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Abstract: This paper studies a simultaneous wireless information and power transfer (SWIPT)-aware
fog computing by using a simple model, where a sensor harvests energy and receives information
from a hybrid access point (HAP) through power splitting (PS) receiver architecture. Two information
processing modes, local computing and fog offloading modes are investigated. For such a system,
two optimization problems are formulated to minimize the sensor’s required power for the two
modes under the information rate and energy harvesting constraints by jointly optimizing the time
assignment and the transmit power, as well as the PS ratio. The closed-form and semi-closed-form
solutions to the proposed optimization problems are derived based on convex optimization theory.
Simulation results show that neither mode is always superior to the other one. It also shows that
when the number of logic operations per bit associated with local computing is less than a certain
value, the local computing mode is a better choice; otherwise, the fog offloading mode should be
selected. In addition, the mode selection associated with the positions of the user for fixed HAP and
fog server (FS) is also discussed.

Keywords: energy harvesting; simultaneous wireless information and power transfer; fog computing;
local computing; fog offloading; deployment scheme

1. Introduction

With the rapid development of the Internet of Things (IoT), a growing number of sensor nodes
are required to access wireless networks and arousing a large number of computation-intensive and
latency-sensitive applications [1–3], which brings crucial challenges to resource-constraint devices.
How to enhance their processing capacities has attracted great interest in both academia and industry.
To resolve the related issues, fog computing (which is similar to mobile edge computing (MEC) [4–6])
has emerged to be a promising solution by offloading the task to nearby devices with high computing
capacities [7–11].

In IoT systems, most devices are powered by batteries with limited energy capacities. To prolong
the lifetime of the energy-constrained devices and networks (e.g., wireless sensor networks (WSN) [12],
wireless personal area networks (WPANs) [13], etc.), energy harvesting (EH) has been regarded as a
very promising technology, as it is able to power the devices via ambient energy sources [14,15]. In the
EH family, radio frequency (RF)-based EH is one of the most popular members due to its capabilities
in providing controllable and sustainable power supply. As signals also carry information when they
deliver energy, simultaneous wireless information and power transfer (SWIPT) was proposed. Later,
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two practical receiver architectures, i.e., time switching (TS) and power splitting (PS), were proposed
in Varshney et al. [16]. So far, both TS and PS have been widely applied in various wireless systems
(see e.g., [17–29]).

Owing to the advantages of fog computing and SWIPT, inheriting their benefits is expected
to provide an efficient way to simultaneously enhance the computing capacity and prolong the
lifetime of energy constrained networks. So far, some works have studied the SWIPT-aware fog/MEC
systems [30–32]. In Janatian et al. [30], the authors studied the optimal resource allocation in ultra-low
power fog-computing SWIPT-based networks, where, however, only the TS receiver architecture was
adopted. In Di et al. [31], the authors studied the fog-assisted resource allocation for two-hop SWIPT
orthogonal frequency division multiplexing (OFDM) networks. Although the PS receiver architecture
was considered in Di et al. [31], the computing task offoading was not involved. In Chai et al. [32],
the power minimization problem was studied in a SWIPT-aided fog computing networks is considered.
Although both PS receiver architecture and offloading were considered, the FS was just used to assign
tasks rather than participating in the computing task. To the best of the authors’ knowledge, no work has
been done for the SWIPT-aware fog aided work with PS architecture, where fog offloading and local computing
are jointly designed.

Motivated by this, we focus on a SWIPT-aware fog computing system with PS receiver architecture.
Compared with traditional fog computing systems or SWIPT-aware systems, our considered PS
SWIPT-aware fog computing system can simultaneously enhance the computing capacity and prolong
the lifetime of energy constrained networks, which is expected to be an efficient way to inherit the
benefits of the fog computing and SWIPT. Nevertheless, optimally designing such a SWIPT-aware fog
computing system faces some challenges, since to fully explore the potential performance of the system,
the communication, the computation, and the energy resources have to be efficiently utilized together.
As these resources are coupled together, which is difficult to handle, to this end, we study a three-node
system model, where a sensor harvests energy and receives information from a HAP through PS receiver
architecture. The sensor is able to process the received information itself (local computing mode) or
offload the task to the nearby FS (fog offloading mode) with the harvested energy. For such a model,
we desire to theoretically derive the inner relationships among the different parameters associated with
different kind of resources, and some fundamental questions are going to be answered, e.g.,

• Is there a mode always superior to another between local computing and fog offloading?
• Which one is the better choice for a given set of system parameters?
• For a fixed mode, what is its optimal resource allocation?

