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Abstract: The Internet of things (IoT) comprises a huge collection of electronic devices connected to 

the Internet to ensure the dependable exchange of sensing information. It involves mobile workers 

(MWs) who perform various activities to support enormous online services and applications. In 

mobile crowd sensing (MCS), a massive amount of sensing data is also generated by smart devices. 

Broadly, in the IoT, verifying the credibility and truthfulness of MWs’ sensing reports is needed for 

MWs to expect attractive rewards. MWs are recruited by paying monetary incentives that must be 

awarded according to the quality and quantity of the task. The main problem is that MWs may 

perform false reporting by sharing low-quality reported data to reduce the effort required. In the 

literature, false reporting is improved by hiring enough MWs for a task to evaluate the 

trustworthiness and acceptability of information by aggregating the submitted reports. However, it 

may not be possible due to budget constraints, or when malicious reporters are not identified and 

penalized properly. Recruitment is still not a refined process, which contributes to low sensing 

quality. This paper presents Reputation, Quality-aware Recruitment Platform (RQRP) to recruit 

MWs based on reputation for quality reporting with the intention of platform profit maximization 

in the IoT scenario. RQRP comprises two main phases: filtration in the selection of MWs and 

verifying the credibility of reported tasks. The former is focused on the selection of suitable MWs 

based on different criteria (e.g., reputation, bid, expected quality, and expected platform utility), 

while the latter is more concerned with the verification of sensing quality, evaluation of reputation 

score, and incentives. We developed a testbed to evaluate and analyze the datasets, and a simulation 

was performed for data collection scenario from smart sensing devices. Results proved the 

superiority of RQRP against its counterparts in terms of truthfulness, quality, and platform profit 

maximization. To the best of our knowledge, we are the first to study the impact of truthful 

reporting on platform utility. 

Keywords: Internet of Things (IoT), mobile crowd sensing (MCS), individual rationality; 

truthfulness; social welfare 
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1. Introduction 

The Internet of things (IoT) is a broad concept involving a huge number of online smart devices 

that can communicate with other devices. Mobile phones, body sensors, GPS, gyroscopes, and a long 

list of gadgets are now omnipresent, being the lifeline of the modern world. IoT devices are greatly 

increasing in number every year, and 50 million are expected to be connected to the Internet by 2020 [1]. 

This drastic increase creates many challenges as well as opportunities. Trust in the provided services 

is expected to be one of the greatest issues of next-generation networks, where the social, cyber, and 

physical worlds of billions of IoT devices and humans will move side-by-side. Among these devices, 

the mobile phone may be the most influential and essential. The existence of cell phones has been 

exploited in many ways, such as in the paradigm of mobile crowd sensing (MCS) and mobile cloud 

computing [2]. Computation and sensing capabilities make it possible to lead MCS from wireless 

sensor networks (WSNs), due to their portability. Crowdsourcing is an emerging concept that brings 

opportunities by exploiting the abilities of crowd. Mobile crowd sourcing has also been exploited as 

a cloud service [2]. For the sensing task in MCS, mobile workers (MWs) have been employed. On the 

one hand, this is an advantage, but on the other, they may lack sensing quality. The closest concept 

to MCS is participatory sensing [3,4]. 

With the proliferation of mobile phone technology, mobile crowd sensing (MCS) is now a reality. 

The omnipresence of mobile devices presents a cheap way of getting services from the public at a 

distance [2]. Participatory sensing can be considered as a predecessor of MCS with unique implicit 

and explicit participation features. Data is collected from different sources (e.g., social networks and 

mobile sensing) by leveraging the intelligence of humans and machines together [5]. Need for the 

study of fusion patterns is identified that can help to integrate human and machine intelligence (HI 

and MI). An attractive comparison of wireless sensor networks (WSNs) and emerging MCS in terms of 

mobility, cost, and coverage is presented in [6]. This clearly shows the supremacy of MCS over fixed 

wireless sensors. Sensors in mobile devices can perform numerous sensing tasks (e.g., temperature, 

humidity, noise, etc.) with varying quality [7]. MCS is also extended to mobile crowd sensing as a Service 

(MCSaaS) [8]. A few well-known applications of MCS are traffic flow surveillance [9,10], noise [11], 

healthcare [12], and environment monitoring (urban monitoring) [13], where experiments are 

conducted on noise, air, and even electromagnetic fields as pollutants. A previous study [13] 

developed a suitable application to improve quality of life with the potential to help city planning 

authorities. Human involvement in MCS is beneficial, but also presents challenges such as ensuring 

the quality of sensing reports, privacy breaches, and maintaining consistent performance. 

Furthermore, attractive incentives are desired by participants. The sensing domain is categorized into 

participatory (conscious) and opportunistic (unconscious) sensing classes [14–16]. Hysense is a 

framework for MCS to compensate the uneven distribution of incentives by exploiting calibration, 

where MWs are instructed to move from areas with high population density to those that are less-

densely populated [17]. A survey on the applications of MCS in industry and in the personal lives of 

common people was conducted by Shu et al. [18]. 

Several approaches to ensuring the quality of sensing in MCS have been proposed. Some of them 

are presented in the following. A skilled crowd with cheap services is a great advantage of MCS, but 

it can become a big drawback as well (e.g., when tasks can be submitted with false or undesirable 

quality). Selfish and strategic participants can act maliciously by delaying or manipulating the task 

completion properties to increase utility. Sensing reports can be malicious, or may be submitted to 

enjoy “free-riding”. Whatever the case may be, it costs platforms money to get reports from MWs [19]. To 

deal with the varying quality demands from task to task, Jiang et al. in [20] proposed a scheme known 

as the quality-aware incentive mechanism (QAIM), which should be efficient enough to correctly 

measure the report quality. Trust in the cloud environment is evaluated from the perspective of 

leaders influence based on different parameters in [21], and from requesters and crowd contributors 

in [22]. 

The main problem in MCS is that it is difficult to verify reported task quality due to the 

unavailability of ground truth in most cases. Even for situations where ground truth is available, the 

quality of current reporting cannot be fully judged based on previous records, as the current 
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reporting may vary. Thus, platforms can be exploited easily and remain vulnerable to threats. There 

are three main entities in MCS: requesters, who are the consumers of collected data; the platform, 

which acts as a service provider; and MWs, who perform the sensing tasks. The selection of suitable 

MWs in MCS is one of the most important phases, which indeed is the first milestone. This can be a 

prior measure to ensure quality to some extent. 

In the literature, data are collected and aggregated to get approximately correct results. In some 

approaches, aggregation was simply the average of the reported tasks, without the credibility of 

reporters and participation level, and rewards were paid irrespective of the contribution. Then, a 

weighted reputation approach was proposed in [23]. It also considered the issue of MW privacy, 

which is not the concern of the present work. Data perturbation is done by differential privacy-based 

crowd participation. With the intension to determine the quality of reported tasks from MWs, some 

approaches in the literature have used reputation-aware recruitment mechanisms. The IoT is an 

emerging paradigm, where reputation-based approaches [1] have been presented on the concept of 

collaboration. Game theoretic-based approaches have also been presented by considering the 

previously mentioned entities in MCS as game players, who are considered rational most of the time. 

The identification and correction of errors in reporting have gained the attention of researchers. 

Approaches which did not rely on history to inspect the credibility of sensing have also been put 

forward [24]. In contrast, we considered history as a helping hand for educated selection in order to 

achieve quality. Reporting quality remains a considerable issue, and several approaches have been 

proposed, but very few have considered reputation in this perspective. Some approaches have 

considered weight- and vote-based mechanisms, but are criticized for providing the right-of-vote to 

a few dominating entities and for not penalizing the malicious MWs. Cross-validation is proposed, 

which may require extra monetary incentives, and may not be suitable for budget-limited tasks. This 

raised the need to propose this work, so the existing gap may be filled. 

In this paper, we present Reputation, Quality aware Recruitment for Platform (RQRP) to 

provide high-quality reporting in MCS. Reputation is one factor, and the inspection of credible 

reports is another. To achieve the desired quality, we divided our scheme into pre- and post-quality 

measures. For the pre-quality measure, we mainly considered reputation score and bids, and a few 

other task completion requirements such as time and lowest required quality are also considered. For 

the post-measure, we evaluated the quality after the sensing task was done and reported. We also 

considered feedback on the task from the requesters. To the best of our knowledge, we are the first 

to investigate the effect of un-trustable reporting on the platform profit in MCS. The main 

contributions of this paper are as follows: 

(1) We designed a novel mechanism for mobile worker recruitment based on reputation level and 

expected quality of task. We present a recruitment mechanism to hire skilled MWs while mainly 

considering feasible budget, quality, platform utility, and individual rationality. In the similar 

vein, we propose a selection algorithm and reputation-updating system that considers the 

weight and score for both reporters and requesters.  

(2) Next, we present a credibility inspection and incentive mechanism to reward or penalize MWs. 

We also present a novel algorithm for ensuring credible sensing. Additionally, our approach 

verifies the outcomes of MWs by considering sensing data from smart devices in that region for 

the IoT scenario. This helps to guard against false reporting from MWs and in taking strict 

actions in terms of penalties. For quality reporting, MWs are awarded. We are the first to analyze 

truthful reporting for platform maximization. The proposed mechanism is expected to ensure 

platform profitability with other task completion constraints while paying necessary incentives 

to the MWs. 

(3) Finally, we developed a testbed using Windows Communication Foundation (WCF) services on 

Windows Azure cloud to evaluate and analyze the datasets containing MW reporting details. 

Moreover, we simulated the scenarios for collecting sensing data from smart devices and 

transmitting aggregated data at sink nodes via collectors. Sensing data are further saved in a 

database for analysis in combination with reporting data to identify false reporting by MWs. 

Results proved the dominance of our work as compared to its counterparts in the literature. 
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The rest of the paper is organized as follows: Section 2 presents related work in two sub-

sections—incentive mechanisms and quality-centered approaches in MCS. Section 3 is devoted to the 

system model and problem statement. The proposed RQRP’s workflow and two phases are presented 

Section 4. Phase-A aims at the selection of suitable MWs in MCS by exploiting and enhancing the 

beta reputation system, which is also described as being the preliminary to the selection process. 

Phase-B is dedicated to evaluation of sensing reports for credibility along with updating reputation 

scores. Section 5 provides the theoretical analysis, and analysis of the results is presented in Section 6. In 

Section 7, we conclude our work and provide future work directions. 

2. Related Work 

The term “Mobile Crowd Sensing” (MCS) was coined in [4], and it has outstanding potential to 

exploit the power of crowds. Crowd Contributors (CCs) expect attractive reward for the contribution 

of their services. An efficient incentive mechanism is required to keep participants motivated to 

contribute remarkable sensing. MWs are selfish, so considerable efforts have been made in the 

literature to develop incentive mechanisms. We present some of these approaches to incentive 

mechanisms in this work. Due to the contribution from possibly untrustworthy participants, report 

quality is questionable. To come up with a solution, several approaches are presented in the domain 

of MCS. Various aspects have been considered on the behalf of the researchers by defining quality in 

different manners (e.g., low latency, small difference between ground truth and sensing reports). 

Reputation-based approaches also remain a point of consideration as a milestone toward the goal of 

quality sensing. There is clear evidence in the literature on the effectiveness of reputation-based 

approaches. Our proposed mechanism is concentric on reputation- and vote-based approaches. We 

explored state-of-the-art schemes, and critically analyzed these schemes to point out challenges and 

possible research directions. 

2.1. Incentive Mechanisms in MCS 

Crowdsourcing (CS) is based on outsourcing, which emerged with great potential in past two 

decades [25]. In any form, it provides the opportunity to deal with problems more effectively and 

efficiently. Two of the major divisions in mobile crowdsourcing are mobile crowd sensing (MCS) and 

mobile cloud computing (MCC) [2]. The emergence of wireless technologies was the foundation of 

MCS. Requesters, service providers, and workers are the key entities in MCS. Two mobile 

crowdsourcing architectures for MCS based on local- and Internet-level schemes are presented in [2]. 

Incentive mechanisms have been proposed in [19,26–28] to retain the interest of workers. Incentives 

can be paid by using: (1) auction and payment rules; (2) a lottery, where no perfect discrimination for 

the selection of winners is considered; or (3) trust and reputation, in which rewards are not monetary 

but can be a kind of social recognition or self-satisfaction [29]. In this work, we deal with monetary 

rewards only, which is more practical for study. 

