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Abstract: Vehicle to everything (V2X) has been deemed a promising technology due to its potential to
achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous
wireless information and power transfer (SWIPT) system where the base station not only conveys
data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting
vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being
intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station
and the energy vehicular receivers are equipped with multiple antennas, whereas the information
vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state
information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account.
The non-convex optimization problem is formulated to maximize the minimum harvested energy
power among the energy vehicular receivers satisfying the lowest harvested energy power threshold
at the information vehicular receiver and secure vehicular communication requirements. In light
of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and
variable substitutions are applied, and the optimal solution is proven to be tight. A number of results
demonstrate that the proposed robust secure beamforming scheme has better performance than
other schemes.

Keywords: SWIPT; nonlinear energy harvesting model; secure vehicular communication; semidefinite relaxation

1. Introduction

In recent years, vehicular communication has become a very important subject of study among
researchers, due to its potential to increase road-safety and reduce traffic congestion [1–6]. There has
been a tremendous amount of effort and investment from the government and private organizations
to develop a means for highly efficient communication. To support various emerging applications,
“cellular-connected vehicles” have been recognized as promising new solutions, by integrating vehicles
into the cellular network as the new ground user equipment served by the base stations [7–9]. Thanks to
the superior performance of the Long Term Evolution and the fifth-generation cellular networks,
cellular-connected vehicles are expected to obtain significant performance enhancement in terms of
all of throughput, coverage and reliability. In fact, the 3rd Generation Partnership Project (3GPP)
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standardization body released a dedicated set of criteria for providing V2X applications in future
cellular networks in 2016 [10–12]. Preliminary field trials have also demonstrated that it is feasible to
support the basic communication requirements for V2X with LTE networks [13–17].

The key issue with cellular-connected vehicle networks is how to prolong their lifetime. As we
all know, the majority of vehicles in V2X networks are sensors that are typically powered by
batteries with limited energy, resulting in a constrained network life time [18–21]. Meanwhile,
the development of battery energy storage technology is unable to keep pace with the significant
growth of energy requirements. Though replacement of batteries can extend their lifetime effectively,
it will bring higher costs and is sometimes impossible. Traditionally, the energy collecting unit
could harvest plentiful renewable energy from natural resources such as the hydro energy, tide and
wind, etc. [22,23]. However, renewable sources are liable for the limitation caused by an unpredictable
climate and change of position. Moreover, it may not be applicable for some application scenarios
while harvesting energy from the ambient radio frequency (RF) signals can be controllable. The SWIPT
technique exploits different aspects of RF signals, which are signal transmission and power transfer.
Therefore, SWIPT technology has attracted great interest from investigators in recent years [24–28].
Utilizing this technology, the battery-powered vehicular communication devices can collect energy
from the RF radios to prolong their network lifetime. For future vehicles with a mass of on-board
sensors, the SWIPT technique is more meaningful for continuable communications of these on-board
sensors, whose power can be provided from base stations or other vehicles with excess power
or grid-connected roadside electrical units. Particularly, the authors in [27] designed the optimal
beamforming to balance the information and energy transmission. In [28], the harvested energy and
the secrecy channel capacity trade-off problem between the information receiver and energy receivers
are considered.

However, all of the above works assume that the perfect knowledge of the receivers’ CSI is
available at the base station. In practice, the CSI obtained by the base station may be imperfect.
There are many factors resulting in imperfect CSI, such as the quantization error, the delay error
and the limited capacity of feedback channel. Moreover, as is known to all, the performance of the
approaches with perfect CSI may become poor due to the fact that these methods may be quite sensitive
to channel uncertainties. Supposing imperfect CSI at the base station, there are several valuable works
on robust beamforming design for multiuser SWIPT systems [29–33]. In [29,30], the authors proposed
a secure beamforming optimization algorithm for SWIPT systems, where cooperation jamming and
the external helper is considered. Khandaker et al. in [31] investigated the chanced constrained
beamformer design for a more general SWIPT system in the presence of multiple Eves equipped with
multiple antennas. The authors in [32] considered the resource allocation problem for the secure SWIPT
multicasting scenario with channel uncertainties, where a low complexity optimization algorithm was
proposed. Moreover, the authors of [33] also consider the SWIPT multicasting scenario and address
the secure beamforming design problem.

From the above discussion, it is worth noting that most of the existing works focused on the
beamforming design supporting SWIPT under the linear EH model, where it is assumed that the
collected energy power could be linearly increased by growing the input power of the received RF
signals. However, the practical power conversion circuits usually perform a nonlinear feature rather
than the linear one due to their nonlinear elements such as two-electrode valves or two-electrode
valves connected to the transistor. Therefore, the authors of [34] proposed a nonlinear EH model by
fitting over real sampled data based on a logistic function. Then, the resource allocation optimization
algorithms for SWIPT and wireless powered communication networks have been attracting increasing
interest (see [35–41]). In [35], authors addressed the max-min signal-interference-noise-ratio (SINR)
beamforming design optimization problem in a V2X-SWIPT environment with imperfectly estimated
channels at the base station, where a practical nonlinear EH model is considered. In [36,37], the authors
discuss the robust transmit beamformer design, joint user scheduling and power allocation for multiple
user SWIPT scenario under nonlinear EH model. In [38], the authors designed the beamformer for
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energy efficiency maximization in a secure SWIPT system taking into account the influence of the
nonlinear EH circuits. Then, the authors in [39] investigate the joint optimization of transmit precoding
and power splitting ratios in MISO SWIPT multicasting networks with the objective of maximizing
the minimum collected energy among all receivers under a generic (including nonlinear) EH model.
The multiuser MIMO SWIPT system is also considered in [40,41], where the authors study the transmit
beamforming design to maximize the harvested power based on perfect CSI under a generic EH model.
The results obtained in [35–41] demonstrated that a favorable performance gain could be achieved if
the beamforming design takes into account the effect of the nonlinear EH circuit instead of a linear
EH circuit owing to the mismatch between the linear EH model and the nonlinear EH model. To the
best of our knowledge, most of the above works on SWIPT either focus on the optimization of secrecy
capacity of information receiver or the transmit power of the base station. It is usually assumed that
the CSIs are perfectly available at the base station or the receivers are equipped with one antenna.
These motivate us to research uncommonly considered optimization problem of fair power harvesting
among all energy vehicular receivers that are equipped with multiple antennas. In addition, the CSIs
of base stations to energy vehicular receivers are imperfect.