To this end, two power-minimization optimization problems are formulated for the two modes
under the required data rate and energy harvesting constraints by jointly optimizing the time
assignment and the transmit power at the sensor, as well as the PS ratio at first. Since the problems are
difficult to tackle, we solve them by using some mathematical operations and the convex optimization
theory, and then the closed-form and semi-closed-form solutions to the optimization problems are
derived. Simulation results show that neither of the two modes is always superior to the other one.
It is also shown that when the number of logic operations per bit associated with local computing is
less than a certain value, the local computing mode is a better choice; otherwise, the fog offloading
mode should be selected. In addition, the mode selection associated with the positions of the sensor
for fixed HAP and FS is also discussed, which shows that when the sensor is close to the HAP or the
FS, the fog offloading mode is a better choice, but for the rest of positions, local computing should be
selected in order to achieve a lower energy requirement at the sensor.

The rest of the paper is organized as follows. In Section 2, the system model is described.
In Section 3, two optimization problems are formulated and solved for the two modes. Simulation
results are provided in Section 4. Finally, conclusions are given in Section 5.

For readers’ convenience, we first summarize some notations in Table 1.
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Table 1. The notation table.

Notations Definations

T the time length of transmission frame
τipt(local) the time length of energy harvesting in the local computing mode
τipt(offload) the time length of energy harvesting in the fog offloading mode
τcpt the time used for local computing
τu-f the time used for task offloading from the sensor to the FS
PAP the transmit power of the HAP
NA the number of antennas at the HAP
s the RF signal symbol transmitted by the HAP
w the beamforming vector
σ2

n the noise received at the receiver
hAP-u the complex channel vector from the HAP to the sensor
ρ(local) the power splitting factor in the local computing mode
ρ(offload) the power splitting factor in the fog offloading mode
η the energy conversion efficiency of the EH circuit
RAP-u the achievable information rate at the sensor
B the system frequency bandwidth
ξ the energy requirement for decoding per bit
Ru-f the achievable information rate associated with the offloading
Pu-f the transmit power at the sensor
σ2

s the receiver’s noise power
P(max)

u-f the maximal available transmit power
K the number of logic operations per bit
hu-f the complex-valued channel coefficient from the sensor to the FS
Rth the minimum information transmission rate requirement from the HAP to the sensor
fop the maximum number of the operations per second at the sensor
Eeh the harvested energy at the sensor
Eid the required energy for information decoding at the sensor
Ecpt the local computing energy requirement
Eu-f the energy required for task offloading at the sensor
Eu the total required energy at the sensor

2. System Model

Consider a SWIPT-aware fog computing model consisting of a multi-antenna hybrid access point
(HAP), a single-antenna sensor and a multi-antenna fog server (FS), as shown in Figure 1, where the
HAP desires to transmit data to the sensor and the sensor has to process the received data by itself or
by the nearby FS. Note that three-node system model is widely investigated for communication system
design since it is a basic component of complex networks, which can be extended to the multiple
sensors scenarios by employing time division multiple access (TDMA), frequency division multiple
access (FDMA) or code division multiple access (CDMA) [33].

It is assumed that the HAP is with sufficient power supply and the sensor node is with no energy,
so the HAP is used as a power source to charge the sensor. The FS is with strong computing capacity,
which is capable of helping compute the tasks offloaded by the sensor and feedback the calculated result
to the sensor. PS SWIPT receiver architecture is employed at the sensor, so that the sensor can harvest
energy and receive information from the same signals transmitted by the HAP. The FS can be the free
computation resource nearby the sensor, and also can be integrated in the HAP. It is also assumed that
the sensor has some computing capacity, so the computing task can be accomplished either by the sensor
itself (i.e., local computing mode) or helped by the FS (i.e., fog offloading mode). If the sensor prefers
the FS to help complete the computing task, it needs to offload the data to the FS over the wireless link.
Suppose the sensor knows the channel coefficients of the two links, as well as the computing capacity of
the FS. Thus, it can determine which mode is a better choice. Note that whether local computing or fog
offloading is selected, energy is required to perform the related computing or transmission.
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Figure 1. Illustration of the system model.