The mechanism designed in [24] did not utilize history for MW recruitment, opportunities in the 

MCS domain were explored and exploited efficiently. Control of MW selection was especially 

enhanced when crucial and important tasks were to be performed within budget constraints. The 

limitation of the work is that only homogeneous tasks were considered. The scheme in [30] presents 

two models: incentive mechanisms for crowdsensing systems under zero and general cases (IMC-Z 

and IMC-G). The zero model was designed when arrival and departure times were not considered. 

In contrast, the general model was presented where in–out time can be reported by MW. 

Observations were taken to set the benchmark for future recruitments, the scheme is focused on the 

cheap costs only, and truthfulness is considered. Another approach for truthfulness on the 

announced bids with the constraint of feasible budget is presented in [28]. In contrast to both of these 

approaches, we considered reputation as a quality insurance measure in the selection of MWs rather than 

least-bid criteria. The literature is also clear regarding the effectiveness of reputation-based approaches. 

Lack of trust and quality on the work done by recruits have always existed in MCS. To ensure a 

trust level for accomplished tasks, platforms need to pay extra for the strategic and selfish agents in 

the form of more recruitments. MWs can perform maliciously, submitting false reports or inconsistent 
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work, or it may be the case that an honest but curious worker delays the task for benefits. In this 

scenario, cross-validation can ensure quality but can be costly, so it is difficult for platforms to ensure 

a feasible budget [28,31]. A cross-validation scheme is presented in [32]. A unique feature of this 

scheme is that if a MW is not able to complete a task after being selected, another MW can be 

recommended by him. False reporting is one of the main issues causing lack of trust, so quality-aware 

truth estimation schemes are required [10,11]. 

Game theory-based approaches also remained a hot research area in MCS. The approach in [31] 

presented the problem of determining a budget with the assumption of perfect information. They 

proposed two incentive mechanisms for the CS environment: (1) frugal auction mechanism, which 

stimulates workers to report truthfully; (2) Stackelberg-game-based mechanism, where requester 

fixes the reward at the beginning and let the MWs to compete. Literature urge for robust evaluation 

scheme to guarantee the quality and creditability of aggregated task reports by avoiding MWs’ 

malicious behavior. Due to the threat of false and inconsistent task completion, the requester need to 

pay more than it deserves, which leads to the problem of budget feasibility [31]. Another prominent 

approach in the MCS paradigm that exploited Stackelberg-game and in which platform- and user-

centric models are developed is presented in [33]. The objective of the platform model is to maximize 

the profit, whereas user model is aimed for the selection of time at which their utility can be 

maximized. A unique Nash Equilibrium (NE) is developed, and sensing time determination is 

handled in the user-centric model. A double-auction-based incentive mechanism for the case of 

multiple requesters which aggregates the collected data from users known as CENTURION was 

proposed in [34]. The mechanism also ensures various desirable properties of an efficient incentive 

mechanism. “Theseus” is proposed in [35], with the motivation of providing quality in MCS by 

stimulating workers to contribute accurate data to their best ability, and then data aggregation is 

done to ensure the quality, as in [33]. NE in a Bayesian setting is ensured in the proposed non-

cooperative game in [36], while having individual rationality and feasible budget constraints fulfilled. 

Dynamic behavior is presented with evolutionary games, and competition among CSs is depicted by 

a non-cooperative game. 

2.2. Quality-Centered Reputation-Based Approaches 

The approaches in [37–39] present mechanisms which consider the quality of a task and the 

reputation of nodes in order to pay incentives. Gao et al. in [40] presented an approach which 

considers dynamic trust, wherein, direct and feedback trust are combined to hire well-suited MWs. 

Quality in sensing is a desirable property, which may require sufficient reporting to be ensured. This 

can be difficult with strict budget constraints. To deal with the problem of determining a feasible 

budget, the approaches in [28,31] are proposed. In [31], study is conducted on the extra payments 

which are just spent to introduce incentives upon job completion. Dynamic budget and quality in the 

MCS domain are presented in [41]. Restuccia et al. proposed FIDES in [42], which is an incentive 

mechanism framework designed to provide secure participatory sensing based on trust. They 

identified some threats for the incentive- and reputation-based approaches, and proposed threat 

models. To address collusion attack and to ensure credibility, FIDC is proposed in [43], which 

considers the correlation between spatial and sensing data with prior knowledge to avoid group-

organized attacks (i.e., the injection of false data). By considering similar task requirements and users’ 

heterogeneous abilities, a three-layer approach is proposed with the aim of reusing similar data items. 

Task selection and user scheduling are jointly done with the purpose of increasing social welfare up 

to a certain level. Considering humans’ rating factors in mind, an approach is presented in [21], where 

requesters’ assigned quality is the benchmark of reward amount to the contributors. It presents a 

probabilistic model to quantify the error in assigning ratings, and ultimately its impact on incentives. 

Pieces of art are proposed in [12–15] to obtain trustworthy work from employees. In [19], a 

scheme based on unsupervised learning for quality assurance on truthfulness is presented, where 

surplus is shared using the Shapley value as a cooperative game model. A reputation-based reward 

mechanism is used to obtain high-quality data in their approach for mobile crowdsensing. The use of the 

Shapley value provides a means of avoiding the free riding problem. To handle “free-riding”, a quality 
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certificate was issued to the participants in [27]. This certificate can be used to monopolize the 

platform. In contrast to this, we used reputation to avoid free-riding that is also a kind of certification 

which provides the platform with expected contribution of MW, just we did not make it public to 

avoid the monopoly. This is useful, as it may be the case that constraints cannot be fulfilled without 

the contribution of some of the MWs, and thus those MWs can influence the recruitment. 

Smart cities often have sensing activities to provide better services, for which they mostly rely 

on wireless communication. Smart mobile devices are used to contribute data at a large scale for the 

sensing of the smart city by dedicated or non-dedicated measures [44]. A recent approach aimed at 

green collaborative edge computing is presented in [45], where edge devices are installed to reduce 

the backhaul bandwidth. Another considerable effort was made in the development of an edge 

computing architecture for MCS application in [46]. A survey of the trust computation models for 

IoT systems and smart cities is conducted in [47]. Several aspects, such as trust composition, its 

aggregation, and its formation are calculated for privately owned devices (rented devices provide 

services only temporarily, and so can be used to act maliciously). Trust updation is done on event- 

and time-driven bases. The maintenance of trust for IoT devices can be centralized or distributed. The 

approach in [48] presented a research work by conducting a survey to achieve the quality of 

information (QoI) in the MCS paradigm. Several aspects have been pointed out as research challenges 

in validating the trustworthiness of QoI. A different approach is presented in [49] to ensure quality 

based on a contract. Crowdsourcing includes two kind of tasks: microtasks and macrotasks. A 

microtask does not require much expertise or time, and can be performed easily, but rewards are also 

low, whereas macrotasks are reciprocal of this. We considered microtasks in this work, which can be 

more challenging in ensuring the quality constraint in the presence of crowd participants. Microtasks 

in MCS have low MW utility most of the time, so it can be difficult to engage CCs in a contract. It can 

be useful for MWs’ and for the platform when MWs have fixed mobility patterns. 

In [21], reliability is defined as the ratio of tasks completed globally and locally with defined 

weights given in Equation (1), where 𝜔𝑔 + 𝜔𝑙 = 1: 

 𝑅𝐸 = 𝜔𝑔 ∗
𝐽𝑜𝑏𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝐺𝑙𝑜𝑏𝑎𝑙𝑙𝑦

𝐽𝑜𝑏𝑠 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐺𝑙𝑜𝑏𝑎𝑙𝑙𝑦
+ 𝜔𝑙 ∗

𝐽𝑜𝑏𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝐿𝑜𝑐𝑎𝑙𝑙𝑦

𝐽𝑜𝑏𝑠 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐿𝑜𝑐𝑎𝑙𝑙𝑦
.  (1) 

The reputation of individuals is calculated based on the number of accepted and completed jobs, 

and submitted tasks, and data integration, identity, and capability, as given in Equation (2), where 

𝜔1 + 𝜔2 + 𝜔3 + 𝜔4 + 𝜔5 = 1 are the weighting factors: 

𝑅𝑇 = 𝜔1 ∗
𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐽𝑜𝑏𝑠

𝑆𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 𝐽𝑜𝑏𝑠
+ 𝜔2 ∗

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝐽𝑜𝑏𝑠

𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐽𝑜𝑏𝑠
+ 𝜔3 ∗

𝐷𝑎𝑡𝑎 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝐽𝑜𝑏𝑠
+ 𝜔4

∗ 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 + 𝜔5 ∗ 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦.  

(2) 

Another way to get quality-oriented reporting is done by considering a collaborative approach 

rather than simple voting- or statistical-based trustworthiness, as in [50]. A similar approach 

presented collaborative trust in IoT based systems for the analysis of visitors’ behavior at a cultural 

event [1]. The proposed approach is attractive, as no single metric can influence at large scale, and it 

simply does not rely on the willingness of participants. A quality-oriented approach is presented in [51] 

for opportunistic networks, which may not be suitable for time-sensitive tasks. 

Based on functional reputation, an approach in [52] considered the reliable aggregation and 

transmission of collected data by sensors in the WSN domain. It exploits “beta reputation” [53] to 

evaluate the trustworthiness of the node. In contrast, we utilized it in the MCS domain to ensure the 

trustworthiness of MWs. According to [53], a Bayesian estimation matrix can model mean based on 

a probability density function (PDF), and the prediction of credible contributions in the future from 

an MW can be made as presented in Equations (3) and (4). In our proposed RQRP, sensing reports 

can be accepted or rejected, as the nature of the beta system is binary. To differentiate between 

excellent, average, and normal contributors, we assigned ratings based on the individual and 

collective feedback from the requesters. Thus, the outcomes are partially binary in RQRP. From 

previous observations, the expected outcome for a new task can be expressed using 𝜔 = 𝑃 + 1 and 

𝛾 = 𝑁 + 1, where 𝑃 and 𝑁 are positive and negative outcomes from total interactions, and estimation 
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is given in Equation (4). In our approach, we took this concept and modelled it to estimate the 

reputation of the task at present using the history of previous tasks performed by the same MW. 

 𝑓(𝑝|𝜔, 𝛾) =
Γ(𝜔 + 𝛾)

Γ(𝜔)Γ(𝛾)
𝑝𝜔−1(1 − 𝑝)𝛾−1  (3) 

𝐸(𝑝) =
𝜔

𝜔 + 𝛾 + 2
 (4) 

The scheme in [39] covers various aspects, such as the availability and capability of a device, to 

analyze the trust in mobile phone sensing. Emphasis is made on the important role of reputation-based 

systems for MCS, as gadgets in this domain are owned by common people. Candidates’ reputation 

and weights are calculated as presented in Equations (5) and (6), respectively: 

𝑅 =∑𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ∗  𝑅𝑖,𝑘−1,

𝑖𝜖𝑠

 (5) 

where 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =
𝑅𝑖,𝑘−1

∑ 𝑅𝑖,𝑘−1𝑖𝜖𝑠

. (6) 

In [39], the critique is given that beta reputation systems are not capable of penalizing malicious 

MWs for bad contributions. On the contrary, we adopted it by including penalty in terms of decrease 

in reputation and also by not selecting them as crowd participants. Furthermore, we employed a 

blacklist to punish malicious MWs. In our proposed work (RQRP), the trust mechanism based on a 

reputation system is installed in the platform as a central authority to maintain trust and sensing 

quality by assigning a trust score known as the R_Score. We also present a novel mechanism for 

rewarding MWs on the basis of task completion and score calculation. To the best of our knowledge, 

we are the first to study the impact of truthful reporting on platform utility with both parameters. 

Results showed that voting-based approaches were more prone to collusion attack. For approaches 

utilizing a majority voting concept, error propagates at a high rate. Most works which consider 

reputation-aware recruitments have counted on the probability of only those MWs with higher 

reputation. This means that experienced MWs will always have a greater chance of being selected, which 

may lead to monopolies based on reputation score. Voting-based approaches give the right-of-vote to only 

well-known entities, as in [54]. Whereas in our proposed approach, feedback on quality is not confined to 

fixed or predefined entities, and the credibility of the reports is also simultaneously considered. 

