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Abstract: Powdery mildew is one of the dominant diseases in winter wheat. The accurate monitoring
of powdery mildew is important for crop management and production. Satellite-based remote
sensing monitoring has been proven as an efficient tool for regional disease detection and monitoring.
However, the information provided by single-date satellite scene is hard to achieve acceptable
accuracy for powdery mildew disease, and incorporation of early period contextual information
of winter wheat can improve this situation. In this study, a multi-temporal satellite data based
powdery mildew detecting approach had been developed for regional disease mapping. Firstly, the
Lansat-8 scenes that covered six winter wheat growth periods (expressed in chronological order as
periods 1 to 6) were collected to calculate typical vegetation indices (VIs), which include disease
water stress index (DSWI), optimized soil adjusted vegetation index (OSAVI), shortwave infrared
water stress index (SIWSI), and triangular vegetation index (TVI). A multi-temporal VIs-based
k-nearest neighbors (KNN) approach was then developed to produce the regional disease distribution.
Meanwhile, a backward stepwise elimination method was used to confirm the optimal multi-temporal
combination for KNN monitoring model. A classification and regression tree (CART) and back
propagation neural networks (BPNN) approaches were used for comparison and validation of initial
results. VIs of all periods except 1 and 3 provided the best multi-temporal data set for winter
wheat powdery mildew monitoring. Compared with the traditional single-date (period 6) image,
the multi-temporal images based KNN approach provided more disease information during the
disease development, and had an accuracy of 84.6%. Meanwhile, the accuracy of the proposed
approach had 11.5% and 3.8% higher than the multi-temporal images-based CART and BPNN
models’, respectively. These results suggest that the use of satellite images for early critical disease
infection periods is essential for improving the accuracy of monitoring models. Additionally, satellite
imagery also assists in monitoring powdery mildew in late wheat growth periods.
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1. Introduction

Powdery mildew (Blumeria graminis) is one of the most destructive foliar diseases infecting winter
wheat and occurs in areas with cool or maritime climates [1]. The disease interferes with the plant’s
normal source-sink relationships. It also changes the translocation and distribution of photoassimilate,
causing changes in grain starch and protein composition [2]. This in turn results in a reduction in
wheat quality and yield [3]. According to the statistics by China’s National Agricultural Technology
Extension and Service Center (NATESC), the annual average outbreak area for powdery mildew was
10 million ha over the last 17 years [4]. Thus, it is vital to develop a more accurate disease monitoring
model for winter wheat to prevent the occurrence of powdery mildew.

The main periods of the wheat powdery mildew cycle include over-summering, autumn seedling
infection, overwintering, and spring epidemics. Over-summering is known to be a key period in
all epidemic processes [5]. In Shaanxi Province, China, wheat powdery mildew can survive during
summer and winter. The disease completes its yearly infection cycle in the northern and southern
mountains and in the Guanzhong plains. The pathogen’s conidial spores and ascospores can infect
volunteer wheat during over-summer periods [6]. Moreover, meteorological conditions can affect the
prevalence and damage caused by powdery mildew, especially during the over-summering period [5].

Crop diseases often induce physiological changes in plant metabolism, causing variations
in plant pigment and water content, as well as changes in cell structure, which can in turn
cause changes in crop reflectance [7,8]. For example, increased reflectance in the visible bands is
associated with the breakdown of chloroplasts and visible foliar symptoms [9,10]. The increase in
reflectance in the mid-infrared and shortwave near-infrared bands indicates water deficiency [11,12].
In crop disease research, remote sensing technologies have mainly been used for disease detection,
monitoring, identification, and differentiation, and crop diseases have been successfully identified and
differentiated based on hyperspectral reflectance data [4,13,14]. Hyperion satellite hyperspectral
imagery has also been evaluated for the potential to detect plant disease [15]. Although the
hyperspectral system gives more detailed information for identifying feature bands responding
to particular crop diseases, its application over large scales is difficult due to its high hardware
and computational costs. Therefore, multispectral sensing systems with 3~6 broad bands (ranging
from visible to near-infrared spectral regions) has developed as an alternative technology and has
been widely used to explore wheat characteristics and habitat traits [8]. A number of studies have
demonstrated the use of satellite imagery for disease monitoring. For instance, SPOT-6, Worldview-2,
HJ, and Landsat 8 satellite images were all successfully used for mapping crop diseases, predicting
forest pests, etc. [8,16–19]. Some crop diseases and pests were predicted more successfully by
integrating satellite imagery into the meteorological data based prediction models [3,20,21]. These
results have encouraged us to use satellite imagery for monitoring the occurrence of powdery mildew
in winter wheat. However, for the remote monitoring of crop diseases, most scholars have focused
on detection and monitoring of late periods of infection using corresponding single-date imagery.
Relatively few studies have considered the use of temporal information. Although some scholars
successfully monitored powdery mildew in winter wheat using multi-temporal satellite imagery,
the images were only focused on the late disease development period and excluded early growth
information [22].