In this paper, we focus on the optimal secure beamformer design for V2X-SWIPT in a multiple
vehicles MISO communication network with multiple multi-antenna energy vehicular receivers,
where the nonlinear EH model proposed in [35] is utilized. The CSIs between the base station and
the energy vehicular receivers are supposed to be imperfect. Moreover, the artificial noise-aided
signal strategy and the power splitting receivers are taken into account. We aim for the design
of a beamforming design algorithm maximizing the minimum harvested energy among multiple
multi-antenna energy vehicular receivers for the case when the information vehicular receiver is able to
collect energy from radio frequency signals. Our design advocates for the dual use of both energy signal
and artificial noise in facilitating efficient wireless energy harvest and providing secure communication.
The beamforming design is formulated as a non-convex optimization problem. For obtaining a tractable
solution, we reformulated the considered optimization problem by applying a S-procedure and variable
substitutions with a tractable solution. The resulting reexpressed non-convex optimization problem
can be solved via a semi-definite programming based beamformer design algorithm. Furthermore, the
obtained solution is proved to be the optimal solution.

The main contributions of this work are summarized as follows:
Firstly, to explore the network performance, an optimization problem is formulated to maximize

the minimum harvested energy power among all the energy vehicular receivers, which is subjected
to the required SINR constraints at an information vehicular receiver and energy vehicular receivers,
the collected energy power constraints at the information vehicular receiver, and the transmit power
constraint at the base station.

Secondly, since the considered problem is non-convex and challenging because there are infinite
inequality constraints taking into account the nonlinear EH model and coupling among optimized
variables. In order to solve the problem, a beamforming design algorithm is proposed based on the
S-procedure and semidefinite relaxation (SDR). Moreover, It is proved that the optimal solution can be
guaranteed by applying our approach.

Thirdly, our simulation results demonstrate that the proposed secure beamforming design scheme
under the nonlinear EH model with channel uncertainties can provide performance gains compared
with that under the linear EH model with channel uncertainties. Moveover, it is shown that a trade-off
is found between the SINR of the information vehicular receiver and the energy harvested by energy
vehicular receivers.

This rest of this paper is organized as follows. The system model and problem formulation
is described in Section 2. Section 3 presents a solution for modelling max-min harvested energy
power among all the energy vehicular receivers with imperfect CSI and a nonlinear EH model.
Simulation results are provided in Section 4 to verify the effectiveness of the proposed robust secure
beamforming design algorithm. Finally, we conclude the paper in Section 5.
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2. System Model and Problem Formulation

We consider the downlink of a V2X-SWIPT communication system that consists of a base station
and two kinds of legitimate vehicular receivers, namely one information vehicular receiver and KE
idle energy vehicular receivers. The base station is equipped with a NT transmit antenna while
the information vehicular receiver is a single antenna device and is able to decode information and
collect energy from radio signals, cf. Figure 1. In addition, the KE idle energy vehicular receivers
equipped with NR antennae are supposed to collect energy from the radio frequency as they are
inactive. The energy vehicular receivers can work in double functions of EH and information decoding.
In this scenario, the idle energy vehicular receivers, which cause no interference to the communication
channel, can potentially eavesdrop on the confidential information of the information vehicular
receiver by switching its working pattern to information decoding since all the legitimate vehicular
receivers are within service coverage. Therefore, the idle energy vehicular receivers are potential
eavesdroppers that can take care of supplying physical layer security. The channel vector between
the base station and the information vehicular receiver is denoted as h ∈ CNT×1 and the channel
matrix between the base station and the k-th energy vehicular receiver is denoted as Gk ∈ CNT×NR ,
∀k ∈ {1, 2, · · · , KE}. In our considered system model, we suppose that the vehicle speed is low. Several
simulation and theoretical investigations have shown that V2X communication channels such as
h and Gk can be modelled as Rayleigh channel fading [42–45]. It is assumed that our considered system
works in a Time Division Duplex (TDD) mode with slowly time-varying communication channels.
Hence, the base-station-to-legitimate-vehicular-receiver fading gains, h and Gk, could be reliably
estimated at the base station at the start of each scheduling slot with negligible channel estimation
errors. During the data transmission, the information vehicular receiver sends acknowledgement
packets to tell the base station of successful reception of data packets. Hence, in this paper, the channel
uncertainties for the base-station-to-energy-vehicular-receiver are considered while the CSI of the
base-station-to-information-vehicular-receiver is perfectly known at the base station. We model the
CSI of the link between the base station and the k-th energy vehicular receiver as:

Gk = Ḡk + ∆Gk, ∀k ∈ {1, 2, · · · , KE} , (1)

Ξk ,
{

∆Gk ∈ CNT×NR : ‖∆Gk‖2 ≤ υ2
k

}
, ∀k, (2)

where Ḡk is the channel estimate of the k-th energy vehicular receiver available at the base station
while ∆Gk denotes the unknown channel uncertainty of the energy vehicular receiver k. For notational
simplicity, a set Ξk in Label (2), which includes all possible CSI uncertainties of energy vehicular
receiver k. Moreover, the radius υk ≥ 0 denotes the size of the uncertainty region of the estimated CSI
of the energy vehicular receiver k.

