, let us introduce X, which is given by

X = M− K(K− 1)
2

. (2)

With K and X, the binary code for each M is encoded as a bit stream composed of the MSB
(=”1”) followed by K − (X − 1) zeros and X − 1 ones. For example, when M = 10, K and X are 1 and
4 according to Equations (1) and (2), respectively. Thus, the corresponding binary cluster is represented
by “10111” as it has one (=4 − (4 − 1)) “0” bit and three (=4 − 1) “1” bits, which is identical to the
binary cluster for M = 10 in Table 1.

Table 1. Binary cluster patterns from the proposed and unary code methods.

Code_Num (M) Binary Cluster Reversed Form of
Binary Cluster (Prefix)

Group Index (K)
(Bit Length of Binary Cluster-1)

1 10 01 1
2 100 001 2
3 101 101 2
4 1000 0001 3
5 1001 1001 3
6 1011 1101 3
7 10000 00001 4
8 10001 10001 4
9 10011 11001 4
10 10111 11101 4
. . . . . . . . . . . .

The unary code is used for a prefix of the exponential Golomb code that is adopted for video
compression codecs, e.g., H.264 [13]. In the unary code, a code-num N is encoded as N-1 “0”s followed
by one “1”. For example, the unary codes for M = 1, 2, 3, and 4 are “1”, “01”, “001” and “0001”,
respectively. The unary code is a simple and fast coding method, but its bit length increases with the
integer value to be encoded. For the code-num 10, the unary code has a bit length of 10. However,
the bit length of encoded code by the proposed method is 5 (i.e., 10111), yielding 50% compression
efficiency in the prefix encoding. This efficiency becomes higher for a larger code-num.

2.2. Proposed BL Code Encoding

In the exponential Golomb code, a binary code that directly converts a decimal to binary numbers
with variable-width strings is concatenated as a suffix code. The exponential Golomb code using the
unary code is an optimal code when integers follow a geometric distribution. Thus, it is useful for
image/video compression. However, as the amplitude of the ultrasound signal follows the Rayleigh
distribution [18], the efficiency of compression would be lower if the exponential Golomb code is used.
To overcome this limitation, our BL code uses the proposed prefix and the binary coded decimal with
increasing bit lengths as the suffix code as shown in Table 2. Note that the reversed binary cluster
is used as a prefix to preserve the unique decodability. Otherwise, the same bit stream for different
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integer Z can be obtained with a non-reversed form. For example, assuming an encoded bit stream
“101110”, the prefix of encoded code can be “101”, “1011”, and “10111” with a non-reversed form.
However, if we use a reversed form, it can be readily found that the prefix is “101”. Table 2 lists some
examples of the conventional Golomb and BL codes. In the proposed method, we can distinguish the
prefix and the suffix parts with “01” (i.e., the reversed form of the seed binary cluster in Table 1).

Table 2. Encoded codes using the conventional golomb and BL codes.

Integer (Z) Prefix
(Unary Code) Suffix Exponential

Golomb Code
Proposed

Prefix Suffix BL Code

1 1 - 1 01 0 010
2 01 0 010 01 1 011
3 01 1 011 001 00 00100
4 001 00 00100 001 01 00101
5 001 01 00101 001 10 00110
6 001 10 00110 001 11 00111
7 001 11 00111 101 000 101000
8 0001 000 0001000 101 001 101001
9 0001 001 0001001 101 010 101010

10 0001 010 0001010 101 011 101011
11 0001 011 0001011 101 100 101100
12 0001 100 0001100 101 101 101101
13 0001 101 0001101 101 110 101110
14 0001 110 0001110 101 111 101111
15 0001 111 0001111 0001 0000 0001000
16 00001 0000 000010000 0001 0001 00010001
. . . . . . . . . . . . . . . . . . . . .

The BL code encodes an integer Z as follows. Empirically, we found that the code-num M of
prefix can be obtained from a random integer Z as

M = ceil
(

log2

((
Z + 2S

)
/2S

))
, (3)

where ceil(·) is the ceiling function and S is an external integer parameter satisfying S ≥ 1 The number
of bits allocated for the suffix code can be adjusted depending on S. In this study, we use the BL code
with S = 1 for encoding. With M by Equation (3), K and X can be obtained from Equations (1) and (2),
and then, the prefix for BL code is generated as described above in Section 2.1. Finally, the suffix of the
proposed code, which uses the binary coded decimal (see Table 2), is obtained as:

su f f ix = bin
[

Z− 2S ×
(

2M−1 − 1
)
− 1
]
, (4)

where bin[·] represents the decimal-to-binary converter. It is worth noting that from Equations (3)
and (4), the bit length of the suffix of the proposed BL code is given by M + (S − 1).