Let T denote the length of each transmission frame. To complete the SWIPT-aware local computing
or fog offloading, T is divided into two parts as shown in Figure 2. For both modes, in the first part with
interval τipt, the sensor harvests energy and decodes the received data from the transmitted signals by
HAP, and in the rest T-τipt, sensor processes the received information either by local computing mode
or by fog offloading mode.

Figure 2. Illustration of the time frame structure.

The complex channel vector from the HAP to the sensor is denoted with hAP-u ∈ CNA×1.
Block fading channel model is considered, where the channel coefficient is assumed to be constant
in each block and changes independently following Rician distribution from one block to the next.
Without loss of generality, the time interval of each block is also represented by T. Perfect channel
state information (CSI) is assumed in order to explore the system performance limits. Denote the
number of antennas at the HAP as NA with NA > 1 and the RF signal symbol transmitted by the
HAP as s, which can be originated from independent Gaussian codebooks, i.e., s ∼ CN (0, 1), and the
beamforming vector is expressed by w ∈ CNA×1. Then, the received signal at the sensor is given by

y =
√

PAPh
H
AP-uws + n, (1)
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where PAP is the transmit power of the HAP and n ∼ CN (0, σ2
n) is the noise received at the receiver,

which obeys the circularly symmetric complex Gaussian distribution. Since the channel between the
HAP and the sensor is a multiple input single output (MISO) channel, by using the maximum rate
transmission (MRT) strategy, the optimal w related to hAP-u can be given by Xiong et al. [34]

w∗ =
hAP-u

‖hAP-u‖
. (2)

With PS SWIPT receiver architecture, a part of the received signals’ power is input into the EH circuit for
energy harvesting and the rest of the signals’ power at the sensor is input into the information decoding
(ID) circuit for information decoding. Let ρ ∈ (0, 1) be the power splitting factor. The harvested energy
at the sensor can be given by

Eeh = η (1− ρ) PAP

∣∣∣hH
AP-uw

∣∣∣2 τipt, (3)

where η ∈ (0, 1) denotes the energy conversion efficiency of the EH circuit, and the achievable
information rate RAP-u (bits/sec) at the sensor can be given by

RAP-u = B
τipt

T
log

(
1 +

ρPAP
∣∣hH

AP-uw
∣∣2

σ2
n

)
, (4)

where B is the system frequency bandwidth. Following Meraji et al. [35], the required energy for
information decoding at the sensor is proportional to the received information amount. Therefore,
the required energy for information decoding at the sensor can be given by

Eid = ξRAP-uT = ξB log

(
1 +

ρPAP
∣∣hH

AP-uw
∣∣2

σ2
n

)
τipt, (5)

where ξ (Joule/bit) is constant, which is used to characterize the energy requirement for decoding per bit.

2.1. Local Computing Mode

Once the local computing mode is selected, in the second time interval, i.e., τcpt, the sensor
processes the received data itself. To do so, energy is required for computation operations at the sensor.
As described in Rabaey et al. [36], the minimum dynamic switching energy per logic gate can be
evaluated by CgV2

DD, where Cg is the gate input capacitance and V2
DD is the supply voltage. In this case,

the energy requirements are larger than the Landauer limit by a factor of Mc, i.e., McN0 ln2, where Mc

is a time-dependent immaturity factor of the technology and N0 is the thermal noise spectral density.
Thus, the local computing energy requirement at the sensor can be expressed by

Ecpt = F0αMcN0 ln2KRAP-uT, (6)

where F0 is the fanout, i.e., the number of loading logic gates (typically with value of 3 to 4), α is
the activity factor (typically with value of 0.1 to 0.2), and K is the number of logic operations per bit.
RAP-uT actually represents the number of received bits in each T.