To provide vehicular secure communication and to facilitate EH at the desired information
vehicular receiver, artificial noise signals and energy signals are generated at the base station.
In particular, both signals could degrade the channels between the base station and the energy
vehicular receivers and perform as an energy source for EH. As a result, we express the transmit signal
vector x as

x = wsI +
KE

∑
k=1

vksE,k + v0, (3)

where sI ∈ C and w ∈ CNT×1 are the information-bearing signal and the corresponding beamforming
vector for the information vehicular receiver, respectively. Without loss of generality, we suppose that
E
{
|sI |2

}
= 1. vk ∈ CNT×1 and sE are the energy beamforming vector and the energy-bearing signal

with E
{
|sE|2

}
= 1, respectively. v0 ∈ CNT×1 represents the artificial noise vector generated by the

base station to combat both passive and potential eavesdroppers, and we model it as v0 ∼ CN (0, V0).
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With the transmit signal x, the received signal at information vehicular receiver and k-th energy
vehicular receiver can be expressed as

yI = hHx + nI and

yE,k = GH
k x + nE,k, ∀k ∈ {1, · · · , KE} ,

(4)

respectively, where nI ∼ CN (0, σ2
I ) and σE,k ∼ CN (0, n2

E,k INR) represent the complex Gaussian noise
at the information vehicular receiver and the k-th passive eavesdropper, respectively. σ2

I and σ2
E,k is the

noise power of each other. In the considered networks, we exploit the energy and artificial noise signals
transmitted by the base station to facilitate secure information transfer and charge both information
vehicular receiver and energy vehicular receivers, respectively. In this paper, we adopt a practical
nonlinear model. According to [35,36], the harvested energy at the k-th energy vehicular receiver can
be modeled as:

ENonlinear
E,k =

ΨE,k

XE,k
−YE,k, (5)

with
ΨE,k =

ME,k

1 + exp
(
− aE,k

(
PE,k

(
W , V , V0

)
− bE,k

)) , (6)

PE,k
(
W , V , V0

)
= ‖GH

k w‖2 +
KE

∑
k=1
‖GH

k vk‖2 + ‖GH
k v0‖2

= Tr
[
GH

k
(
W + V + V0

)
Gk
]
, ∀k,

(7)

where XE,k =
exp
(

aE,kbE,k

)
1 + exp

(
aE,kbE,k

) , YE,k =
ME,k

exp
(

aE,kbE,k

) , W = wwH and V = ∑KE
j=1 vjvH

j . PE,k
(
W , V , V0

)
denote the received RF power at the k-th energy vehicular receiver. Three parameters, namely, ME,k,
aE,k and bE,k in (6) are introduced to capture the joint effects of various nonlinear phenomena caused
by hardware limitations in practical EH circuits. Furthermore, ME,k denotes the maximum power that
can be collected by the EH circuit while aE,k and bE,k rely on serval hardware phenomena, such as the
capacitance and diode turn-on voltage and the resistance.

As depicted in Figure 1, we adopt the power splitting architecture at the information vehicular
receiver, the RF signals are divided into two streams by a power splitter in ρ, i.e., the 1− ρ part of
the received signals is input into the EH receiver and the remaining ρ part is sent to the information
receiver. Therefore, the received SINR can be expressed as

ΓI =
ρ|hHw|2

ρ|hHv0|2 + ρ ∑KE
i=1 |hHvi|2 + σ2

I

=
ρTr(HW)

ρTr(HV0) + ρTr(HV) + σ2
I

.

(8)

The input power at the information vehicular receiver can be written as

PI
(
W , V , V0, ρ

)
= (1− ρ)|hHw|2 + (1− ρ)

(
|hHv0|2 +

KE

∑
i=1
|hHvi|2

)
= (1− ρ)Tr(HW) + (1− ρ)

[
Tr(HV0) + Tr(HV)

]
.

(9)
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Here, we also adopt the nonlinear EH model, and then the harvested energy at the information
vehicular receiver is given by

ΦI
(
W , V , V0, ρ

)
=

ΨI
XI
−YI , (10)

with
ΨI =

MI

1 + exp
(
− aI

(
PI
(
W , V , V0, ρ

)
− bI

)) , (11)

where XI =
exp
(

aI bI

)
1 + exp

(
aI bI

) and YI =
MI

exp
(

aI bI

) . MI is a constant representing the maximum harvested

power at the information vehicular receiver when the EH circuit is saturated. aI and bI are also
constants associated with the detailed circuit specifications.

Figure 1. (a) V2X-SWIPT system model for two energy vehicular receivers and one information
vehicular receiver; (b) the block diagram of the information vehicular receiver model for wireless
information and power transfer.

Without loss of generality, the energy vehicular receivers can also perform as eavesdroppers to
decode the confidential information for the information vehicular receiver. Due to the fact that the
energy signal ∑KE

k=1 vksE,k is the only Gaussian pseudo-random sequence that is known at legitimate
receivers (including both information vehicular receiver and energy vehicular receivers), we can thus
perform interference cancellation at each energy vehicular receiver. As a result, the SINR of the k-th
energy vehicular receiver is given by

ΓE,k =
‖GH

k w‖2

‖G2
k v0‖2 + σ2

E,k
. (12)



Sensors 2018, 18, 3294 7 of 20

The optimal beamforming design policy,
{

W∗, V∗, V∗0 , ρ∗
}

, for maximizing the minimum harvest
energy among all the KE energy vehicular receivers, can be obtained by solving

max
W ,V ,V0,ρ

min
∆Gk∈Ξk

ME,k

XE,k

[
1 + exp

[
− aE,k

(
Tr
(
(Ḡk + ∆Gk)H(W + V + V0)(Ḡk + ∆Gk)

)
− bE,k

)]] −YE,k

s.t. C1 : ΓI ≥ r,

C2 : max
∆Gk∈Ξk

Tr

((
Ḡk + ∆Gk

)H

W
(

Ḡk + ∆Gk

))
((

Ḡk + ∆Gk

)H

V0

(
Ḡk + ∆Gk

)) ≤ rk, ∀k,

C3 : ΦI
(
W , V , V0, ρ

)
≥ Emin,

C4 : Tr
(
W + V + V0

)
≤ P.

(13)

The cost function in (13) takes into account the CSI uncertainty set Ξk to provide robustness
against CSI imperfection. In C1: r represents the minimum SINR of the information vehicular
receiver for information decoding. Constraint C2 is imposed such that for a given CSI uncertainty
set Ξk, the maximum received SINR at the passive eavesdropper k is not larger than the maximum
tolerable received SINR rk. In practice, r � rk > 0, ∀k ∈ {1, 2, · · · , KE}, to guarantee vehicular
secure communication. Constraint C4 set the minimum required power transfer for the information
vehicular receiver. Constraint C4 restricts the transmit power at the base station to account for the
maximum power.