Figure 1 shows the bit lengths of encoded integers Z from 1 to 1000 by using the proposed and
exponential Golomb code methods. Note that the bit lengths of encoded integers vary as a function of
the integer, which lead to a reduced data rate compared to the fixed-width (e.g., 16 bits) binary coding.
One can see that the proposed method achieves a higher compression ratio than the exponential
Golomb code. This efficiency stems mainly from the proposed prefix encoding method described in
Section 2.1. For example, the proposed method requires 10 bits and 14 bits for encoding two integers,
100 and 1000, respectively, while the exponential Golomb code encodes them into 13 bits and 19 bits,
yielding 23.1% and 26.3% improved compression ratio, respectively.
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Figure 1. Comparison of bit lengths of encoded integers Z from 1 to 1000 by using the proposed and
exponential Golomb code methods.

2.3. BL Code Decoding

The encoding and decoding procedures for the proposed BL code are shown in Figure 2.
For decoding, we must first separate the prefix by finding “01” from the input bit stream (Step 1
in the decoding procedure in Figure 2). Then, from Equation (2), the corresponding code-num M is
obtained as:

M =
K(K− 1)

2
+ T + 1, (5)

where K is the group index, which is the bit length of the prefix excluding the MSB, and T is the number
of continuous “1”s, i.e., T = X − 1, in the top (left) to bottom (right) bit direction in the prefix. For the
prefix “1101” in Figure 2, K = 3 and T = 2, and hence M = 6 according to Equation (5). Then, the bit
length of the corresponding suffix is six, as it is equal to M + (S − 1) where S = 1 in this study. Thus,
the suffix is the 6-bit binary code “100101” following the prefix, of which the decimal value su f f ix10

is 37. Finally, the integer Z is obtained from Equation (4) as:

Z = su f f ix10 + 2S ×
(

2M−1 − 1
)
+ 1. (6)

From Equation (6), it can be readily computed that the integer Z for “1101100101” is 100. The rest
of the bit stream, “111010000000001”, is decoded as 1024 using the same procedure described above.
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3. Performance Evaluation and Discussion

To evaluate the performance of the proposed method, we acquired two in vitro and two in vivo data
sets using a portable ultrasound imaging system [9]. For each data set, we acquired pre-beamformed,
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beamformed and baseband inphase/quadrature (I/Q) after beamformation data by using an 8-MHz
linear array with a sampling rate of 40 MHz. The ultrasound images constructed by using the four
data sets are shown in Figure 3. In this study, we compute the compression ratio for the quantitative
evaluation. The compression ratio is defined by

Compression ratio(%) =

(
1− Compressed data

uncompressed data size

)
× 100. (7)
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Figure 4 shows the compression ratios of the pre-beamformed, beamformed and IQ data for each
data set. The average compression ratios for the images of point targets, cysts, nerve and thyroid are,
respectively, 41.2%, 43.6%, 30.6% and 31.2% with the pre-beamformed data and 26.2%, 27.9%, 19.2%
and 18.5% with the beamformed data. I and Q data sets yield the same compression ratios; 34.6% (point
targets), 35.9% (cysts), 31.9% (nerve) and 31.6% (thyroid). As shown in Figure 4, the in vitro data sets for
the point target and cyst images in Figure 3a,b, respectively, provide higher compression ratios than the
in vivo images in Figure 3c,d. In vitro images exhibit mostly speckles that appear as granular patterns
and few strong reflectors (e.g., point targets and masses). The speckle patterns are produced by random
interferences between coherent backscattered waves. Thus, the amplitudes of speckles are typically
much lower than those from the strong reflectors [19]. For this reason, the in vitro data sets yield higher
compression ratios, especially for the pre-beamformed RF data. By contrast, the baseband I/Q data
produce similar compression ratios for each data set. Note that the compression ratios are identical for
the I and Q data as the data have the same amplitude with a π/2 phase difference. As the envelope
amplitude of the beamformed data is