Social aware crowdsourcing with reputation management (SACRM) [55] is presented with the 

idea of using social attributes for participants’ selection to perform sensing tasks. It measures the 

quality of the reported tasks in terms of expected and actual delay of sensing reports. Participation 

reputation is also maintained at the platform. Bonuses are paid to stimulate quality reporting. A 

limitation of the paper is that the platform is assumed to store the history of all the performed tasks 

and CCs, which can be impractical at large scale. A greedy approach was adopted in [56] to ensure 

quality while decreasing the sensing cost. Incremental reward is also considered by paying bonuses 

to the participants. Quality is measured by approximation ratio, but reputation is not considered. A 

unique approach with the aim of including quality in MCS by combining cyber-physical perspectives 

for geographic sensing is presented in [57]. For the selection of participants, simple aggregation of 

reports is exploited rather than reputation, and weightage is not considered, which is important for 

credible reporting. Recent work on the idea of profit maximization for MCS is proposed in [58]. Their 

main focus was same as ours, but they did not consider reputation as a benchmark for selection. 

Our proposed work generates credible reports while being beneficial to the platform and fair to 

MWs. It is more generic than [31], as we considered mobile crowdsourcing which includes mobile 

cloud computing and sensing. We do not allow the MWs to compete for limited budget, and instead 

we involve multiple other parameters for MW selection. Moreover, RQRP can be applied on 

temporary bases at local mobile crowdsourcing infrastructures, as in [2]. We exploit reputation, 

whereas [28,30,32] did not consider it at all. The approach is also feasible for the online environment. 

Quality of sensing does not simply rely on the aggregation of reports, and for the sake of quality, no 
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extra payments are made, which may occur in [32]. Budget was taken into consideration with 

dynamic properties, and the profit of the platform is given priority. On the other hand, the Designed 

Mechanism (DM) is expected to be IR (individual rational). In contrast to various approaches, we 

included two quality assurance checks: scrutiny of MWs and validation of reports. In contrast to the 

approaches which have used beta reputation, we also exploited an ageing factor, which may support 

the applicability of the DM at large scale. 

Budget was divided into lower and upper limits for task completion, which can never be over-ruled. 

One of the reasons for setting a dynamic budget is to find and exploit the opportunistically available 

resources. Truthfulness is expected to exist, as there will be no benefit of false reporting. Payoff of the 

MWs is delivered depending upon the agreed-upon total value per task, contribution in big task, 

number of units performed (subtasks), and cost per unit, where quality of reported results is not 

neglected. The reputation updation system will influence MWs to work honestly, as this effects future 

hiring. This is in contrast to previous approaches, which utilized large crowds to take aggregate 

reports without making differences in weightage and thus needed more incentives, which may make 

it impossible to complete tasks with strict budget constraints. A unique feature that can help the 

platform to save storage is the concept of the ageing of history. Our scheme is efficient in this respect, 

as it requires less storage space and may have less running time for participant selection. 

3. System Model and Problem Statement 

The proposed MCS incentive mechanism RQRP model is presented in the following  

sub-section. The research problem, which is focused on achieving high quality of sensing while 

considering the social welfare of the participating entities, is also defined. 

3.1. MCS Model 

RQRP is defined as 𝑀(𝑓, 𝑔),  where 𝑓  represents filtration and selection, and 𝑔  stands for 

payments after the validation and reputation updation processes. The type of a MW is represented 

as 𝑓(𝜃) = �̂�, 𝑤here 𝜃 is the set of true types of MWs, and �̂� is the declared type of MW as a function 

of 𝑓(𝜃). For the platform, 𝜃 is generated as function 𝑓(𝑅𝑇 , 𝑄, 𝑆𝑘). In RQRP, 𝑇 = {τ1, τ2, τ3… τ𝑛} is the 

set of tasks, 𝑈 = {𝑢1, 𝑢2, 𝑢3… 𝑢𝑛}  is the set consisting of users, where  𝑛 𝜀 𝑁 = {1,2,3…𝑁} . After 

announcement of the task by the platform, MWs can bid on their cost. We assumed MWs to be the 

game-theoretic, so we considered 𝑐′ = 𝑓(𝑐), where 𝑐 is true cost and 𝑐′ is the declared cost. A MW’s 

bid is set as a triplet in our mechanism  𝑏𝑖 = (𝑐
′, 𝑞𝑖 , 𝑡𝑖) , where  𝑖 𝜀 𝑈 , 𝑐′  is the announced task 

completion cost, 𝑞𝑖 is the quality (which can be a function of skill and reputation), and 𝑡𝑖  represents 

the time in which 𝑢𝑖 can perform the task. In every case  𝑡𝑖  ≤ 𝑑𝑡, which is the time deadline. Time 

can be a function of distance between sensing and the MW’s current location. All of these are 

important considerations for the constrained aware selection of MWs. Collectively, for multiple tasks, 

cost cannot increase the budget, and reported quality less than the threshold is not acceptable. 

The types of mobile workers can be categorized as: (1) honest MWs, which is the best case;  

(2) malicious MWs, who may deceive for incentives; (3) those who are not malicious but 

accidentally/infrequently report below expected quality; (4) those MWs who at first strategically 

contribute high-quality and then submit false reports and continue this to maintain trust above a 

certain level (known as an ON–OFF attack). Most of the literature ignores this kind of MW, whereas 

ON–OFF attacks can be handled by RQRP, as it is able to analyze the past behavior because history 

is maintained. 

Skill level correlates with the ability to perform a task with desired quality. MWs with better 

skill level and lower bid are favorable to be the bid winners, and are more considerable if they are 

capable of performing multiple tasks. When a task is submitted, the DM ensures that the indifference 

between prior knowledge or instantly generated ground truth is not higher than expected. If so, then 

the task must be rejected. Ground truth is one of the important task quality factor. The objective is to 

validate the accuracy of the submitted task, especially when ground truth is generated from history. 

It is described as: if [𝑇𝑟𝑢𝑒 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 – 𝑇𝑖,𝑗]  ≥  𝛼 ; then reject the submitted task, where 𝛼  is a 

threshold parameter to investigate the quality, and in 𝑇𝑖,𝑗 𝑗 is the submitted task by the user i. RQRP 
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imposes a kind of filter to ensure the careful selection of MWs and the quality of reported tasks. The 

reputation score of an MW is one of the very important filters, alongside cost, expected quality, and 

MW skill. 

Budget ∫ 𝐵 
𝐵+𝑖

𝐵−𝑖
 is set to be dynamic between lower and upper limits. The lower limit of budget 

is initialized with the rough estimate of the true cost from history, which can vary from task to task 

and is initialized by the platform. Different from most of the previous approaches, we considered 

that every bundle of tasks can have different sets of tasks with different budgets, which is a more 

realistic scenario. Two reasons to set a dynamic budget are as follows: 

(1) Imperfect information about true cost of task completion of MWs. 

(2) A variety of task completion requirements encourage dynamic budgets, as cost may vary from 

task to task with worker skill level, required quality, and with time sensitivity. 

It is important to maintain the interest of MWs to get the task completed within the required 

constraints. Every MW expects attractive incentives, so an efficient incentive mechanism is most 

important for any efficient crowdsourcing platform—especially when decisions on the participation 

of workers cannot be reverted (e.g., online). Some important attributes that a good incentive 

mechanism should have are: truthfulness, if truth telling is a dominant strategy for MWs then the 

DM is truthful; individual rationality, meaning that at the least costs are paid to MWs; profitability, 

meaning that the DM should be profitable for the platform; feasibility—that is, if the task can be 

completed in polynomial time then the DM is computationally feasible; and fairness, which may hold 

if incentives are being paid according to contribution. 

We assumed that MWs were aware about the presence of other MWs, who could also be the 

winner of the announced task, thus forming competition. The incentive of the upcoming task can be 

lower than already declared, and it may not be desirable for an MW to wait for the next task. All these 

factors motivate the MWs to bid on their true values, so we can expect that bidding based on the true 

cost will be the dominant strategy of MWs. This idea will lead MWs to perform at their best, 

irrespective of what other MWs’ bids are. As there will be no benefit of deviating individually, 

providing the best response will be desirable for the MWs. This concept is also known as the 

diminishing return in literature. The workflow of the proposed model is presented next. The most 

frequently used notations in this work are presented in Table 1. 

Figure 1 presents the designed RQRP architecture for MCS. It consists of two parts. In the first 

part, requesters declare tasks with required quality, budget, and time constraints. The second part is 

the most important part of the designed mechanism, and deals with the reputation-aware selection 

of the participants and the updation of reputation. Online and offline participants can both be 

handled, and worker selection based on reputation of task completion is the first milestone on the 

way to achieving high-quality sensing. To select suitable participants, the platform announces the 

task with constraints and waits for the MWs to bid, as handled by Algorithm 1 in Phase-A. We 

assumed the availability of enough MWs willing to participate in sensing tasks. When analyzing bids 

for the expected quality and platform utility that a particular applicant can provide, the mechanism 

selects one or up to the required number. After this, the platform announces the number of winners. 

From this point forward, Algorithm 2 (described in Phase-B) has a kind of interplay with Algorithm 1. 

Bid winners perform sensing tasks and submit the reports. The platform verifies the sensing reports 

with the task completion constraints and with the expectations from participants. Upon successful 

verification, payments are made to those winners whose tasks fulfilled the minimum criteria, 

otherwise the task is rejected. Rejection at this stage may encourage the worker to do their best for 

the next task. The platform delivers final report to the requester. On reply of requester for the 

contributed quality, reputation updation is performed. If the same task was required by multiple 

requesters, then reputation is updated by considering feedback collectively. Collective knowledge 

based on feedback is also useful to avoid the bias of requester opinions. Power to benchmark the quality 

is distributed and a final check is done at the platform. Reputation-aware recruitment allows us to conduct 

the selection of MWs to achieve the quality objective. Feedback from the requester can help the platform 
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to predict recruitment. In contrast to some approaches which announce the reputation score, we did not 

do so, so that MWs cannot monopolize based on reputation score. 

Algorithm 1: Selection of Suitable Mobile worker. 

INPUT: Attributes of task (𝑇, 𝑆𝑘 , 𝑄, 𝐷𝑡), 𝑙(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛), 𝑝 𝜀 𝑃, Assumption: Every MW has maximum 

task completion capacity 𝑁𝑡𝑡𝑐[𝑖] 
OUTPUT:  𝑁𝑤, 𝔼(𝑄), 𝔼(𝑐𝑖), 𝔼(𝑃𝑢)   

 

1. Initialize: {𝑁𝑤 , 𝔼(𝑄), 𝔼(𝑃𝑢), 𝑁𝑐𝑐 , 𝑁𝑡𝑐} ← {∅, 𝑄, ∅, ∅, ∅}; 𝐵−𝑖 , 𝐵
+𝑖 

2. MWs(N) bids on their private value: 𝑁𝐶𝐶[𝑖] ← 𝑏[𝑖]; 

3. For (i = 1 ; i ≤ (𝑁𝑐𝑐[𝑖]) && 𝑁𝑤 && 𝐷𝑡 ≤
𝑇

⌊2 𝑙𝑜𝑔2
𝑇
⌋
) ; i++)  

4. If 𝑁𝐶𝐶[𝑖] ≥ (𝑆𝑘) then 

5. If 𝔼(𝑄) ≥ 𝑄 then 

6. If (𝐵−𝑖 ≤ 𝑏[𝑖] ≤  𝐵+𝑖) then 

7. If (𝑁𝑡𝑐 ≤ 𝑁𝑡𝑡𝑐[𝑖]) then 

8.  𝑁𝑅𝐶[𝑖][𝑖] //considered as real candidate 

9. Else 

10.  𝑅𝑒𝑗𝑒𝑐𝑡[𝑖] ←  𝑁𝐶𝐶[𝑖] 

11. End If 

12. End For 

13. Sort list of 𝑁𝑅𝐶[𝑖] in descending order w.r.t low bids b[𝑖] and high 𝔼(𝑃𝑢) 

14. For any task If 𝑁𝑅𝐶[𝑖], 𝑏[𝑖] && 𝔼(𝑃𝑢) are same then 

15. Select 𝑁𝑅𝐶[𝑖] with higher 𝑅_𝑆𝑐𝑜𝑟𝑒 or 𝑅𝑇   

16. Select the Nw from the set of 𝑁𝑅𝐶[𝑖] w.r.t Max 𝔼(𝑃𝑢), 𝑁𝑡𝑐 + +  

17. End For 

18. Return 𝑁𝑤 , 𝔼(𝑄), 𝔼(𝑃𝑢), 𝔼(𝑐𝑖)  

In Figure 1, the large dotted rectangle on the right side represents the methodology of our 

proposed RQRP as a whole. The dotted red arrows show the communication for mobile workers’ 

selection (Phase-A). This communication may contain the announcement of tasks, transmission of 

bids, reputation score, skill of the worker, or other requirements that must be ensured before the MW 

selection is made. These are the prior measures which set the ground for obtaining the desired sensing 

task quality, performed by Algorithm 1: selection of the suitable mobile worker. Blue arrows 

represent the credibility investigation, incentive assignments, updation of reputation into the 

database, and reply to the requester, which are mostly the objectives of credible sensing Algorithm 2 

(Phase-B) of RQRP.  
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Figure 1. Proposed architecture of the Reputation, Quality-aware Recruitment for Platform (RQRP) 

method for task allocation and reward management. MW: mobile worker. 