Remark 1. In our considered V2X-SWIPT network, the information vehicular receiver is assumed to have
limited signal decoding capability and hardware complexity compared to the energy vehicular receivers. In order
to ensure communication security, we adopt the worse-case assumption that the information vehicular receiver is
equipped with a single antenna while all energy vehicular receivers is equipped with multiple antennas.

3. Solution of the Optimization Problem

It can be observed that the optimization problem (13) is a non-convex quadratically constrained
programming that involves semi-infinite programming. Particularly, the non-convexity with respect
to the information beamforming matrix W and the power splitting ratio ρ is owing to constraints
(C1) and (C3). In addition, both the objective function in (13) and constraint (C2) involve infinitely
many possibilities due to the CSI uncertainties. In general, there are no standard methods for solving
the non-convex optimization problem. In extreme cases, we require an exhaustive search method
to get the optimal solution that is computationally intractable even for a moderate network size.
To deduce an efficient beamforming design algorithm for the considered optimization problem,
we first recast the optimization problem (13) as a semi-definite programming (SDP) problem to
avoid the non-convexity associated with the objective function, and constraints (C1) and (C3).
Next, the infinite number of constraints is converted into an equivalent finite number of constraints.
The performance of the reformulated optimization problem is the lower bound for the original
optimization problem. Finally, we apply semi-definite programming relaxation (SDR) to obtain
the globally optimal beamforming for the reformulated optimization problem. In practice, the
considered optimization problem may be infeasible when the channels are in unfavourable conditions.
However, in the following, we suppose that the problem is always feasible for investigating the design
of different beamforming schemes.
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3.1. Semi-Definite Programming Relaxation

In order to solve the optimization problem (13), we introduce a slack variable t ≥ 0. With the slack
variable t, the problem (13) can be equivalently formulated as the following optimization problem:

max
W ,V ,V0,ρ,t

t

s.t. C1 : Tr
[(

W − rV0 − rV
)

H
]
≥

σ2
I r
ρ

,

C2 : max
∆Gk∈Ξk

Tr
[
GH

k
(
W − rkV0

)
Gk
]
≤ rkσ2

E,k, ∀k,

C3 : ΦI
(
W , V , V0, ρ

)
≥ Emin,

C4 : Tr
(
W + V + V0

)
≤ P,

C5 : min
∆Gk∈Ξk

ENonlinear
E,k ≥ t, ∀k,

C6 : 0 ≤ ρ ≤ 1, C7 : W , V , V0 � 0,

C8 : Rank
(
W
)
= 1.

(14)

To facilitate the optimization problem (14), another slack variable τk, ∀k ∈ {1, · · · , KE} is also
introduced, we can rewrite the problem (14) as

max
W ,V ,V0,ρ,t,τ

t

s.t. C1 : Tr
[(

W − rV0 − rV
)

H
]
≥

σ2
I r
ρ

,

C2 : max
∆Gk∈Ξk

Tr
[
GH

k
(
W − rkV0

)
Gk
]
≤ rkσ2

E,k, ∀k,

C3 : Tr
[(

W + V + V0
)

H
]
≥ ωI

1− ρ
,

C4 : Tr
(
W + V + V0

)
≤ P,

C5 :
ME,k

1 + exp
(
− aE,k

(
τE,k − bE,k

)) ≥ XE,k
(
YE,k + t

)
, ∀k,

C6 : 0 ≤ ρ ≤ 1, C7 : W , V , V0 � 0,

C8 : Rank
(
W
)
= 1,

C9 : min
∆Gk∈Ξk

Tr
(
GH

k
(
W + V + V0

)
Gk
)
≥ τE,k,

(15)

where ωI = bI −
ln

 MI(
Emin + YI

)
XI

−1


aI

; W � 0, W ∈ HNT
+ and rank(W) = 1 are imposed to guarantee

that W = wwH holds after optimizing W . After some manipulations, it can be easily known
that constraints (C1) and (C3) are jointly convex with regard to {W , V , V0, ρ}. Then, we deal with
constraints (C2), (C5) and (C9). Although constraints (C1) and (C3) are jointly convex with regard to the
optimization variables, they are semi-infinite constraints that are generally intractable for beamforming
scheme design. To facilitate this, we can transform them into linear matrix inequalities using the
following lemma.

Lemma 1. (S − Procedure) Let fm(x) = xH Amx + 2Re
{

bH
m x
}
+ cm, m ∈ {1, 2}, where x ∈ CN×1,

Am ∈ HN×N , bm ∈ CN×1 and cm ∈ R. Then, the expression f1(x) ≤ 0 ⇒ f2(x) holds if and only if there
exists a λ ≥ 0 such that we get:
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λ

[
A1 b1

bH
1 c1

]
−
[

A2 b2

bH
2 c2

]
� 0 (16)

provided that there exsists a vector x̂ such that we obtain fi(x̂) < 0.

As a result, we can perform Lemma 1 to constraint (C2). Particularly, we substitute Gk = Ḡk +∆Gk
in constraint C2. Hence, the implication

∆gH
k ∆gk ≤ v2

k ⇒,

∆gH
k ∆2∆gk + 2Re

{
ḡH

k ∆2∆gk

}
+ ḡH

k ∆2 ḡk − rkσ2
E,k ≤ 0

(17)

holds if and only if there exist λ̄k ≥ 0, k ∈ {1, 2, · · · , KE}, such that the following linear matrix
inequalities hold:

C2 :NE,k
(
W , V0, λ̄k

)
=

[
λ̄k INT NR − ∆2 −∆2 ḡk

ḡH
k ∆2 −ḡH

k ∆2 ḡk − v2
k λ̄k + rkσ2

E,k

]
� 0,

(18)

where W̄ = INR ⊗W , V̄0 = INR ⊗ V0, ∆gk = vec(∆Gk), ḡk = vec(Ḡk) and ∆2 = W̄ − rkV̄0.
Similarly, by applying Lemma 1, we can equivalently write the constraint (C9) as