The total required energy at the sensor is described by

Eu = Eid + Ecpt − Eeh. (7)

When Eu ≥ 0, it means that the harvested energy is less than the total required energy Eid + Ecpt.
In this case, the battery has to discharge a certain amount of energy, i.e., Eu, to help accomplish the
local computing. When Eu < 0, the harvested energy is more than the total required energy Eid + Ecpt,
and the local computing is triggered.
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2.2. Fog Offloading Mode

If the fog offloading mode is selected, the sensor transmits the decoded task to the FS to process.
Let hu-f be the complex-valued channel coefficient from the sensor to the FS. The achievable information
rate Ru-f (bits/s) associated with the offloading over T can be given by

Ru-f = B
τu-f
T

log

(
1 +
|hu-f|2 Pu-f

σ2
s

)
, (8)

where Pu-f denotes the transmit power at the sensor, σ2
s is the receiver’s noise power, and τu-f is the

time used for task offloading from the sensor to the FS. Similar to many existing works, see e.g., [28,29],
we also assume that the fog server has very strong computing ability and high transmit power, so the
time used for fog computing and that transmitting from the FS to the sensor could be neglected.
The energy required for task offloading at the sensor is given by

Eu-f = Pu-fτu-f, (9)

where Pu-f can be adjusted and it must be constrained by the maximal available transmit power P(max)
u-f ,

Pu-f ≤ P(max)
u-f . (10)

The total required energy at the MU by using fog offloading mode is

Eu = Eid + Eu-f − Eeh. (11)

Similar to the local computing mode, when Eu ≥ 0, the battery has to discharge a certain amount
of power, i.e., Eu, to help accomplish the fog offloading. When Eu < 0, the fog offloading is triggered.

3. Problem Formulation and Solution

This section formulates two optimization problems for the two modes to minimize the power
requirement while guaranteeing the minimal required information rate by jointly optimizing the time
assignment, the power splitting ratio and the transmit power adjustment at the sensor. Assuming that
the sensor’s battery capacity is sufficient to trigger the computing or the transmission and has enough
energy for completing the whole process.

3.1. Optimization of the Local Computing

For local computing mode, the power minimization problem can be mathematically expressed by

P1 : min
τipt,τcpt,ρ(local)

Eid + Ecpt − Eeh, (12)

s.t. C1: RAP-u ≥ Rth,

C2: τcpt fop ≥ KRAP-uT,

C3: τipt + τcpt ≤ T,

C4: τipt, τcpt ∈ (0, T), ρ(local) ∈ (0, 1),

where Rth and fop are the minimum information transmission rate requirement from the HAP to the
sensor and the maximum number of the operations per second at the sensor, respectively. Constraint
(C2) describes that the total number of logic operations at the sensor must be equal or larger than the
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minimal required operations of the task. To solve Problem P1, we expand the expressions of variables
of Problem P1 as

P1−A : min
τipt,τcpt,ρ(local)

BC1τipt log

(
1 +

ρ(local)PAP
∣∣hH

AP-uw
∣∣2

σ2
n

)
− η

(
1− ρ(local)

)
PAP

∣∣∣hH
AP-uw

∣∣∣2 τipt, (13)

s.t. C1: B
τipt

T
log

(
1 +

ρ(local)PAP
∣∣hH

AP-uw
∣∣2

σ2
n

)
≥ Rth,

C2: τcpt fop ≥ KτiptB log

(
1 +

ρ(local)PAP
∣∣hH

AP-uw
∣∣2

σ2
n

)
,

C3: τcpt ≤ T − τipt,

C4: τipt, τcpt ∈ (0, T), ρ(local) ∈ (0, 1),

where C1 = KF0αMcN0 ln(2) + ξ. Variables τipt and ρ(local) are coupled together, so that Problem P1−A

is non-convex and cannot be directly solved by using known solution methods. Hence, a new slack
variable ϕ = ρ(local)τipt is introduced to make the problem more tractable. Therefore, ρ(local) =

ϕ
τipt

and
Problem P1−A can be transformed to be

P1−B : min
τipt,ϕ

BC1τipt log

(
1 +

ϕPAP
∣∣hH

AP-uw
∣∣2

τiptσ2
n

)
− η

(
τipt − ϕ

)
PAP

∣∣∣hH
AP-uw

∣∣∣2 , (14)

s.t. C1: Bτipt log

(
1 +

ϕPAP
∣∣hH

AP-uw
∣∣2

τiptσ2
n

)
≥ RthT, (15)

C2: Bτipt log

(
1 +

ϕPAP
∣∣hH

AP-uw
∣∣2

τiptσ2
n

)
≤
(
T − τipt

)
fop

K
, (16)

C3: τipt ∈ (0, T), ϕ ∈ (0, T).