√
I2 + Q2, the amplitude of I (or Q) data is typically smaller than

that of the beamformed data, resulting in a higher compression ratio than that from beamformed data.
The comparison of compression ratios of the proposed BL and the conventional exponential

Golomb codes is shown in Figure 5. The exponential Golomb code is used in H.264 image/video
compression standard and is preferred over other lossless compression methods since it can be
implemented with low computational load or hardware complexity. In addition, it provides a higher
compression ratio on medical imaging data than other existing codes [20]. Thus, we compared the
results obtained by the exponential Golomb and proposed BL codes. Here, we only compare the
compression results for the baseband I/Q data sets as they provide similar compression ratios for
both the in vitro and in vivo data sets. As shown in Figure 5, the proposed BL code yields higher
compression ratios than the exponential Golomb code. The average compression ratios with the
proposed BL and exponential Golomb codes were 35.2% (in vitro BL) and 29.1% (in vitro Golomb),
respectively, for in vitro data sets, while the ratios decreased to 31.7% (in vivo BL) and 20.7% (in vivo
Golomb), respectively, for in vivo data sets. From the experiments, the proposed method showed
improved compression ratio compared to the exponential Golomb code. Previously, a compression
method for functional magnetic resonance imaging (fMRI) data was developed [21]. Based on analysis
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of the probability distribution of fMRI data, they proposed a new compression method that assigns
smaller binary codes to high values and original code for small value. Although the ultrasound signal
follows the Rayleigh distribution and its shape varies depending on the tissue type, similar approach
may improve the compression ratio of the proposed method.
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The computational time of the exponential Golomb and proposed BL codes were tested using
Microsoft Visual Studio 2017 on an Intel Core i5 CPU without any optimization technique. The average
encoding times for the exponential Golomb and BL codes were, respectively, 0.52 and 0.67 s, and those
were 5.65 and 4.89 s for decoding. If we employ a GPU for decoding, the processing time can be
reduced. In addition, the processing time will be further reduced by using look-up table and other
optimization techniques for real-time application, which is being conducted at this present.

Recently, ultrasound analog-front-end chips including programmable low noise amplifiers,
gain amplifiers, LPFs, 12/14-bit ADCs, and quadrature demodulators with a decimator were
introduced by some vendors such as TI and Analog Devices. In these chips, the demodulation is
performed after ADC followed by the decimation with a factor of up to 16. For example, in 64-channel
mid/low-end ultrasound imaging systems with a 12-bit ADC and sampling rate of 20 MHz, the data
transfer rate can be reduced to 3.8 Gbits per second (Gbps) for the pre-beamformed I and Q data after
digital demodulation and four-fold decimation by incorporating such chips. Note that the total data
rate to transfer both I and Q data is 7.6 Gbps. This data rate does not meet the USB 3.0 specification.
However, with the proposed method, the data rate can be further reduced by 30%; then, the data rate
would be 2.6 Gbps for the I/Q data, lowering the total data rate to 5.2 Gbps, which could be handled
by USB 3.0 devices marginally.
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4. Conclusions

In this paper, we proposed a lossless compression method, called BL code, for real-time
software-based ultrasound imaging. The proposed method improved the compression ratio of the
exponential Golomb code by reducing the prefix length. Because the bit length of the proposed
prefix slowly increases as the code-num increases, an improved compression ratio was obtained.
As the proposed method can encode integers using simple calculations, it can be implemented in
real-time. The performance of the proposed method was validated using sample sets of ultrasound
data. Our method could be applied in a wide range of data processing applications, especially in
ultrasound image systems. In the future, we will implement the proposed method in an FPGA chip
with a USB 3.0 interface on ultrasound imaging systems and assess its performance.
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Abbreviations

The following abbreviations are used in this manuscript:

ASIC Application-Specific Integrated Circuit
FPGA Field-Programmable Gate Array
GPU Graphic Processing Unit
ADC Analog-to-Digital Convertor
PCI Express Peripheral Component Interconnect Express
USB Universal Serial Bus
RF Radio-Frequency
MPEG Moving Picture Experts Group
MSB Most Significant Bit
I/Q Inphase/Quadrature
fMRI Functional Magnetic Resonance Imaging
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