C9 :TE,k
(
W , V0, V , µ̄k, t

)
=

[
µ̄k INT NR + ∆3 ∆3 ḡk

ḡH
k ∆3 ḡH

k ∆3 ḡk − v2
k µ̄k − τE,k

]
� 0

(19)

for µ̄k ≥ 0, k ∈ {1, 2, · · · , KE}, where V̄ = INR ⊗ V and ∆3 = W̄ + V̄ + V̄0. Therefore, substituting (18)
and (19) back into (15)

max
W ,V ,V0,ρ,t,τE,k ,λ̄,µ̄

t

s.t. C1, C3, C4, C5, C6, C7,

C2 : NE,k
(
W , V0, λ̄k

)
� 0, ∀k,

C8 : rank(W) = 1,

C9 : TE,k
(
W , V0, V , µ̄k, t

)
� 0, ∀k,

C10 : λ̄k ≥ 0, µ̄k ≥ 0, ∀k,

(20)

where λ̄ and µ̄ denote auxiliary optimization variable vectors, whose elements λ̄k, k ∈ {1, 2, · · · , KE},
and µ̄k, k ∈ {1, 2, · · · , KE}were introduced in (18) and (19), respectively. Now, (C8): rank(W) = 1 is the
main obstacle in solving the optimization problem (20). By relaxing constraint (C8), i.e., dropping the rank
constraint from the optimization problem (20), we can reexpress the optimization problem (20) as follows:

max
W ,V ,V0,ρ,t,τE,k ,λ̄,µ̄

t

s.t. C1, C2, C3, C4, C5, C6, C7, C9, C10.
(21)
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It is worth noting that the relaxed optimization problem (21) becomes a convex SDP problem that can
be solved efficiently by a numerical solver such as SDPT3 and SeDuMi. Based on the basic principles of
convex optimization theory, if the obtained solution W for optimization problem (21) admits a rank-one
matrix, then W is the optimal solution of the optimization problem (20). Then, we can obtain the optimal
information vector w by performing eigenvalue decomposition on W. However, in some cases, the rank of
the obtained W is higher than one, thus the resulting solution may not the optimal solution for the relaxed
problem. In the following, a theorem that reveals the tightness of the relaxed optimization problem (21)
is first introduced. Then, a method for constructing an optimal solution for the relaxed optimization
problem (21) with rank(W) = 1 is proposed.

3.2. Optimality Conditions for SDP Relaxation

In this subsection, the tightness of the proposed SDP relaxation in (20) is revealed.
Before introducing the theorem, a crucial expression, which is a cornerstone in revealing the tightness
of our proposed SDP relaxation optimization problem, is defined as

T∗ = −α∗ INT +
KE

∑
k=1

NR

∑
n=1

(
J(n,n)(∗)

E,k − K(n,n)(∗)
E,k

)
(22)

and r̃ = rank(T∗), where J(n,n)(∗)
E,k ∈ HNT

+ and K(n,n)(∗)
E,k ∈ HNT

+ denote the n-th entry matrices on

the diagonal of G̃H
k XkG̃k ∈ HNT NR

+ and G̃H
k YkG̃k ∈ HNT NR

+ , respectively; where G̃k =
[
INT NR ḡk

]
,

and Xk and Yk represent the Lagrange dual variables corresponding to NE,k
(
W , V0, λ̄k

)
and

TE,k
(
W , V0, V , µ̄k, t

)
, respectively. Moreover, N1 ∈ CNT×(NT−r̃) is modeled as the orthogonal basis of

the null space of T∗ and π1,n ∈ nt×1, 1 ≤ n ≤ NT − r̃ is the n-th column of the matrix N1. Based on
this, we give the following theorem.

Theorem 1. The optimal solution
{

W∗, V∗, V∗0 , ρ∗, t∗
}

of the optimization problem (20) is characterized as
the following conditions:

1. The optimal solution W∗ can be formulated as

W∗ =
NT−r̃

∑
n=1

bnπ1,nπH
1,n + aιιH , (23)

where bn ≥ 0, ∀n and ι ∈ CNT×1, ‖ι‖2 = 1 satisfies ιH N1 = 0.
2. If the solution W∗ given in (23) has rank(W∗) > 1, i.e., there is at least an n such that bn > 0, then we

have the following alternative solution

W̃∗ = W∗ −
NT−r̃

∑
n=1

bnπ1,nπH
1,n = aιιH , (24)

Ṽ∗ = V∗ +
NT−r̃

∑
n=1

bnπ1,nπH
1,n, (25)

Ṽ0 = V∗0 , ρ̃∗ = ρ∗, t̃∗ = t∗, (26)

with rank
(
W̃∗) = 1 serving as the optimal solution of optimization problem (20).

Proof. The Lagrangian dual function of problem (20) can be modeled as
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L(W , V , V0, Xk, Yk, α, β, γ, ζk, Θ, Ξ, Ω, ρ, t, τE,k, λ̄k, µ̄k)

= t +
KE

∑
k=1

Tr
(
Xk NE,k

(
W , V0, λ̄k

))
+ α
[
P− Tr

(
W + V + V0

)]
+ β

[
Tr
((

W − rV − rV0
)

H
)
−

σ2
I r
ρ

]

+ γ
[
Tr
((

W + V + V0
)

H
)
− ωI

1− ρ

]
+

KE

∑
k=1

Tr
(
YkTE,k

(
W , V0, V , µ̄k, t

))
+

KE

∑
k=1

ζk
[ ME,k

1 + exp
(
− aE,k

(
τE,k − bE,k

)) − XE,k
(
YE,k + t

)]
+ Tr

(
ΘW

)
+ Tr

(
ΞV
)
+ Tr

(
ΩV0

)
,

(27)

where Xk � 0, ∀k, Yk � 0, ∀k, α ≥ 0, β ≥ 0, γ ≥ 0, ζk ≥ 0, ∀k are the dual variables for constraints C2,
C9, C4, C1, C3, and C5, respectively. Θ ∈ HN

+ , Ξ ∈ HN
+ and Ω ∈ HN

+ are the dual variables with respect

to parameters W , V and V0, respectively. Let G̃k =
[
INT NR ḡk

]
, ΛE,k =

[
µ̄k INT NR 0

0 −v2
k µ̄k − τE,k

]
,

Λ̄E,k =

[
λ̄k INT NR 0

0 −v2
k λ̄k + rkσ2

E

]
, we can rewrite the NE,k

(
W , V0, λ̄k

)
and TE,k

(
W , V0, V , µ̄k, t

)
as follows:

NE,k
(
W , V0, λ̄k

)
= G̃H

k
(
rkV̄0 − W̄

)
G̃k + Λ̄E,k,

TE,k
(
W , V0, V , µ̄k, t

)
= G̃H

k
(
W̄ + V̄ + V̄0

)
G̃k + ΛE,k.