Sensors 2018, 18, 3305 11 of 31 

 

Table 1. Most frequently used notations in this work. 

Notations Description 

𝑅_𝑆𝑐𝑜𝑟𝑒 Reputation score 

𝑃𝑢 ,𝑊𝑢 Utility of platform and mobile worker 

𝔼(𝑄), 𝔼(𝑃𝑢) 
𝔼(𝑄) is expected quality from bidding mobile worker and 𝔼(𝑃𝑢) is the 

expected platform utility  

𝑇, 𝑡𝑖 𝑜𝑟 𝜏𝑖𝜀𝑇 Task, Subtasks 

𝐷𝑡 , 𝐺𝑡 Deadline of task completion, and ground truth 

𝑄, 𝑅𝑞[𝑡𝑖], 𝑄_𝑆𝑐𝑜𝑟𝑒 

Desired quality of task, 𝑅𝑞[𝑡𝑖] is the real reported quality of any task 

according to (𝐺𝑡 , 𝑅_𝑆𝑐𝑜𝑟𝑒), and 𝑄_𝑆𝑐𝑜𝑟𝑒 is quality score after task 

completion 

𝛼, 𝛽, 𝑏[𝑖], 𝑏𝑖𝑗 
𝛼, 𝛽 are threshold parameters, b[𝑖] is the bid of any mobile worker MW𝑖 , 

and 𝑏𝑖𝑗  is the bid of any MW𝑖 for task j 

𝑆𝑘 Expected skill level 

𝑁,𝑁𝑐 , 𝑁𝑅𝐶 , 𝑁𝑤 , 𝑁𝑡𝑐, 𝑁𝑡𝑡𝑐 

𝑁 is the total number of mobile workers, 𝑁𝑐  is the set of candidates who 

have submitted bids, 𝑁𝑅𝐶  is set of candidates who are considered as real 

candidates, 𝑁𝑤  is the number of winning MWs, 𝑁𝑡𝑐 is the total task 

assigned, 𝑁𝑡𝑡𝑐  is total task completion capacity of MW 

𝑆𝑟 , 𝐺𝑡 , 𝑙𝑖  𝜀 𝐿 
𝑆𝑟  is sensing report, 𝐺𝑡  is ground truth, 𝑙𝑖  𝜀 𝐿 is a sensing location from a 

set of locations 

𝐵+𝑖, 𝐵−𝑖 Upper and lower upper limits budget 

𝑐𝑖, 𝐶𝑖 
𝑐𝑖  is the unit cost paid to the MW whereas 𝐶𝑖 is the total cost paid to one 
𝑀𝑊𝜀 𝑁𝑤 

3.2. Problem Definition 

Based on the contributed quality of MWs from history, we created a skill matrix which is 

assumed to be the private knowledge of the platform. For every newly registered MW, the skill value 

in this matrix will be 0.5 by default but can vary depending upon the reported sensing quality. Skill 

level is defined as: 𝑆𝑘 = [𝜏𝑖,𝑗  ] 𝜀 [0,1]
𝑀∗𝑁 , where  τ is task, and i ε U, j ε T, and 𝑀 ∗ 𝑁  represent the 

columns and rows of the skill matrix. The reputation 𝑅𝑇 of any MW can be deduced from 𝑄 matrix, 

which is the contributed quality in history, whereas the 𝑄  matrix is the function of skill level 

𝑆𝐾  matrix expectations before selection. Below, we present how the reputation is built from quality 

(feedback) and skill matrices: 

𝑅𝑇 = [

𝑅𝑖,𝑗 𝑅𝑖,𝑗 … 𝑅𝑛,𝑚
𝑅𝑖,𝑗 𝑅𝑖,𝑗 … 𝑅𝑛,𝑚
𝑅𝑖,𝑗 𝑅𝑖,𝑗 … 𝑅𝑛,𝑚

]
 
⇐𝑄 [

𝑄𝑖,𝑗 𝑄𝑖,𝑗  … 𝑄𝑛,𝑚
𝑄𝑖,𝑗 𝑄𝑖,𝑗  … 𝑄𝑛,𝑚
𝑄𝑖,𝑗 𝑄𝑖,𝑗  … 𝑄𝑛,𝑚

]
 
⇐ 𝑆𝐾 [

𝑆𝑖,𝑗 𝑆𝑖,𝑗 … 𝑆𝑛,𝑚
𝑆𝑖,𝑗 𝑆𝑖,𝑗 … 𝑆𝑛,𝑚
𝑆𝑖,𝑗 𝑆𝑖,𝑗 … 𝑆𝑛,𝑚

].  

We defined our research problem in the following ways, presented in Equations (7) and (8): 

𝑚𝑎𝑥 𝑄
𝑡≤

𝑇

⌊2 𝑙𝑜𝑔2
𝑇
⌋
 
𝑓𝑜𝑟 𝑙𝑖𝜀𝐿 ∑  𝔼(𝑃𝑢)

𝑁𝑤

𝑖𝜀𝑅𝐶

, (7) 

 𝑚𝑖𝑛  𝑡 ≤
𝑇

⌊2 𝑙𝑜𝑔2
𝑇
⌋
𝑓𝑜𝑟 𝑙𝑖𝜀𝐿 ∑  𝔼(𝑐𝑖)        𝑎𝑠         ∑  𝔼(𝑐𝑖) ≤ 𝐵

+𝑖

𝑁𝑤

𝑖𝜀𝑅𝐶

.    

𝑁𝑤

𝑖𝜀𝑅𝐶

 (8) 

On receiving a bid from a crowd participant, the platform searches the matrices from the 

database to make a well-educated decision on the selection of mobile workers. 

The objective of Equation (7) is to maximize the quality 𝑄 and expected platform utility 𝔼(𝑃𝑢) 

for any desired sensing location 𝑙𝑖𝜀𝐿  until the  𝑡 ≤
𝑇

⌊2 𝑙𝑜𝑔2
𝑇
⌋
, where 𝑇 represents the deadline of 

performing the task, which is divided into slots. This is also the case with the budget 𝑏 ≤
𝐵

⌊2 𝑙𝑜𝑔2
𝐵
⌋
, 
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which is also dynamic as the time deadline varies accordingly, where 𝐵 is the budget of all the tasks 

in one bundle. This division is the same as in [30]. Total task completion time is divided into slots and 

budget is set to be dynamic accordingly, which varies to meet the temporary deadline until Equations (7) 

and (8) are valid for 𝑁𝑅𝐶 . 𝑁𝑅𝐶  is the list of those MWs who are considered to be the real candidates 

because their trust scores are at least as high as the required quality for the sensing task. Selection of 

winning MWs 𝑁𝑤  is made until the time deadline reaches 
𝑇

⌊2 𝑙𝑜𝑔2
𝑇
⌋
  𝑁𝑤 is a set of winning candidates 

from the list of real candidates  𝑁𝑅𝐶 , who qualified in the first phase. For any declared sensing 

location 𝑙𝑖𝜀𝐿 , the objective is to maximize the expected platform utility  𝔼(𝑃𝑢) while ensuring the 

quality 𝑄  constraint until the deadline is reached. On the other hand, Equation (8) is aimed to 

minimize the cost of winning 𝑁𝑤 MWs which the platform is supposed to pay. It includes the sum of 

total costs of all the services offered by the set  𝑁𝑤. This must be done under the constraint that the 

sum of total expected costs 𝔼(𝑐𝑖)  of every 𝑁𝑤  must not exceed the upper limit of budget  𝐵+𝑖 , 

where 𝐵+𝑖  is the maximum cost that the platform can pay for the announced bundle of tasks. 

Algorithm 2: Credible Sensing. 

INPUT:  𝐺𝑡 , 𝑙𝑖  𝜀 𝐿, , 𝑆𝑟[𝑖], 𝑄[𝑖], 𝑝 𝜀 𝑃  

OUTPUT: 𝑊𝑢, 𝑁𝑤  𝑄𝑆𝑐𝑜𝑟𝑒/𝑅𝑇 , 𝑝   

 

1. Initialize: 𝑁𝑤(𝑆𝑟) ← Accept(1)/Reject(0), 𝑄_𝑆𝑐𝑜𝑟𝑒 ← 0   

2. For (i=0; i ≤  T ; i++)       

3.    If 𝑆𝑟[𝑖] 𝑜𝑓 ℎ(𝑙𝑖) 𝜀 𝐻(𝑙𝑖)] then 

4.        If (𝑆𝑟[𝑖] − ℎ(𝑙𝑖) ≤ β && 𝔼(𝑄) ≥ 𝛼 && 𝑆𝑟[𝑑𝑡] ≤ 𝐷𝑡) then   

5.          If 𝑄_𝑆𝑐𝑜𝑟𝑒 = | 𝔼(𝑄) − 𝑅𝑞[𝑡𝑖] | > 𝑄[𝑖] then 

6.      Accept𝑆𝑟[𝑖] ← 𝑁𝑤[𝑖]  

7. 𝑅𝑇 = 𝑅𝑇−1 + 𝛽𝑅𝑇−1      // increase in reputation  
8.        Else 

9.          𝑅𝑒𝑗𝑒𝑐𝑡𝑆𝑟[𝑖] ← 𝑁𝑤[𝑖]      // add the MW’s task in rejected array of 𝑅𝑒𝑗𝑒𝑐𝑡𝑆𝑟  

10.          𝑅𝑇 = 𝑅𝑇−1 − 𝛽𝑅𝑇−1      // decrease in reputation as penalty 

11.        End If 

12.     End If 

13. End For 

14. For any 𝑆𝑟[𝑖] ∉ ℎ(𝑙𝑖) 𝑏𝑢𝑡 𝑄 ≥ α   

15.     𝑊𝑢 = 𝑝  

16.     ℎ(𝑙𝑖) ← 𝑆𝑟[𝑖] 

17.     𝑅𝑇 = 𝑅𝑇−1 + 𝛽𝑅𝑇−1   

18.     Assign weight 𝑆𝑟[𝑖] according to R_Score;  

19.     If 𝑆𝑟[𝑖] is reported by newly recruited MW then  

20.          R_Score is initialized by 0.5; 

21.     End If 

22. End For 

23. Return 𝑁𝑤 , 𝑁𝑤(𝑅𝑇)     // winners and their quality scores 
24. 𝛽 = ∑(𝑆𝑟[𝑖] − ℎ(𝑙𝑖))/𝑇𝑜𝑡𝑎𝑙 𝑆𝑟)      // 𝛽 is updated for upcoming task to set benchmark  

The social welfare of the system is also considered in our DM. Social welfare is a term borrowed 

from microeconomics, and has the goal of participants’ satisfaction. The DM for MCS is the interplay 

of three common entities: MW, platform, and requester. In some studies, the platform and requester 

are considered as one entity, but we considered them as two separate agents. The DM in our proposed 

work is a system that ensures the satisfaction of all three parties. Social satisfaction can be defined as 

the net profit for all entities. In our scenario, we defined the social welfare as in Equation (9): 

𝑆𝑤 =∑ 𝑃𝑢

𝑁𝑤

𝑖=1

+∑ (𝑝𝑖 − 𝑐𝑖
′)

𝑁𝑤

𝑖=1

+∑  𝑄𝑖

𝑅𝑒𝑞 

𝑖=1

. (9) 
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In Equation (9), Max ∑ 𝑃𝑢
𝑁𝑤
𝑖=1 ≥ 𝐶, where 𝐶  represents the total cost borne by the platform, and 

its utility will be greater than or equal to 𝐶. This is ensured by the selection filter in RQRP, where no 

combination of MWs will be selected in which 𝐶  will be greater than the upper limit of the budget 𝐵+𝑖. 