Let C2 = ηPAP
∣∣hH

AP-uw
∣∣2, f (τipt, ϕ) = Bτipt log

(
1 +

ϕPAP|hH
AP-uw|

2

τiptσ
2
n

)
and F(τipt, ϕ) =

BC1τiptlog
(

1 +
ϕPAP|hH

AP-uw|
2

τiptσ
2
n

)
− η

(
τipt − ϕ

)
PAP

∣∣hH
AP-uw

∣∣2, Problem P1−B can be rewritten as

P1−C : min
τipt,ϕ

F(τipt, ϕ) = C1 f (τipt, ϕ)−C2(τipt − ϕ), (17)

s.t. C1: f (τipt, ϕ) ≥ RthT, (18)

C2: f (τipt, ϕ) ≤
(
T−τipt

)
fop

K
, (19)

C3: τipt ∈ (0, T), ϕ ∈ (0, T).

The first term of F(τipt, ϕ), i.e., f (τipt, ϕ), is with the perspective function form of y log
(

1 + x
y

)
which

is concave w.r.t x and y [37], so, f (τipt, ϕ) is concave w.r.t τipt and ϕ, and in the second term of F(τipt, ϕ),
i.e., −C2(τipt − ϕ) = −C2τipt + C2ϕ, is linear w.r.t τipt and ϕ. Therefore, the objective of Problem P1−C

is a minimization of a concave function w.r.t τipt and ϕ. Nevertheless, P1−C is still a non-convex problem
also because of the non-convexity of Constraint (19). Hence, we analyze and solve it as follows:

Proposition 1. Problem P1−C has a feasible solution only when Rth ≤
(T−τipt) fop

KT .
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Proof of Proposition 1. From Constraint (C1) and (C2) of Problem P1−C, one can see that RthT ≤
f (τipt, ϕ) ≤ (T−τipt) fop

K , i.e., Rth ≤
(T−τipt) fop

KT . That is, when Rth ≤
(T−τipt) fop

KT , the intersection set of
the two constraints is not empty, which can be illustrated by Figure A1. Hence, Proposition 1 is proved.

Lemma 1. The optimal solution τ∗ipt(local) to Problem P1−C is τ∗ipt(local) =
T fop−RthKT

fop
.

Proof of Lemma 1. The proof is shown in Appendix A.

Theorem 1. The optimal {ρ∗(local), τ∗cpt} of Problem P1−C is
ρ∗(local) =

σ2
n

PAP
∣∣hH

AP-uw
∣∣2
(

2
Rth fop

B( fop−KRth) − 1

)
,

τ∗cpt =
KRthT

fop
.

(20)

Proof of Theorem 1. The proof is shown in Appendix B.

3.2. Optimization of the Fog Offloading

For fog computing mode, the power minimization problem can be expressed as

P2 : min
τipt,τu-f,ρ(offload),Pu-f

Eid + Eu-f − Eeh, (21)

s.t. C1: RAP-u ≥ Rth,

C2: Ru-f ≥ RAP-u,

C3: Pu-f ≤ P(max)
u-f ,

C4: τipt + τu-f ≤ T,

C5: τipt, τu-f ∈ (0, T), ρ(offload) ∈ (0, 1).

Similar to the process of Problem P1, let v , τiptρ(offload), λu-f , τu-fPu-f, Problem P2 is
transformed as

P2−A : min
τipt,τu-f,v,λu-f

ξBτipt log

(
1 +

v

τipt

PAP
∣∣hH

AP-uw
∣∣2

σ2
n

)
+ λu-f + vηPAP

∣∣∣hH
AP-uw

∣∣∣2 − τiptηPAP

∣∣∣hH
AP-uw

∣∣∣2 , (22)

s.t. C1: Bτipt log

(
1 +

v

τipt

PAP|hH
AP-uw|

2

σ2
n

)
≥ RthT,

C2: Bτu-f log

(
1 +

λu-f
τu-f

|hu-f|2

σ2
s

)
≥ Bτipt log

(
1 +

v

τipt

PAP
∣∣hH

AP-uw
∣∣2

σ2
n

)
,

C3:
λu-f
τu-f
≤ P(max)

u-f ,

C4: τipt + τu-f ≤ T,

C5: τipt, τu-f,∈ (0, T), ρu-f ∈ [0, 1].