(28)

For the convenience of analyzing the construction of the resulting solution, we must write back
the variable W̄ , V̄ , and V̄0 into their primal styles. Hence, we have

G̃H
k XkG̃k =


K(1,1)

E,k K(1,2)
E,k · · · K(1,NR)

E,k

K(2,1)
E,k K(2,2)

E,k · · · K(1,NR)
E,k

...
...

. . .
...

K(NR ,1)
E,k K(NR ,2)

E,k · · · K(NR ,NR)
E,k

 ∈ HNT NR
+ ,

G̃H
k YkG̃k =


J(1,1)

E,k J(1,2)
E,k · · · J(1,NR)

E,k

J(2,1)
E,k J(2,2)

E,k · · · J(1,NR)
E,k

...
...

. . .
...

J(NR ,1)
E,k J(NR ,2)

E,k · · · J(NR ,NR)
E,k

 ∈ HNT NR
+ ,

J(k,k)
E,k ∈ HNR

+ , K(k,k)
E,k ∈ HNR

+ .

(29)

Then, by utilizing (27)–(29), the Lagrange dual function can be rewritten as
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L(W , V , V0, Xk, Yk, α, β, γ, ζk, Θ, Ξ, Ω, ρ, t, τE,k, λ̄k, µ̄k)

= t +
KE

∑
k=1

Tr
[
XkΛ̄E,k +

NR

∑
n=1

(rkV0 −W)K(n,n)
E,k

]
+

KE

∑
k=1

Tr
[
YkΛE,k +

NR

∑
n=1

(
W + V + V0

)
J(n,n)

E,k
]

+ α
[
P− Tr

(
W + V + V0

)]
+ β

[
Tr
((

W − rV − rV0
)

H
)
−

σ2
I r
ρ

]

+ γ
[
Tr
((

W + V + V0
)

H
)
− ωI

1− ρ

]
+ Tr

(
ΘW

)
+ Tr

(
ΞV
)
+ Tr

(
ΩV0

)
+

KE

∑
k=1

ζk
[ ME,k

1 + exp
(
− aE,k

(
τE,k − bE,k

)) − XE,k
(
YE,k + t

)]
.

(30)

It can be verified that the relax optimization problem (20) is jointly convex with regard to the
primal variables and satisfies the Slater’s constraint qualification. Therefore, there is no gap between the
primal optimization problem and dual optimization problem. That is to say, strong duality holds and
solving the dual optimization problem is equivalent to solving the primal problem. Considering (30),
the dual optimization problem is expressed as:

min
{Xk�0},{Yk�0},Θ,Ξ,Ω�0,α,β,γ≥0,{ζk≥0}

max
W ,V ,V0,ρ

L(Π), (31)

where Π ,
{

W , V , V0, Xk, Yk, α, β, γ, ζk, Θ, Ξ, Ω, ρ, t, τE,k, λ̄k, µ̄k
}

. From (31), we have{
X∗k , Y∗k , Θ∗, Ξ∗, Ω∗, α∗, β∗, γ∗, ζ∗k

}
and

{
W∗, V∗, V∗0 , ρ∗, τ∗E,k, t∗

}
as the dual and the primal optimal

solution of (20) and (31), respectively. Considering (31), the Karush–Kuhn–Tucker (KKT) conditions
for the optimal W∗ are given by

Θ∗ � 0, α ≥ 0, β ≥ 0, γ ≥ 0, (32)

Θ∗W∗ = 0, (33)

[ KE

∑
k=1

NR

∑
n=1

(
J(n,n)(∗)

E,k − K(n,n)(∗)
E,k

)
+
(

β∗ + γ∗
)

H − α∗ INT

]
W∗ + Θ∗ = 0, (34)

∂L(Π)

∂ρ∗
= 0⇒ ρ∗ =

√
β∗rσ2

I
√

γ∗ωI +
√

β∗rσ2
I

. (35)

For notational simplicity, we define

R∗ =
KE

∑
k=1

NR

∑
n=1

(
J(n,n)(∗)

E,k − K(n,n)(∗)
E,k

)
+
(

β∗ + γ∗
)

H − α∗ INT . (36)

Then, we have
R∗ = T∗ +

(
β∗ + γ∗

)
H. (37)

However, in general, we define r̃ = rank(T∗). Then, we consider two cases of r̃ with the aim of
analyzing R∗. Firstly, it is assumed that r̃ = NT , i.e., the matrix T∗ is full rank. Upon that, we obtain

rank(R∗) = rank(T∗ + (β∗ + γ∗)H),

≥ rank(T∗)− rank((β∗ + γ∗)H) = NT − 1.
(38)
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However, if rank(R∗) = NT , then according to (33) and (34) it follows that W∗ = 0, which, of course,
cannot be the optimal solution to optimization problem (20). Thus, we obtain rank(T∗) = NT − 1 and
get the optimal solution W∗ = aιιH , a ≥ 0 if r̃ = NT where ι lies in the null space of R∗ with unit
norm. Next, we consider the cast where T∗ is rank defective, i.e., r̃ ≤ NT . In this case, the matrix N1

is modeled as the standard orthogonal basis that spans the null space of T∗, i.e., T∗N1 = 0. Let π1,n
represent the n-th column of N1, 1 ≤ n ≤ NT − r̃. The following equation holds:

πH
1,nR∗π1,n = πH

1,n
(
T∗ +

(
β∗ + γ∗

)
H
)
π1,n

=
(

β∗ + γ∗
)
πH

1,n Hπ1,n =
(

β∗ + γ∗
)
πH

1,nhhHπ1,n.
(39)