The DM is also profitable for the MWs, as 𝑝𝑖 − 𝑐𝑖
′ will be at least greater than or equal to 𝑐𝑖 , which is the 

true cost of the MW. This property can also be satisfied by the individual rationality attribute of DM, 

which means that in general scenarios, MWs must be paid their declared cost 𝑐𝑖
′. On the other hand, 

we defined the satisfaction of the requester in terms of achieving the quality 𝑆𝑟 ≥ 𝑞𝑖 , where 𝑆𝑟  

represents the sensing report and 𝑞𝑖  is the threshold value of task acceptance. 

4. Proposed Reputation Quality Aware Recruitment for Platform (RQRP) 

The DM is distributed into two phases, as shown in Figure 2. Phase-A has two sub phases: 

filtration and the recruitment of suitable MW(s). Phase-B also has two stages: credibility inspection 

of reports and assignments of incentives to the platform and MWs. To design a mechanism that can 

maximize the platform utility while ensuring the quality of reporting requires that different 

challenging tasks be confronted, enumerated as follows: 

(1) Selection of suitable MWs by fulfilling the task’s constraints. 

(2) Validation of task quality is necessary, as MWs can submit low-quality reports and may want to 

enjoy a free ride. They can also be selfish, strategic, and may intentionally manipulate results to 

misguide the platform. To avoid all this, quite a strict check and balance should be maintained 

on submitted reports. The challenge lies in how to ensure the quality of reports. 

(3) Enforcement of work quality. The development of an efficient system which can hire 

trustworthy CCs is necessary. Furthermore, there should be a method to avoid the monopoly of 

MWs, which is also a necessary step to maintain quality by keeping their interest. 

(4) Ensuring that budget and time constraints are operated within. 

(5) Stimulation of MWs with a proper incentive mechanism, which can handle online mobile 

crowdsensing task distribution. 

 

Figure 2. Phases of proposed RQRP for MW selection (top) and evaluating validation and  

incentives (bottom). 

Sensing in MCS may include images, videos, temperature measurement, environment 

monitoring, and much more. The proposed RQRP aims to achieve quality of sensing based on 

reputation, where incentives are paid on the contribution. Its application is not limited to one 

scenario, and can be utilized for any of the previously mentioned application examples, where 

CCs/MWs need to be recruited, quality of reporting should be ensured, and incentives are given in 
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reward of services. Due to its foundation in the “beta reputation system”, it is also presented after 

necessary enhancement to adapt to the MCS environment. Different from the available literature, our 

designed approach is more suitable for the following reasons: (1) It can manage offline and online 

scenarios at the same time, where users dynamically join and leave. In this situation, decisions are 

made in real time; (2) RQRP creates competition among MWs to have continuous effort, whereas 

most approaches in the literature only emphasize reducing the cost of hiring; (3) Reputation-aware 

recruitment provides the chance for the selection of suitable MWs with enhanced trustable quality 

reporting. It also discourages false reporting, which was totally ignored in [30,36,59]. (4) The feasible 

budget constraint is considered while being profitable to the platform. Necessary payments are made 

to keep the interest of MWs. (5) Truthfulness is expected to be achieved, as it is the dominant strategy 

for the players to bid on the true value. We assumed that platform would have some prior knowledge 

about the true costs of MWs. This estimate can be obtained from previously completed tasks. To ease 

the reader’s flow, we present the sequence diagram of RQRP in Figure 3. 

Requester

Platform 
at Cloud

Mobile Worker

1. Task Request

2. Task can be done 
as per requirements ?3. Budget ? , Quality ?

4. Bi, Qi

6. Platform Announce task

5. Based on history set 
budget to announce

7. bi, qi

8. If (bi <= Bi and qi >= Qi) = 
True then step 11. else 9.

9. Commit/ Reject ?

10. If Ri = Accept

11. Assign task to winner

12. Perform task

13. Submit Task

14. Validate constrains

15(a). Deliver Task

16. Feedback on quality

17. Update Reputation

15(b). Pay incentives on QoI

 

Figure 3. Details of work flow for quality-aware mobile crowd sensing (MCS) in RQRP. QoI: quality 

of information. 

On task generation from the requester with the details of task requirements, platform take some 

necessary steps, it may consists of multiple servers as shown in Figure 3. The platform checks whether 

the task can be accomplished or not. The server at the platform can be a certificate server which 

maintains authentication services, or it can be a database server that can store the history of task 

completion for the participants at large scale. Our proposed scheme is a bit more flexible than some 

of the approaches in the literature, as it does not simply deny the task request due to constraints on 
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it. Rather, based on history, it can negotiate with the requester on quality with the declared budget 

before announcing the task to the MWs. After the task announcement, MWs submit bids. If the task 

cannot be completed within required quality and budget limits, then the platform can inform the 

requester with the changing state in step 9. This kind of situation can occur as an assumption is made 

on imperfect information, so states can vary, even after consultation of history. Otherwise, the 

platform selects winners based on 𝑏𝑖 ≤ 𝐵𝑖  and 𝑞𝑖 ≤ 𝑄𝑖 . After task completion, the MW submits their 

report then the platform analyzes the task and delivers it as shown in step 15(a), only if basic 

constraints on the task are fulfilled. At the same time, a reward based on contribution quality is 

assigned in step 15(b). Participants’ reputation is also updated to enable well-informed recruitment 

decisions in the future based on the feedback of requester/requesters as shown in step 17. 

In RQRP, we assumed that MWs are game-theoretic. Thus, the probability of false reporting or 

selfish behavior by MWs does exist. We considered the malicious responses, whereas for the MWs 

with long-term history of job completion with the platform are less expected to be malicious. One of 

the novel features of our approach is that we maintain a blacklist of MWs. This list contains the 

malicious MWs, but it needs to be made carefully, as it can be the case that a mobile worker is not 

malicious but submitted a low-quality task while having a good prior reputation of job completion. 

Situations like this can sometimes happen, for a number of reasons (e.g., environmental factors). If a 

mobile worker is consistently submitting poor-quality reports and their R_Score (reputation score) 

drops beyond a certain level, then this MW can be considered as malicious, and should not be recruited.  

4.1. Phase-A: MW Selection 

Phase-A of RQRP involves the selection of MWs who can maximize the utility of platform while 

ensuring the required quality standard is met. Careful selection of CCs can ensure budget feasibility, 

with no extra money to validate the sensing reports. In the next sub-section, we present our 

reputation-based selection, which is actually a filtration process. This stage is important for the goal 

of quality. 

4.1.1. Reputation-Based Selection (RBS)—Filtration 

Reputation-based selection (RBS) consists of initial filtration and selection. In general, we 

assumed that the platform had a history of previous tasks, and on the arrival of any new task, the 

platform announces it with all the details except for budget in order to create competition. Until 

response from MWs, the DM finds the list of matching MWs with the required skill for the announced 

task. After that, upon receiving bids, the DM compares the attributes sent by the MWs with those 

MWs who had completed tasks successfully in the past and who are also currently in a position to 

perform the recently announced task. After this, the DM can select the most suitable MWs to fulfil 

the task completion requirements. This is the initial filtration process. We dedicated Algorithm 1 to 

the selection of suitable MWs and explain the process hereafter. In contrast to the available literature, 

we assumed that there is a maximum task completion capacity. For the MW selection, we consider 

the trade-off between service quality and true MW cost. However, the true cost of the MW is unknown 

in most cases, and so it is considered as incomplete information as mentioned previously. Rough initial 

information of task completion can be derived by the platform’s previous recruitments for the same kind 

of task with reported quality. This is done by beta reputation [53], described in the following. 

4.1.2. Effective Reputation 

We considered effective reputation in two aspects. The first is the direct feedback from 

single/multiple requesters on the MW’s sensing task. Reputation from multiple requesters should be 

considered if the MW was recruited and completed multiple tasks. The second is the platform’s own 

trust calculation for the MW based on historic observations. We considered this because remarks 

from requesters can be biased due to human factor (liking or disliking) or the requester’s own skill in 

evaluation. Thus, it is logical that we should consider the platform’s own opinion for the reputation 

score (R_Score) of the MW as a whole. The “beta reputation system” is an effective approach used for 
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the calculation of trust level. For effective reputation, we also considered an ageing factor. The 

purpose of using this factor is to reduce the impact of prior reputation scores on the current MW 

selection. It seems to be realistic that previous R_Scores should not be considered forever, as the 

performance of CCs may vary from time-to-time depending on the situation. Even though the 

performance of a specific MW does not change in their local scenario, there can be other new 

employees who can do a better job, so the ageing factor is useful. On the other hand, the ageing 

concept ultimately reduces the impact of history to zero after a certain time. Two other aspects are 

worthy of consideration: the first one is that real-time response can be obtained by reducing the 

recruitment selection time. The second is that storage space can be saved, allowing more records to 

be maintained. We used the term of “weightage” for requester and “reputation” for the MW. We 

discuss the reputation of the MW, the weightage of requesting, and updating records in the following. 

a) Reputation of Mobile Worker 

Reputation calculation and updation involves various aspects, and some important equations 

and their description are presented. Requester feedback is key to the reputation procedure. Other 

than this, we do not just give the right-of-vote to a single requester, especially when there are multiple 

requesters who have requested same task. Equation (10) explores RT, which is the reputation of an 

MW based on the ratings assigned by the requesters. 𝑊𝑖  represents the weightage of the requester’s 

feedback and 𝑅𝑘
𝑇  is the reputation score as a whole. 

 𝑅𝑇 = 𝑊1𝑅1
𝑇 + 𝑊2𝑅2

𝑇 +⋯ 𝑊𝑁𝑅𝑁
𝑇 = ∑ 𝑊𝐾𝑅𝐾

𝑇

𝑁

𝐾=1 

 (10) 

(1) Weighting of Requester Rating 

The proposed RQRP is unique from other reputation-based approaches, as we do not maintain 

the reputation of only MWs. We also tried to analyze the ratings given by the requesters on sensing 

tasks, so that human bias can be removed and an efficient reputation-based mechanism can be 

designed for MCS. 𝑊1,𝑊2, . . .  𝑊𝑁 are the weightage of the requesters for the case of multiple tasks, if 

the requester is assigning ratings honestly and it is not drastically different from the ratings assigned 

by other requesters on collective bases. The weighting capability of that requester’s given rating will 

increase, and otherwise decrease in the same fashion. Weight is calculated from the given weights in 

history, and is simply the average of n previous weights as  𝑊𝑇 = ∑
𝑊𝑛−𝑘

𝑛

𝑛
𝐾=1 . 

(2) Weight Updation 

Weightage given to the MWs must be updated to analyze their contribution with the passage of 

time. It should also be updated because the platform should not reply on all of the past contributions 

for every selection. Thus, if the rating given by the requester/requesters is within the standard 

deviation of the ratings given by multiple requesters, it means that a particular requester is assigning 

a true rating in correspondence with other requesters, so their rating weightage weight will increase 

accordingly as shown in Equation (11) where 𝑈𝑅 − σ𝑅 < 𝑅 < 𝑈𝑅 + σ𝑅. Here, 𝐶 is a constant factor and 

𝑁 is the number of tasks in records to be stored in history. Factor 𝑁 can be adjusted by the platform, 

where a large value of 𝑁 means more history has to be traversed in order to calculate the rating 

weightage. Similarly, if the rating assigned by a requester is not within the standard deviation, then 

the rating weightage decreases when 𝑈𝑅 − 𝜎𝑅 > 𝑅 > 𝑈𝑅 + 𝜎𝑅 . 