The objective of Problem P2−A is a minimization of a concave function w.r.t τipt, v and λu-f. It is
also difficult to solve due to the non-convexity of constraint sets (C1), (C2), and (C3).
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Proposition 2. Problem P2−A has feasible solution only when Rth ≤ B
τu-f
T log

(
1 +

P(max)
u-f |hu-f|2

σ2
s

)
.

Proof of Proposition 2. From Constraint (C1) and (C2) of Problem P2−A, one can see that when

Rth ≤ B τu-f
T log

(
1 + P(max)

u-f |hu-f|2

σ2
s

)
, the intersection set of the two constraints is not empty. Hence,

Proposition 2 is proved.

Combined with the results above, and by using some mathematical manipulations, the objective
function of Problem P2−A can be further expressed to be ϑ(τipt) as follows:

ϑ(τipt) = ξRthT +
(T − τipt)σ

2
s

|hu-f|2

(
2

RthT
B(T−τipt) − 1

)
− τiptη

(
PAP

∣∣∣hH
AP-uw

∣∣∣2 − σ2
n

(
2

RthT
Bτipt − 1

))
, (23)

which is a convex function w.r.t τipt, so Problem P2−A can be solved by using CVX tools [37].
Nevertheless, by using CVX tools, only numerical results can be obtained. In order to get some
theoretically results and better understand the system, we further derive some semi-closed-form
solutions to Problem P2−A as follows.

Lemma 2. Function ϑ(τipt) is convex w.r.t τipt.

Proof of Lemma 2. By deriving the second-order deviation of function ϑ(τipt), it can be proved that it is

always larger than zero, i.e., ϑ′′(τipt) =
(ln2RthTσs)2

B2|hu-f|2(T−τipt)3 2
RthT

B(T−τipt) + η
(ln2RthTσn)2

τ3
ipt

2
RthT
Bτipt > 0, which always

holds for τipt ∈ (0, 1). Therefore, Lemma 2 is proved.

Theorem 2. The optimal solution to Problem P2−C is,

τ∗ipt(offload) =

{
τipt |

σ2
s∣∣hu-f
∣∣2
(

2
RthT

B(T−τipt)

(
ln2

RthT
B
(
T − τipt

) − 1

)
+ 1

)

= ηPAP

∣∣∣hH
AP-uw

∣∣∣2 − ησ2
n

(
2

RthT
Bτipt

(
1− ln2

RthT
Bτipt

)
− 1

)
, τipt ∈ (0, T)

}
,

ρ∗(offload) =
σ2

n

PAP
∣∣hH

AP-uw
∣∣2
(

2
RthT

Bτ∗ipt(offload) − 1

)
,

τ∗u-f = T − τ∗ipt(offload),

P∗u-f =
σ2

s∣∣hu-f
∣∣2
2

RthT

B
(

T−τ∗ipt(offload)

)
− 1

 .

(24)

Proof of Theorem 2. According to Lemma 2, τ∗ipt(offload) can be obtained by setting
∂h(τipt(offload))

∂τipt(offload)
= 0,

and its numerical result can be obtained by using the bisection method. Once τ∗ipt(offload) is

obtained, by substituting it to the constraint equations, i.e., Bτipt log
(

1 +
ρ(offload)PAP|hH

AP-uw|
2

σ2
n

)
= RthT,

Bτu-f log
(

1 + |hu-f|2Pu-f
σ2

s

)
= RthT, and τipt + τu-f = T, respectively. The corresponding optimal ρ∗(offload),

τ∗u-f and P∗u-f can be calculated, respectively.