Since R∗ � 0 and |πH
1,nh| ≥ 0, it follows that

R∗N1 = 0 and HN1 = 0. (40)

Furthermore, according to (37), another inequality is achieved, i.e., rank(R∗) ≥ rank(T∗)− rank(H) = r̃− 1.
We define Ω1 as the orthogonal basis for the null space of R∗; it then yields

rank(Ω1) = NT − rank
(

R∗
)
≤ NT − r̃ + 1. (41)

Next, we come to show that rank
(
Ω1
)
= NT − r̃ + 1. With (40), N1 spans NT − r̃ orthogonal

dimensions of the null space of A∗, i.e., rank
(
Ω1
)
≥ NT − r̃. Assume that rank(Ω1) = NT − r̃; then, we get

Ω1 = N1 and express W∗ as W∗ = ∑NT−r̃
n=1 bnπ1,nπH

1,n, where bn ≥ 0, ∀n. Moreover, in this case, there is no
information transferred to information receiver according to (40). Therefore, according to (41), there exists
only one single subspace spanned by unit norm vector ι that also satisfies N1ι = 0. Therefore, we have

Ω1 =
[
N1 ι

]
(42)

and rank(Ω1) = NT − 1 + r̃. Furthermore, according to (33) and (34), any optimal solution W∗ for
optimization problem (20) can be modeled as

W∗ =
NT−r̃

∑
n=1

bnπ1,nπH
1,n + aιιH , (43)

where bn ≥ 0, ∀n, and a ≥ 0. The first part of Theorem 1 is thus proved.
Next, we prove the second part of Theorem 1. Suppose we obtained the optimal solution{

W∗, V∗, V∗0 , ρ∗, t∗
}

, where W∗ is given by (23) and rank(W∗) > 1. Then, the new alternative solution{
W̃∗, Ṽ∗, Ṽ∗0 , ρ̃∗, t̃∗

}
can be given in (23)–(26) and has the following properties:

Tr
[(

W̃∗ − rṼ∗ − rṼ∗0
)

H
]

= Tr
[(

W∗ − rV∗ − rV∗0 − (r + 1)
NT−r̃

∑
n=1

bnπ1,nπH
1,n
)

H
]

= Tr
[(

W∗ − V∗ − V∗0
)

H
]
≥

σ2
I r

ρ̃∗
,

(44)

Tr
[
GH

k
(
W̃∗ − rkṼ∗0

)
Gk
]

= Tr
[
GH

k
(
W∗ −

NT−r̃

∑
n=1

bnπ1,nπH
1,n − rkV∗

)
Gk
]

≤ Tr
[
GH

k
(
W∗ − rkV∗

)
Gk
]
≤ rkσ2

E,k,

(45)
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Tr
[(

W̃∗ + Ṽ∗ + Ṽ∗0
)

H
]

= Tr
[(

W∗ + V∗ + V∗0
)

H
]
≥ ωI

1− ρ̃∗
,

(46)

Tr
[
GH

k
(
W̃∗ + Ṽ∗ + Ṽ∗0

)
Gk
]

= Tr
[
GH

k
(
W∗ + V∗ + V∗0

)
Gk
]
≥ t̃∗, ∀k,

(47)

Tr
(
W̃∗ + Ṽ∗ + Ṽ∗0

)
= Tr

(
W∗ + V∗ + V∗0

)
≤ P, (48)

W̃∗ � 0, Ṽ∗ � 0, Ṽ∗0 � 0. (49)

The properties from (44) to (49) indicate that the new solution
{

W̃∗, Ṽ∗, Ṽ∗0 , ρ̃∗, t̃∗
}

can achieve the
same optimal value as

{
W∗, V∗, V∗0 , ρ∗, t∗

}
while (44)–(49) demonstrate that the new optimal solution

satisfies all the constraints of primal problem (20) with rank(W̃∗) = 1. Theorem 1 is thus proved.

With Theorem 1, we can achieve the global optimal solution of the optimization problem (13)
with rank(W) = 1 as follows. First, we solve the SDP relaxation optimization problem (20) via
CVX and obtain the solution

{
W∗, V∗, V∗0 , ρ∗, t∗

}
. If the rank of the obtained W∗ equals one, then{

W∗, V∗, V∗0 , ρ∗, t∗
}

will be the optimal solution to problem (20). Otherwise, if the rank of W∗ has
a larger rank than one, a new optimal solution

{
W̃∗, Ṽ∗, Ṽ∗0 , ρ̃∗, t̃∗

}
with rank(W̃∗) = 1 can be

constructed according to (23)–(26). Then,
{

W̃∗, Ṽ∗, Ṽ∗0 , ρ̃∗, t̃∗
}

will be the optimal solution to (20).
Hence, dropping the rank-one constraint in (15) results in no loss of optimality to (13).

4. Simulation Results

In this section, we provide simulation results to validate the performance of our proposed robust
beamforming design algorithm. The considered vehicular secure downlink channel in Section 2 for
Rayleigh flat-fading environments with zero-mean and unit variance is considered. Unless specified
otherwise, it is assumed that there are KE = 3 energy vehicular receivers. Indeed, we have some
other configurations that can be employed with a different number of energy vehicular receivers,
transmit antennas and receiver antennas; however, the simulation results will be similar, the only difference
is the computation complexity. In our simulations, we set NT = 6, NR = 3, r = 10 dB, rk = r̄ = 0 dB,
P = 25 dBm, Emin = 0 mW, σ2

I = σ2
E,k = σ2 = −20 dBm. For the nonlinear EH model, we set:

MI = ME,k = M = 24 mW, aI = aE,k = ā = 1500, bI = bE,k = b̄ = 0.014. To the imperfect CSI between

the base station and energy vehicular receivers, d2
E,k =

υ2
k

‖Ḡk‖2 is defined as the channel uncertainty ratio
to demonstrate the kth energy vehicular receiver’s channel estimate error. Without loss of generality, it is
assumed that dk = δE. We solve the optimization problem (21) and compute the average minimum
harvested energy power per energy vehicular receiver by averaging over 1000 channel realizations.