 𝑊𝑇 = ∑
𝑊𝑇−𝑘

𝑁

𝑁

𝐾=1

+ 𝐶∑
𝑊𝑇−𝑘

𝑁

𝑁

𝐾=1

 (11) 

    𝑊𝑇 = ∑
𝑊𝑇−𝑘

𝑁

𝑁

𝐾=1

− 𝐶∑
𝑊𝑇−𝑘

𝑁

𝑁

𝐾=1

 (12) 
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(3) Task Rating 

We measured the rating for single and multiple tasks. The rating for a single task is given in 

Equation (10), where WN represents the weights of rating given by the requester and 𝑅𝑁
𝑇  is the rating 

given by the requester for any task  𝑇 . Thus, the rating for a single task done by the MW is  

𝑅 = ∑ 𝑊𝑁𝑅𝑁
𝑇𝑛

𝐾=1 . The average rating of M tasks is taken as 𝑅 =  
1

𝑀
[𝑅1, 𝑅2 +⋯+ 𝑅𝑀]. By combining 

rating of multiple tasks, we get Equation (13): 

𝑅 ==
1

𝑀
[∑𝑊𝑁𝑅𝑁

𝑇1 +∑𝑊𝑁𝑅𝑁
𝑇2 +⋯+∑𝑊𝑀𝑅𝑀

𝑇𝑀

𝑁

𝑘=1  

𝑁

𝑘=1

𝑁

𝑘=1

 ] =  
1

𝑀
[∑∑𝑊𝐽𝑅𝐽

𝑇𝑘

𝑀

𝑗=1

𝑁

𝑘=1

 ], (13) 

where R is the rating calculated for the tasks that are currently performed. Overall reputation 

depends on the current rating and the rating from history, which may have different weights in 

Equation (14) where ℎ1, ℎ2… ℎ𝑁 are the weightages of previous task ratings stored in the history such 

that ℎ1 > ℎ2 > ℎ3… > ℎ𝑁 . Rating weights decrease while moving back in history and eventually 

become zero. From that point on there is no need to store the history, which also saves storage space 

for the platform. On the other hand, it brings a decrease in the computation time, because less history 

needs to be traversed and 𝑅𝑇−𝑘 is the corresponding rating. Equation (14) represents the reputation 

for a single task, whereas Equation (15) represents reputation by combing multiple tasks: 

𝑅 = ℎ1𝑅
𝑇 + ℎ2𝑅

𝑇−2 +⋯+ ℎ𝑁𝑅
𝑇−𝑁 = ∑ℎ𝑘𝑅

𝑇−𝑘

𝑁

𝐿=1

, (14) 

𝑅 = ℎ1∑𝑊1𝑅1
𝑇−𝑛

𝑛

𝐾=1

+ ℎ2∑𝑊2𝑅2
𝑇−𝑘

𝑁

𝐾=1

+⋯+ ℎ𝑚∑𝑊𝑛𝑅𝑛
𝑇−𝑘

𝑛

𝐾=1

= ∑∑ 

𝑛

𝐿=1

ℎ𝑘  𝑊𝐿

𝑚

𝐾=1

𝑅𝐿
𝑇 .  (15) 

To eliminate/reduce the requester’s feedback bias, we considered collective feedback, especially 

when similar tasks are requested by a number of requesters. For such a scenario, we used the 

standard deviation by setting it to the aggregate of the feedbacks from different requesters. For the 

filtration phase, we developed some criteria to select a set of winners from candidates as below. 

Reputation is not the only parameter of selection, whereas budget on the collective bases should also 

not be violated along the many others mentioned prior. 

{
 
 

 
 𝑖𝑓 𝑎𝑛𝑦∏ 𝐶𝑖  𝑜𝑓 (𝑅𝑁𝐶) > 

𝑛

𝑖=1
𝐵+𝑖;  𝑡ℎ𝑒𝑛 𝑅𝑒𝑗𝑒𝑐𝑡 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

𝑖𝑓 𝑎𝑛𝑦∏ 𝐶𝑖 𝑜𝑓 (𝑅𝑁𝐶) = 𝐵−𝑖;  𝑡ℎ𝑒𝑛 𝐴𝑐𝑐𝑒𝑝𝑡 (𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑) 
𝑛

𝑖=1

𝑖𝑓 𝑎𝑛𝑦∏ 𝐶𝑖  𝑜𝑓 (𝑅𝑁𝐶) 
𝑛

𝑖=1
> (𝐵−𝑖) 𝑏𝑢𝑡 ≤ 𝐵

+𝑖;  𝑡ℎ𝑒𝑛 𝐴𝑐𝑐𝑒𝑝𝑡

  

The second combination is the most preferred situation. If it comes true then there is no need to 

go for a third possible combination of participant selection. These criteria simply check the 

combination of costs that need to be paid in order to recruit MWs. Before selecting any one or a set 

of MWs, the system quantifies the expectations (quality, cost, etc.) of the platform for any MW who 

is bidding against any task (𝑇𝑖  𝑜𝑟 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠 = {𝑡1, 𝑡2,𝑡3…𝑡𝑛}) that could possibly be assigned to the 

winner. Expectations in view of previous performance records are defined as: 

(1) For any MW𝑖 , if her R_Score is highest among 𝑁𝑐𝑐  (crowd contributor), it ensures the task 

completion requirements will be met, and no other currently available online MW with a better 

offer than this MW is likely to be selected. 

(2) The DM computes the probability of expected quality based on R_Score of 𝑁𝑅𝐶 (real candidate). 

Any candidate with higher probability has a higher chance of selection. 

4.1.3. Selection of Suitable MW 

For Algorithm 1, we assumed that every MW has maximum task completion capacity 𝑁𝑡𝑡𝑐[𝑖], 

and there are enough MWs willing to perform the task. Now, we describe its worker selection 



Sensors 2018, 18, 3305 18 of 31 

 

procedure whenever a task and its details are announced and MWs make bids in response. We 

assumed that MWs bid on their private value (dominant strategy) while being aware of the presence 

of other mobile workers and the strong quality evaluation procedure at the platform. Inputs to the 

algorithm are (𝑇, 𝑆𝑘, 𝑄, 𝐷𝑡 , ), 𝑙(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛), 𝑝 𝜀 𝑃, where 𝑇  is the task, 𝑆𝑘  is the required skill level, 𝑄 

represents the required quality, 𝐷𝑡  is the deadline to perform the task, 𝑙 is the sensing spot, and 𝑝 

stands for the maximum payment as reward for task completion. We assumed that every new worker 

who is willing to be assigned the tasks must be registered with the platform first. By doing so, a 

history of recruitments can be maintained. This does not mean that the DM just handles the offline 

working environment. Any new worker is welcomed to perform task and gets incentives as reward 

after finishing sensing task successfully. By giving the opportunity of selection to the new MWs, we 

can remove the monopoly of old MWs who are already registered and have high R_Score. An 

important assumption is that the platform maintains a history of workers. The value of the expected 

quality can be 𝔼(𝑄) = [0 − 1], which is measured before the recruitment of a MW. If history does not 

exist then we set it as (0.5) by default, similar to the case with 𝑆𝑘. If a bidder has history at the platform, 

then expected quality and expected platform utility are measured as: 

𝔼(𝑄) =
𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑇𝑎𝑠𝑘𝑠 

𝑁𝑜. 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑
, 

𝔼(𝑃𝑢) =
ℎ(𝑃𝑢 − 𝑅(𝑁𝑊)) 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑎𝑠𝑘𝑠 𝑜𝑓 𝑆𝑖𝑚𝑖𝑙𝑎𝑟 𝑁𝑎𝑡𝑢𝑟𝑒
. 

 

These two are two important attributes in the selection of MWs. A higher value of expected 

quality for task completion with optimum profit is the desired situation for the platform. 

The DM sorts the R_Scores of the bidding MWs in descending order. As is clear from Figure 3, 

upon receiving a task from the requester, the platform searches for any available MWs who can 

perform the sensing task by satisfying the task completion constraints. After completion of this 

search, the DM compares recently found candidate MWs with the list of MWs in historical 

recruitments who are capable of performing tasks similar to the announced task. For any candidate 

MWs (𝑁𝑐𝑐) matching with the historical recruits, their R_Score can play a role in the selection. The 

point to be considered here is that if the DM only relies on the R_Score, then the MWs can influence 

the selection procedure. In this case, we can say that the DM is biased in some way. To mitigate this 

bias, we add sensing capabilities as a prominent feature, which means that much better quality can 

be obtained with better-skilled MWs. Due to this, a newly registered MW can take part in sensing 

tasks. The objective of these efforts is to get truthful and authentic sensing reports from MWs by 

denying the possibility of monopoly. Thus, there is always a competitive environment for MWs, 

which can be help to maximize the platform utility and obtain good quality reporting as well. The 

R_Score can vary between [0–1]. This parameter is a kind of task completion probability for a worker 

with given constraints. The selection of well-reputed MWs is the key to get better-quality sensing 

tasks. A parameter (alpha) is set to make a threshold for the selection of MWs. 

Step 3 of Algorithm 1 is the iteration criteria until online candidates are available to be selected 

and the deadline is not yet reached. Steps 4–7 verify the fulfilment of task constraints with respect to 

different parameters. For any 𝑁𝐶𝐶  crowd contributor, 𝔼(𝑄) is the expected quality based on previous 

reputation from that CC, 𝑏[𝑖]  is the bid of the MW and  𝐵+𝑖  is the upper budget limit that should not 

be crossed accumulatively. Total task completion capacity is presented by 𝑁𝑡𝑡𝑐[𝑖], where 𝑁𝑡𝑐 is the 

number of currently assigned tasks to a MW. If a bid is not based on a true valuation of the MW or is 

beyond the task’s expected value to the platform (higher than the upper budget bound), the DM will 

reject the MW’s bid. Especially, when the platform has a history of task assignment available as a 

benchmark, as well as reward and quality scores of reported tasks, then the selection decision can be 

much more educated. The set of candidates who are able to complete announced task from the list of 

CCs are presented are presented as 𝑁𝑅𝐶 , 𝑁𝐶𝐶  respectively. Step 13 sorts bids with respect to platform 

utility and expected quality. For the MWs whose bids and platform utility are the same, then selection 

will be decided based on the greater expected quality value by iteration of the “FOR” loop in steps 

14–17. R_Score and 𝑅𝑇  are used interchangeably, and so should be considered as the same until 
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mentioned otherwise. In step 16, the selection of the winner is done based on platform profitability 

from the array of real candidates. Finally, step 18 returns the number of winners, expected platform 

utility, expected quality, and expected cost to be paid to the MW in reward of service. 

4.2. Phase-B: Evaluation of Validation and Incentives 

Phase-B of our proposed work is designed to evaluate the credibility of the reported sensing 

tasks by the participants. The criteria of acceptance or rejection at the platform for the MW’s report 

are based on the minimum acceptable quality of submitted tasks. If a task is rejected, there may be 

reasons other than the required quality. During the evaluation, one possible cause of rejection can be 

late submission. The platform validates/verifies task completion quality with the available ground 

truth from history. In case ground truth is not available, then currently submitted results can serve 

on its behalf by taking an average, so an acceptance/rejection decision can still be made. Later, this 

initial ground truth can be analyzed and updated to provide a better benchmark of quality. In this 

way, the platform can deal with any task requested for the first time by the requesters which has not 

been sensed before. New ground truth can be considered and refined. After validation is done, an 

incentives mechanism is presented to assign the utilities of MWs and the platform. 

4.2.1. Credibility Inspection 

Sensing credibility is very important in MCS, as the participants are from the crowd and thus 

can be unreliable. Our work is different from some of the approaches in literature who rejected the 

task and did not pay any incentive to MWs. In our approach, once an MW is short-listed for task 

completion, it means that at least the initial criteria are fulfilled. For that particular MW, even if the 

sensing report is rejected, the platform can still pay only to those MWs who meet the minimum 

reputation qualification. This payment can be made as some ratio of the bid. However, at the same 

time, reputation will be degraded as a penalty and if there is a gradual decrease the DM will 

automatically move that MW to the blacklist. On one hand, it looks like a loss for the platform, but it 

is necessary as a selected MW should not be discouraged because bad sensing reports can be 

generated even from well-reputed MWs. This is also necessary due to the importance of incentive 

mechanisms in MCS. 

Now, we can move further to elaborate the working of Algorithm 2, which aims to evaluate the 

credibility of submitted sensing reports. The DM calculates but does not announce the R_Score to the 

workers, as the MWs may exploit it to emphasize their selection. In our DM, the R_Score is a private 

value of the platform for any MW who bids on an announced task. The R_Score is of key importance, 

as it can create a competitive environment among MWs and can also stimulate them to produce high-

quality work to the best of their abilities and resources. A better R_Score means a greater chance of 

selection as a winner for the tasks to be announced in future. Algorithm 1: “Selection of suitable 

mobile worker” is designed to select the suitable MW based on various constraints, such as task 

completion quality and budget constraints. In making the selection decision, reputation is also taken 

into consideration as mentioned in Equations (10)–(15) as per requirements. Once recruitment is 

completed and sensing reports are submitted to the platform, Algorithm 2: “Credible sensing” 

inspects the quality of sensing reports based on task completion criteria. Other than this, participant 

reputation is also updated and incentives are paid. Thus, we can say that the output of Algorithm 1 

is the input of Algorithm 2. Next, we explain the working of Algorithm 2. 