Here, we summarize the pseudocode of the procedure on how to calculate the optimal solution to
the problem, which is shown in Algorithm 1.
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Algorithm 1. The optimal mode selection

1: Initialize system parameters such as T, fop, Rth, K, B, PAP, F0, α, Mc, N0, ξ,
2: Calculate optimal τ∗ipt(local) according to Lemma 1,
3: Calculate optimal ρ∗(local) and τ∗cpt according to Theorem 1,
4: Calculate the minimal energy requirement (i.e., Eu(local)) by substituting τ∗ipt(local), ρ∗(local), and τ∗cpt into the

objective function of Problem P1,
5: Calculate optimal τ∗ipt(offload) according to Theorem 2 by using the bisection method,
6: Calculate optimal ρ∗(offload), τ∗u-f, and P∗u-f based on τ∗ipt(offload) according to Theorem 1,
7: Calculate the minimal energy requirement (i.e., Eu(offload)) by substituting τ∗ipt(offload), ρ∗(offload), τ∗u-f, and P∗u-f

into the objective function of Problem P2,
8: Compare Eu(local) with Eu(offload)

If Eu(local) ≤ Eu(offload), then trigger the local computing mode,
Otherwise, trigger the fog computing mode.

4. Simulation Results

This section presents some simulation results to discuss the system performance of the two
information processing modes. The system model shown in Figure 1 is simulated, where the HAP’s
power PAP is 1 watt and its transmitter number is set as NA = 4. The system bandwidth B = 2 MHz
and noise power are σ2

n = σ2
s = −140 dBm. The Rice factor Krice is 3.5 dB. Path-loss is modelled by the

International Telecommunication Union (ITU) indoor channel model, i.e., L = 20 log fc + n log d− 28,
with fc = 915 MHz and N = 22 [38]. Moreover, η = 0.6 and ξ = 10−10 J/bit [35]. Rth = 20 Kb/s. P(max)

u-f =
2× 10−3 watt, fop = 109 operation/s, Mc = 104, α = 0.1, and F0 = 3 [36]. In addition, dAP-u = 10 m
and du-f = 8 m. Note that these parameters will not change unless otherwise specified. In this paper,
all experiments are implemented over Mathworks Matlab R2017b ((Mathworks, Nedick, MA, USA) on
a laptop equipped with 8.00 GHz Corei7-8550U CPU and 128 GB random access memory. Every point
in the figures is the result averaged over 1000 independent channel realizations.

Figure 3 shows the harvested and required energy versus K. It can be seen that the energy required
for decoding and offloading does not change with the increment of K, but that for computing changes
linearly versus K. Moreover, the energy harvested in fog offloading mode is not change but that in
the local computing mode is linearly deceasing versus K because it is affected by τipt(local) and ρ(offload)
that closely related to K, which is proportional to the energy requirement.

Figure 3. Harvested and required energy per frame versus K.
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Figure 4 plots the minimal power required by the local computing and fog offloading versus K.
It can be seen that there is a intersection point, i.e., K = 5200, between the two curves associated with
the two modes. As shown in the figure, when K is less than a certain value (i.e., the intersection point),
the local computing is a better choice; otherwise, the fog computing is better.

Figure 4. The minimal energy requirement of the two modes versus K.

Figure 5 shows the harvested and required energy versus dAP-u, where the distance between the
sensor and the FS is fixed, and the sensor is moved away from the HAP. One can see that with the
increment of dAP-u, the required energy of the two modes almost does not change, but the harvested
energy of both two modes is reduced with the increment of dAP-u because the required energy is
independent from dAP-u, but the energy harvesting closely depends on the path loss fading of the
wireless channels.

Figure 5. Harvested and required energy per frame versus dAP-u.

Motivated by the results in Figures 4 and 5, the mode selection is discussed in Figure 6, where HAP
is on the original point (i.e., (0, 0)) of the coordinate system and the FS is positioned at the point with
coordinate (0, 20). The location of sensor is changed on the two-dimensional plane. We compare the
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minimal required energy of the two modes. It is shown that, in the blue area, fog offloading is a better
choice and in the pink area, the local computing mode is a better choice. In the white region, the system
has to firstly charge energy until the energy is sufficient to trigger any of the two modes.

Figure 6. The mode selection deployment.

The minimal required power of the sensor associated with the two modes is plotted in a 3D figure
as shown in Figure 7. It can be seen that, when the sensor is closely positioned to the HAP, it requires a
relatively low power to meet the information rate and computing requirements.
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Figure 7. Energy requirements of selection mode.