Figure 2 depicts the average minimum harvested energy power per energy vehicular receiver versus
the maximum power of the base station, P, for KE = 3 energy vehicular receivers, δ2

E = 0.02, and different
beamforming design schemes. We learn that the average minimum harvested energy power per energy
vehicular receiver of the proposed beamforming design scheme is a monotonically increasing function of P.
This is attributed to the fact that a higher harvested energy power is necessary for satisfying constraint
C4 when the maximum transmit power requirement of P becomes more stringent. For a comprehensive
comparison, Figure 2 also contains the average minimum harvested energy power per energy vehicular
receiver of the proposed algorithm that the base station has perfect CSI, the non-robust scheme, the linear EH
scheme and two baseline beamforming design schemes. For the non-robust scheme, we treat the estimated
channel Ḡk, ∀k ∈ {1, 2, · · · , KE} as true CSI, and then optimize {W, V , V0, ρ} jointly in (21) according to Ḡk,
∀k ∈ {1, 2, · · · , KE}. For the linear EH scheme, we adopt the existing linear EH model for the beamforming
design algorithm. In particular, {W, V , V0, ρ} optimizes to the maximum the minimum harvested energy
power per energy vehicular receiver subject to the constraints in (13). For the baseline scheme 1, we adopt
the zero-forcing approach to null out the undesired interference to the information vehicular receiver.
In particular, we choose V and V0 lying in the null space of the channel h. Furthermore, we employ the
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maximum ratio transmission for transmitting information to the information vehicular receiver. It can be
observed that the proposed scheme closely approaches the performance of the perfect CSI scheme. On the
other hand, it can be seen that the low computational complexity of the baseline scheme 1 comes at the
expense of a significantly lower harvested energy power compared to the proposed scheme and the linear
EH scheme. Indeed, the proposed scheme and the linear EH scheme fully use the CSI of all vehicular
communication links and optimize the space spanned by the artificial noise and the energy signal for
performing beamforming design. On the contrary, for the baseline scheme 1, the base station is unable to
fully utilize the available degrees of freedom in beamforming design because the both the energy beam
V and artificial noise V0 are fixed. Finally, with the increase of P, the proposed scheme achieves higher
harvested energy power than other schemes for every channel realization. The reason for this is that the
proposed scheme takes into account the nonlinearity of practical EH circuits leading to mismatches in
beamforming design.

In Figure 3, we study the average minimum harvested energy power per energy vehicular
receiver versus the maximum power of the base station, P, for KE = 3 energy vehicular receivers,
and different than the maximum channel estimation errors, δ2

E. As can be seen, with the increase
of P, the average minimum harvested energy power per energy vehicular receiver increases for
increasing maximum channel estimation error, δ2

E. Indeed, with increasing the imperfectness of
channel estimation, the base station has to allocate less power to the artificial noise and energy signals
to ensure vehicular secure communication.

In Figure 4, we move on to investigating how the average harvested energy power per energy
vehicular scales with the minimum required SINR of the information vehicular receiver, r, for KE = 3
energy vehicular receivers, δ2

E = 0.02, and different beamforming design schemes. It can seen that
the average minimum harvested energy power per energy vehicular receiver of the proposed scheme
is a monotonically increasing function of r. This is owing to the fact that there is a trade-off of the
proposed beamforming design scheme between power collecting of the energy vehicular receivers and
the guarantee of physical layer secure of information vehicular receiver. In particular, the achieved
SINR of the information vehicular receiver and the minimum harvested energy power per energy
vehicular receiver can not be maximized simultaneously with fixed rk and vice versa. Among all the
considered beamforming design schemes, the proposed nonlinear EH scheme still achieves a better
performance than the other beamforming design schemes.
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Figure 2. Average minimum harvested power per energy vehicular receiver versus total transmit power, P.
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Figure 3. Average minimum harvested power per energy vehicular receiver versus total transmit
power P with different δ2

E.
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Figure 4. Average minimum harvested power per energy vehicular receiver versus the minimum
required SINR of the information vehicular receiver, r.

Figure 5 shows the average minimum harvested energy power per energy vehicular receiver
versus the number of the transmit antenna, NT , for KE = 3 energy vehicular receivers, δ2

E = 0.02,
and different beamforming design schemes. It can observed that the average minimum harvested
energy power per energy vehicular receiver in the considered system increases with the increasing
number of antennae. These results advise that a higher amount of energy is available in the RF
for energy collecting when the number of the transmit antennae increases. This is owing to the
fact that with more transmit antennae the direction of energy beamforming matrix V can be more
accurately steered towards the energy vehicular receivers, which further increase the amount of energy
available in the RF for energy collecting. Among all the considered beamforming design schemes, the
proposed beamforming design scheme also achieves a better performance than the other beamforming
design schemes.
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Figure 5. Average minimum harvested power per energy vehicular receiver versus the number of
transmit antennae, NT .

Figure 6 illustrates the average minimum harvested energy power per energy vehicular receiver
versus the maximum channel estimation error, i.e., δ2

E, for different beamforming design schemes.
As seen in Figure 6, it can be seen that the minimum harvested energy per energy vehicular receiver of
the proposed robust beamforming design scheme decreases with the increase of the estimated channel
error, δ2

E, which confirms the motivation of the worse case robust optimization. Moreover, we learn
intuitively that the proposed nonlinear EH beamforming design scheme performs considerably better
than other beamforming design schemes but worse than the perfect case.
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Figure 6. Average minimum harvested power per energy vehicular receiver versus channel estimation error, δ2
E.

5. Conclusions

In this paper, we formulated the beamforming design for secure V2X communication systems
with an RF energy collecting vehicular receiver as a non-convex optimization problem, which took into
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account the imperfection of CSI and the nonlinearity of practical EH circuits. The considered problem
formulation supports the dual use of energy signals and artificial noise for efficient energy transfer
and facilitating secure vehicular communication in the presence of the potential eavesdroppers (idle
energy vehicular receivers). Owing to the intractability of the resulting max-min harvested energy
power per energy vehicular receiver problem, the optimization problem was reformulated and solved
with a semidefinite relaxation technique and variable substitutions. Numerical results showed the
excellent performance of the proposed robust secure beamforming design algorithm.
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