Steps 1–13: Initialization is done from the database when the ground truth for the announced 

sensing locations is available. If the ground truth cannot be deduced from currently available history, 

then it is considered as a new sensing location. Other inputs of the algorithm are: 𝑆𝑟[𝑖] —sensing 

report from  𝑀𝑊[𝑖] , 𝑄[𝑖]—the required quality for any task 𝑇[𝑖],  and 𝑝 𝜀 𝑃—the payment that is 

expected to be paid taken from Algorithm 1. For the received report of a task, if the history for that 

sensing location does exist, then a comparison can be performed and the decision of acceptance or 

rejection can be made easily. If the difference of the reported task is less than or equal to the 𝛽 

threshold parameter (the minimum acceptance criteria deduced from history), the expected quality is 

greater than the 𝛼 (a range of expected quality for a MW) and the task submission deadline is not 



Sensors 2018, 18, 3305 20 of 31 

 

already passed, then task is acceptable. Otherwise, it is rejected in steps 4 and 5. If the task is 

acceptable, then the algorithm checks for a quality score as well, 𝑅𝑞[𝑡𝑖] is the real reported quality of 

a report, 𝑁𝑤[𝑖] is added to the array 𝐴𝑐𝑐𝑒𝑝𝑡𝑆𝑟[𝑖] (the array of accepted sensing reports) and 𝑅𝑇  is 

reputation, which is updated (increased) in step 7. If 𝑆𝑟[𝑖] is rejected, reputation updation still must 

be performed accordingly by decreasing the reputation score for that MW as presented in step 10. If 

an MW’s sensing task is rejected again and again and their reputation is dropped below a certain 

level, then that MW can be moved to the blacklist. This is a unique feature of RQRP which can save 

platform assets from malicious MWs based on repetitive rejection. This process is done repeatedly 

until all the sensing reports are benchmarked for which history is available and incentives are also 

assigned accordingly. 

Steps 14–22 deal with the case where history is not available to set the ground truth for the 

reported task. In such cases, in order to quantify the sensing reports for task quality factor, we assign 

the weights according to the R_Score of the reporter to set the ground truth for future reporting. 

Meanwhile, payment is made and reputation is updated according to 𝑅𝑇. In this perspective, our 

designed approach is different from most in the literature which simply set the ground truth by 

taking the average of reported tasks. Finally, the algorithm returns the updated R_Score of the MW 

and updates the list of 𝑁𝑤[𝑖]. By this mechanism, any advertised sensing task can be performed which 

was never sensed before by setting the reputation and enhancing the trust level. Parameter 𝛽  is 

updated in step 24 for well-predicted future recruitments. 

To avoid the complexity of handling reputation from multiple requesters, the algorithm is 

presented for the simple case of single-task reputation updation. More general scenarios can be 

handled in accordance with Section 4.1.2, which discusses reputation-based selection. For example, 

when multiple task scores from history are taken, feedback from the requesters can be the aggregation 

of all of the positive and negative feedback against the reported task. 

The total cost paid to the MW is a function of unit cost, which can also vary from task to task, 

depending upon the constraints. These constraints can be on quality, skill level, deadline of task 

completion, and the number of successfully completed tasks by all the winners. We assumed that 

cost is paid on the base of each bundle so can vary and also by considering the number of tasks 

performed with respect to the unit cost of each task. Cost paid on the all the tasks collectively is 

presented as  𝐶𝑛 = [(𝜏𝑖)(𝑐𝑖
′)], where  𝑐𝑖

′𝜀 𝐶 . τ𝑖   is the task and  𝑐𝑖
′ is the cost to be paid on completion of 

any task. 

4.2.2. Incentive Mechanism 

Once the output of the selection algorithm is produced, winners are announced, and tasks are 

reported and validated for contributed quality. Now, we present how the payments should be made 

upon the successful completion of tasks. Those MWs whose bids are not accepted are not 

incentivized. The incentive of MW may vary from time to time, even for the same task, depending 

upon task completion constraints like quality, total number of tasks, units performed, and cost. 

4.2.3. Utility of Platform 

The utility of the platform can be calculated by subtracting all the payments made to the MWs 

from the total gained profit. Payments are calculated as below by Equation (16), where 𝑁𝑤  𝜀 𝑁 and 

𝑛 𝜀 𝑁𝑤 which stands only for those MWs who are going to be paid by the platform. As the main 

objective of this work is to fetch the quality of sensing reported from common people who can be 

more uncertain, we paid attention to this point and payments are also made depending on the quality 

of contribution. That is why 𝑃 represents the payment as a function of 𝑄, which is the quality of the 

reported task. 

𝑃𝑢 =∑𝑃𝑓(𝑄) −∑𝐶𝑛

𝑁𝑤

𝑛=1

𝑁𝑤

𝑖=1

  (16) 
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4.2.4. Utility of MW 

The utility of a MW 𝑛  where 𝑛 ε 𝑁𝑤  is calculated by Equation (17), where 𝑝𝑖  𝜀 𝑃  is the total 

payment made to the MW on successful completion of task/tasks, and the second part represents the 

total true cost of the MW, which is a private value. 

 𝑊𝑢 =∑𝑝𝑖 −∑𝑐𝑖

𝑛

𝑖=1

𝑛

𝑖=0

    (17) 

5. Theoretical Analysis 

Analyses of desirable DM properties are presented here, such as truthfulness, platform 

profitability, individual rationality, polynomial time computation, social welfare, feasible budget 

achievement, and fair dealing. 

5.1. Truthfulness 

MWs are selfish and strategic, and so want to maximize their reward. Meanwhile, truthfulness 

is the best-case scenario. The designed mechanism is truthful if truth telling is the best response 

strategy of a CC and users have no benefit from unilateral deviation—any bid beyond the upper limit 

of the platform budget will definitely be rejected. In this way, the feasible budget constraint is also 

fulfilled. If participants decide to take part in the sensing task, then it will be beneficial for them. For 

example, when MWs have defined mobility patterns, it will aid them in obtaining some revenue. 

Equation (18) indicates that the first derivative gives the positive maximum reward and the second 

derivative is negative. This proves that it will be the dominant strategy for a MW to bid on the true 

cost, as the reward cannot be increased further. Truth telling will also be the dominant strategy, 

because the platform will not pay beyond the budget limit and the reward for upcoming tasks may 

be less than the currently announced one. This is also known as “diminishing return” in [31]. Worker 

utility 𝑊𝑢  is a strictly concave function. It will increase with the sensing time and growth rate (i.e., 

first derivative is positive whereas second derivative is negative, which means the maximum 

achievable utility from the given function and cannot be raised further by manipulating the strategy.) 

𝑑𝑊𝑢 

𝑑𝜏𝑖𝑗
≥ 0 𝑎𝑛𝑑   

𝑑2𝑊𝑢 

𝑑𝜏𝑖𝑗
2 ≤ 0 (18) 

5.2. Platform Profitability 

The designed approach is profitable, especially in the sense that the same kind of multiple task 

completion requests may be requested for sensing. An application scenario for this could be a grand 

gathering of a crowd for an event, which may require the sensing of road traffic, air pollution (PM2.5), 

noise pollution, etc. On the other hand, as the selection criteria are also based on various parameters, 

the extra incentives paid elsewhere in the literature can be saved, especially for the random selection-

based mechanisms.  

5.3. Individual Rationality 

Payment to an MW is at least as great as her bid for successful completion of the task, and it 

must be made based on the true cost or on the type of MW. The agreed value must be paid by the 

platform after evaluation of the reported task in light of the feedback from the requester, individually 

or collectively. Payment is made based on contributions like the number of units performed, cost per 

unit, and quality. MW’s reward at the least should not be less than the rough estimate of his true cost. 

The MW’s utility can be calculated as  𝑊𝑢 = ∑ 𝑝𝑖 − ∑ 𝑐𝑖
𝑛
𝑖=1

𝑛
𝑖=0 ≥ 𝑀𝑊𝑡𝑐. If this condition is satisfied, then 

it means that the utility of the MW greater than or equal to her total true cost 𝑀𝑊𝑡𝑐. Then, we can say 

that the DM is individually rational, as at least the true cost will be paid. Furthermore, when an MW 

is selected based on bid and the required quality of task completion, he will be paid by some ratio of 
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the bid, even if the sensing report is rejected. In this special case, individual rationality will be 

redefined such that the incentive will not be paid as the full bid. A decrease in reputation will also be 

made as a penalty, which will boost the dedication to quality sensing for the next task. 

5.4. Time Computation 

Even after including the traverse of reputations from history at the platform, the DM is 

computationally feasible, as indicated by the results in Figure 4. Algorithm 1 is devoted to the 

selection of suitable mobile workers, and Algorithm 2 is responsible for the credibility inspection and 

reputation updation. In Algorithm 1, step 3–12 perform MW selection, which is dependent on the 

number of users, and compares their 𝑛 bids. Thus, time complexity is O(𝑛2). Step 13 is the sorting 

process, and so has the time complexity O(n * (log n)). Steps 14–17 have the time complexity n. Thus, 

the overall time complexity of Algorithm 1 is O(𝑛2). In Algorithm 2, the first step is the evaluation of 

submitted sensing reports, which has constant time complexity as per the number of reports. Step 2–13, 

step 14 and step 22 assign updated reputation values and so have constant time. The overall time 

complexity of Algorithm 2 is constant (C) according to the submitted reports to inspect the credibility. 

Figure 4 shows that the running time was almost similar to contemporary approaches. 

 

Figure 4. Comparison of running time with some of the approaches from the literature. IMC-G: 

incentive mechanisms for crowdsensing systems under general case; IMC-Z: incentive mechanisms 

for crowdsensing systems under zero case. 

6. Results and Analysis 

In this section, we present the results to evaluate the performance of our proposed RQRP in 

comparison with the based schemes. We set up a testbed by implementing WCF services using C# 

and ASP.net to deploy on the Windows Azure cloud. We adopted responsive design to enforce the 

provision for visibility of our application on mobiles, tablets, and laptops regarding screen scaling. 

We maintained records in the SQL Server database for evaluating the recruitment and credibility of 

reporters by calling ADO.net APIs along with Language Integrated Queries (LINQs) using Lambda 

expressions. Moreover, we evaluated the Gawalla and T-drive data sets, which contain check-ins 

performed by users in different locations in California, USA and taxi GPS traces in Beijing, China, 

respectively. In California state, every check-in user willingly declared his location information 

including latitude and longitude, resulting in better tracking and analysis. Additionally, we also 

simulated the proposed RQRP using NS 2.35 to perform the data collection mechanism from sensors 

on smart devices in the IoT scenario. We have developed separate C files to differentiate the sent, 
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received functionalities of low power sensing devices and high power data collectors Sink nodes. 

Next, we extracted the data from the sink and incorporated it in a separate table of a SQL Server 

database to evaluate it in conjunction with MWs’ reporting data to identify false reporting scenarios. 

Whenever a task is announced and winners are selected through Algorithm 1 to perform the sensing 

task, the selection procedure exploits the R_Score, skill level, bid, expected quality, and utility of the 

platform. The platform’s utility and sensing task quality are the two most important concerns of  

our work. 