5. Conclusions

This paper studied a SWIPT-aware fog computing system with PS receiver architecture. Both local
computing and fog offloading modes were investigated. The closed-form and semi-closed-form
expressions for the optimal configurations were derived. Simulation results show that neither mode
is always superior to the other one and there exists a threshold value, when the number of logic
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operations per bit associated with local computing is less than the threshold, the local computing is a
better choice; otherwise, the fog offloading is better. In addition, the mode selection associated with
the positions of the sensor for fixed HAP and the FS was also discussed, which shows that, when the
sensor is close to the HAP or the FS, fog offloading mode is a better choice and, for the rest of the
positions, local computing should be selected.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
MEC mobile edge computing
WSN wireless sensor networks
WPAN wireless personal area networks
RF radio frequency
SWIPT simultaneous wireless information and power transfer
HAP hybrid access point
FS fog server
TS time switching
PS power splitting
TDMA time division multiple access
FDMA frequency division multiple access
CDMA code division multiple access
CSI channel state information
MISO multiple input single output
MRT maximum rate transmission

Appendix A

The objective function of Problem P1−C, i.e., F(τipt, ϕ), is a concave function, so the minimal value
of this concave function must be at the outer boundary of its feasible set. Moreover, the left-hand
side of Constraint (C1) and (C2) of Problem P1−C are convex, so that the outer boundary of the
feasible set of Problem P1−C satisfies that f (τipt, ϕ) = RthT, which is presented by the black line on
the (τipt, f (τipt, ϕ)) plane as shown in Figure A1. When the points on the binary, i.e., {τipt, ϕ} satisfies
f (τipt, ϕ) = RthT, F(τipt, ϕ) achieves its minimal value. This is equivalent to the minimal value of the

F(τipt, ϕ) being obtained when Bτipt log
(

1 +
ϕPAP|hH

AP-uw|
2

τiptσ
2
n

)
= RthT. Therefore, the objective function

of Problem P1−C can be transformed into

F(τipt, ϕ) = C1RthT −C2(τipt − ϕ). (A1)

Then, the suitable {τipt, ϕ} at the outer boundary f (τipt, ϕ) = RthT has to be determined
to make F(τipt, ϕ) reach the minimal value. According to the boundary condition Bτipt
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log
(

1 +
ϕPAP|hH

AP-uw|
2

τiptσ
2
n

)
= RthT and Equation (A1), one can obtain that ϕ =

τiptσ
2
n

PAP|hH
AP-uw|

2

(
2

RthT
Bτipt − 1

)
.

Then, by substituting it into the objective function, the objective function is transformed into

g(τipt) = C1RthT−C2τipt

1− σ2
n

PAP
∣∣hH

AP-uw
∣∣2

(a)︷ ︸︸ ︷(
2

Rth T
Bτipt − 1

)
︸ ︷︷ ︸

(b)

. (A2)

g(τipt) is a monotonically decreasing function w.r.t the first constant term but a monotonically
increasing function w.r.t. the second term. Nevertheless, in the second term, the increasing rate
w.r.t τipt of (b) part in Equation (A2) is smaller than the increasing rate w.r.t τipt of (a) in Equation (A2).
Thus, g(τipt) is a decreasing function w.r.t τipt. As a result, when τipt reach the upper boundary,

i.e., τipt =
T fop−RthKT

fop
, g(τipt) arrives at its minimal value. Note that, as shown in Figure A1,

τipt =
T fop−RthKT

fop
is obtained in the case that the inequality of Constraint (C1) and (C2) of Problem P1−C

adopts equal signs simultaneously, namely, the dynamic inner boundary meets the outer boundary
(T−τipt) fop

K = RthT. Therefore, Lemma 1 is proved.

Figure A1. Illustration of the feasible solution set.

Appendix B

Following Lemma 1, when {τipt, ϕ} is at the outer boundary f (τipt, ϕ) = RthT, the objective

function F(τipt, ϕ) achieves its minimal value. ϕ =
τiptσ

2
n

PAP|hH
AP-uw|

2

(
2

RthT
Bτipt − 1

)
and τipt =

T fop−RthKT
fop

,

combined with ρ = ϕ
τipt

, we have that ρ∗(local) = σ2
n

PAP|hH
AP-uw|

2

(
2

Rth fop
B( fop−KRth) − 1

)
. Moreover, when

τcpt <
KRthT

fop
, F(τipt, ϕ) has a smaller value with a larger τipt. Thus, τ∗cpt =

KRthT
fop

. Therefore, Theorem 1
is proved.
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