Evaluation parameters are provided in Table 2, along with the range of values utilized in the 

results and analysis. Initially, the R_Score of a participant was 0.5. The minimum expected R_Score 

was based on the task quality factor 𝛼 as 0.3, 0.4, 0.5 for the selection of MWs. Later, based on the 

contribution of MWs, the reputation score varied (increases or decreases), representing the 

contributed quality. An increase in R_Score value is a kind of guarantee of quality sensing. The values 

of 𝛼 can be viewed as the required submission quality for a task that must be fulfilled by the bidding 

MW to be selected for task accomplishment and to get incentives. Expected reward and availability 

of competent crowd contributors are inversely proportional, and vice versa. We consider the user’s 

check-in as the completion of the sensing task. We dealt with a more realistic scenario by considering 

the probability of successful task completion after getting bids and making the selection of suitable 

MWs. Commitment level of task completion can also be computed for a selected MW who was 

recruited in the past. Its value can indicate current task completion probability. This can lead to well-

guided selection, especially when MW availability is not an issue. 𝐶𝑏 = (𝑇𝑁𝑤 − 𝑇𝑡𝑎𝑠𝑘)/𝑇𝑁𝑤 can be 

used to calculate the intactness (commitment) of an MW to task completion. 𝑇𝑁𝑤  is the number of 

selected winners, which can be considered up to a specific time from history. 𝑇𝑡𝑎𝑠𝑘 stands for total 

task announced, and it can be calculated for MWs individually. Results proved that our proposed 

reputation-based approach outperformed its counterparts. Results on running time, platform utility, 

truthfulness, impact of reputation, and quality of reporting are presented next. 

The considered datasets include details of MWs and tasks in a large area of 1000 m × 1000 m. To 

present the running time, we changed the number of users from 100 to 500 and the number of tasks 

from 100 to 300, where the mobility of each user is taken as 30 m, which means MWs are only 

considered as CCs when they are in a 30 m radius of the generated sensing task. The task completion 

capacity of each user is taken as 1, 5, and 10. To show the effect of ageing factor on the storage 

capacity, we changed the ageing factor from 0.3 to 0.5. 

Table 2. Parameters for the evaluation criteria of RQRP and its counterparts. 

Parameter Value 

Target area 1000 m × 1000 m 

Number of MWs 100–500 

Tasks announced 100, 200, 300 

𝑁𝑡𝑡𝑐 1, 5, 10 

Least task quality factor (α) 0.3 

Effective mobility region 30 m 

Reputation score [0–1] 

Default reputation value 0.5 

Ageing factor 0.3–0.5 

6.1. Running Time 

The running time of the proposed RQRP is presented in comparison with other approaches in 

Figure 4. It showed a linear increase with the increase in the number of MWs. We considered the 

reputation of MWs, which requires time to traverse the record for educated selection. Still, the 

running time of all of the schemes was almost the same. To decrease the traversing time, we have 

exploited the concept of ageing.  

This reduced the size of effective history to achieve low latency. Late history is removed with 

the passage of time, so that newly updated reputation is considered for selection. This also saves 
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storage space at the platform and has potential for application at large scale. Typically, RQRP took 

11 ms for 200 users, which is 8% better than IMC-Z [30] and IMC-G [30] approaches, which took 12 

ms for the same number of users, whereas OMG [28] and OMZ [28] took 10 ms. Thus, even after 

considering the reputation, RQRP was in competition while ensuring quality. 

6.2. Platform Utility 

Approaches are compared with respect to the platform utility in Figure 5. RQRP showed a 

gradual increase as the trust level on the MWs is increased with the passage of time. The reason for 

this continuous change is that reputation is only considered in our approach. When the number of 

MWs is increased, the platform’s utility showed an increasing trend. Consideration of reputation 

created a competitive environment and the platform needed to pay less. If reputation is not 

considered more MWs may need to be recruited, which requires monetary incentives. In contrast, 

RQRP rejected many candidates based on low reputation, which also saved the platform’s resources. 

An MW whose score was less than 0.3 from the maximum value of 1 was rejected as the general 

criteria. The change (increase/decrease) in the score value is dependent on the contribution made. 

Platform utility increases directly with the rate of available users, as more options are available. For 

example, on the arrival rate of 0.6 users, the platform utility for RQRP was 2900, whereas 700, 1200, 1700, 

2000, 2500, 3100, and 3800 were the utility values for random, OMG [28], OMZ [28], OMG (online) [30], 

OMZ (online) [30], proportional share, and approximate optimal approaches, respectively. We present 

the results in large integral values in order to the meet with the scale in the approaches compared. 

We selected the IMC, OMG, and OMZ approaches for the comparison because: (i) these are some 

of the well-known state-of-the-art approaches in the MCS paradigm; (ii) these approaches have 

similar input/output constraints to ours; (iii) in contrast, these approaches lack the use of a reputation-

based mechanism, which could have played a promising role in increasing the quality of sensing in 

MCS. These schemes are based on the idea of taking samples first then making acceptance, which is 

somewhat similar to our proposed work. The very basic difference is that we considered reputation 

when making a selection decision at first stage, and a lower bid was not the only selection criterion. 

 

Figure 5. Effect of change in the number of MWs on the platform utility. 

6.3. Truthfulness 

Figure 6a,b represent the truthfulness on the T-drive and Gowalla datasets, respectively. The 

figures illustrate the impact of truthful announcement of cost on the utility of MWs. If MWs report 
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cost untruthfully, they may not get any reward, making it beneficial for crowd contributors to bid on 

true cost. The platform will not pay any combination of costs greater than the budget, so truthfulness 

can be achieved in RQRP. 

  
(a) (b) 

Figure 6. Cost truthfulness for (a) T-drive dataset and (b) Gowalla dataset. 

6.4. Platform vs. Mobile Worker Utility 

The impact on the utility of the platform and the MW with respect to the online available MWs 

was also analyzed. Figure 7a shows that utility of the platform increased with increasing number of 

online MWs. This increase was due to the large sample size of mobile participants and the 

competition among them. Due to this competitive environment, the platform needed to pay less and 

its marginal utility was increased. On the other hand, the utility of the MWs showed a decreasing 

trend with the increase in number of participants in Figure 7b. This is because of the declared fixed 

budget to be distributed among MWs. Our DM is individually rational (IR), as MWs are paid their 

costs. Thus, in the end, the MWs will not regret contributing. An increase in the available online 

participants had a gradually increasing impact as far as the utility of the platform was concerned. 

  
(a) (b) 

Figure 7. Users arrival rate compared with utility for (a) Platform and (b) MWs. 

This effect had an inverse impact on the MWs’ utility. The increasing trend is due to the richness 

of participants with on-board sensors within mobile gadgets. As the number of MWs increases, their 

utility is expected to be decrease, so the ratio is inversely proportional. This effect is the same as in [27]. In 

Figure 7b for the simulation, we took the average of 100 values. The reason for having similar values 
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for both cases could be that users were selected at similar bid values and sometimes may be at higher 

or lower values. However, the similarity of values could be attributable to the fact that we took the 

average of 100 values. 

6.5. Required Quality vs. Quality Delivered 

Figure 8a presents the needed quality in comparison with delivered quality on task completion 

by the proposed RQRP. The figure shows that there was slow but gradual increase until the 

maximum quality (one) was required. Users were not selected until the reputation constraints were 

met. If a user is selected, he most probably contributes the sensing task with similar or higher quality 

to his previously contributed quality. Thus, on average, delivered quality always is greater than 

required quality. Tasks are not accepted until the constraints are fulfilled, so incentives are not paid. 

For example, in Figure 8a for the quality constraint of 0.6, the delivered quality was 0.65, which is 

higher than the required quality. In MCS, it is very difficult to achieve doubtless quality due to the 

presence of various participating factors (e.g., hardware installed, experience of MW, intention of the 

MW to participate in sensing task). 

6.6. Required Quality vs. Selected MW 

Figure 8b shows the number of selected users in comparison with the required quality. 

Acquiring 100% quality in the MCS domain is challenging, as the mobile devices are owned by 

common people who can be vulnerable, malicious, and may lack in experience. As our DM’s basic 

objective is to achieve quality, Figure 8b represents the needed quality of the tasks on the x-axis and 

the number of selected users to obtain the desired quality on y-axis. We noticed that with the increase 

in the required quality, fewer MWs were selected. For the case when average quality 0.5 from the 

maximum possible contribution of 1 was considered, more users could contribute to the sensing 

task/tasks. A quality of 1 is almost impossible to achieve because this means that there should not be 

any difference between ground truth and the sensing report submitted by the MW. With the increase 

in required quality to the maximum possible, the figure showed that it was possible for there to be 

no user able to make any contribution. For example, for the required quality of 0.7, the number of 

selected users was 8, whereas for the quality of 0.8, the number of selected users decreased to 4. This 

is due to the increase in quality constraint leading to fewer users qualified the task completion criteria. 

  
(a) (b) 

Figure 8. Quality needed is presented for (a) delivered quality and (b) number of selected users. 

6.7. Impact of Quality on Reputation 

Quality of the sensing reports is ensured based on the various measures. At first, we considered 

reputation as a prior measure and then inspection of credibility as a second step. Figure 9 shows the 

change due to honest and dishonest MWs. For the honest MWs, there was increase in the reputation, 
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which ultimately recommends them for future selection. Well-reputed MWs can be a symbol of 

surety for the better expected quality of tasks. Whereas, reputation decreased for the dishonest MWs, 

as shown. If a MW continuously reports low-quality sensing, he will eventually be deregistered, and 

can also be added to the blacklist. Decrease in reputation is a kind of punishment. By penalizing the 

MWs for their bad contribution, we also tackled the criticism of reputation-based systems in MCS. 

 

Figure 9. Reputation of honest vs dishonest MWs. 

6.8. User Reputation  

For simulation purposes, we used values in percentage for number of attributes and for 

reputation [0–100] as presented in Figure 9, which actually may range from [0–1]. This is the analysis 

of our proposed approach only. Whereas, when comparison with SACRM was required, we 

compared it by using integer values as shown in Figure 10. This represents the effect of reputation 

with the change in quality reported by the MWs. The similarity between SACRM [55] and RQRP is 

that both approaches consider reputation. An exemplary application scenario may be that when a 

few MWs are required to perform a task that is requested by multiple requesters, the platform can 

deal with this situation on a whole bundle basis, which can increase the profit of the platform. A 

limitation of this work is that although the DM makes expectations of quality based on reputation for 

task completion, sometimes expectation can go wrong as the MW’s task completion capabilities may 

vary from time to time. This is one of the uncertain situations that can arise even after the careful 

selection of MWs, and even after the exploitation of an efficient reputation updating mechanism. 

6.9. Error Bars 

Error bars are presented below in Figure 11a,b to show the deviation from mean values as the 

experimental results may not always be precise. The confidence levels of the simulation are presented 

by sampling errors in Figure 11. Estimation of platform utility with their deviation from the mean is 

presented in Figure 11a, whereas Figure 11b presents the estimation of mobile workers’ utility with 

their deviation from the average value. Average estimated value of utility was considered, and 

deviation from the average value over the iterations are presented with error bars. Larger sample 

sizes may have small differences, whereas small samples may vary largely. 
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Figure 10. Delivered quality vs. reputation score. SACRM: social aware crowdsourcing with 

reputation management. 

  
(a) (b) 

Figure 11. Users arrival rate for (a) platform utility and (b) worker’s utility. 

7. Conclusions 

The IoT brings opportunities and challenges at the same time. Most approaches in the literature 

for MCS are lacking as they do not include reputation in their consideration, which can be one of the 

reasons for low-quality sensing. This can be a cause of untrusted MW selection without any specific 

criterion, and ultimately extra monetary incentives are wasted to increase the approximate quality of 

reporting and the utility of the platform is ignored. We proposed the RQRP mechanism for MCS, 

which considers reputation as an important aspect in the selection of MWs to ensure the quality of 

reports and platform utility in the presence of malicious and selfish MWs. The proposed approach is 

broadly divided into two phases: (i) selection (ii) validation and reputation updation. Selection is 

made carefully, as we assumed that in most cases ground truth is not available to compare the quality 

of reports, which is a more crucial and realistic scenario for task accomplishment. The validation and 

reputation updation phase helps to verify the reports and to maintain the reputation of MWs for 

future hiring. An ageing factor is used to reduce the impact of past reputation score. RQRP is suitable 

for offline and online MCS environments. Simulation results proved the superiority of the proposed 

approach. The DM ensured truthfulness, computational efficiency, individual rationality, and most 

importantly the profitability of the platform with the required quality constraints. For user arrival 

rate of 0.6, our technique provided 30%, 40%, 50%, and 70% more platform utility than OMG (online), 

OMZ, OMG, and random techniques, respectively. For future research direction, a privacy 
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preservation-based approach shall be proposed to deal with MWs’ security. Moreover, the MCS 

framework can be proposed for vehicular networks with a variety of sensors that increase coverage, 

which was limited in the case of mobile phone users. 
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