The spatial information for crop disease occurrence and development and their temporal
characteristics are crucial for disease monitoring. Some scholars have successfully applied time series
images to the detection of tree mortality in forests caused by diseases and pests [23–25]. Those results
revealed the potential of multi-date image approach in disease monitoring research. The remotely
sensed indices of a single-date image which collected at a single time point only reflect the partial
characteristics of crop disease because that the powdery mildew occurs throughout the entire wheat
growth period from infestation to manifestation [5,6,26,27]. Therefore, we speculated that remote
sensing images of the early key infection periods contained useful information on the development
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of infection, and integrating this information with disease monitoring would effectively improve the
performance of the monitoring model.

The k-nearest neighbors (KNN) algorithm [28–30] is a method for classifying objects based
on closest k training samples in the feature space. This instance-based learning algorithm is very
simple, popular, efficient and effective for pattern recognition, and has been widely used for
classification [30–32]. The KNN method has also been used in the identification of crop diseases [31,32].
However, there are very few studies that explore whether the KNN classification algorithm combined
with the multi-temporal satellite imagery can effectively map crop disease occurrence.

In this study, we used early multi-temporal satellite imagery to develop a model that focuses on
monitoring the occurrence of powdery mildew in the late winter wheat growth period (filling period)
at regional scales. Multi-temporal Landsat-8 imagery was adopted in this study. The objectives of this
study were (1) to identify the optimal multi-temporal data set for the monitoring of powdery mildew
occurrence in winter wheat from a number of different multi-temporal combinations; (2) to assess
the feasibility of using imagery containing information for early critical disease infection periods to
monitor the occurrence of powdery mildew in late winter wheat growth period; (3) to evaluate the
performance of the multi-temporal indices-based KNN disease monitoring approach and its capability
for mapping powdery mildew occurrence.

2. Materials and Methods

2.1. Study Sites and Disease Field Survey

The study area encompassed two typical regions affected by the disease (region 1 and region 2),
located in the western Guanzhong plains, Shaanxi Province, China (Figure 1). The area was located in
a high-yield farming area with good hydro-thermal conditions, along with a mild and humid climate.
In this region, there are four seasons, precipitation is concentrated, and rainfall and temperature are
synchronized. The average annual temperature ranges from 9.9 to 15.8 ◦C. The average annual rainfall
ranges from 500 to 700 mm, and rainfall decreases from west to east, and from south to north. The
average annual evaporation ranges from 1000 to 1200 mm, and the frost-free period spans from 130 to
220 days [33]. Winter wheat is a major local crop, and the area provides a suitable propagating and
developing environment for the powdery mildew pathogen.

A total of 62 field survey plots were collected to evaluate the damage severity caused by winter
wheat powdery mildew as ground truth data in region 1 and region 2 during 10 May 2014 (Figure 1).
Five 1-m × 1-m ranges were uniformly selected at a 30-m × 30-m spatial extent to match the disease
field investigation and the spatial resolution of Landsat-8 satellite imagery. The central latitude and
longitude of each plot were recorded by a sub-meter precision handheld Global Positioning System
(GPS). Wheat growth conditions, height, and occurrence severity were noted in the survey. According
to the National Rules for the Investigation and Forecasting of Crop Diseases (NY/T 613-2002), each
leaf of the selected plants were grouped into one of 10 levels: 0 (amount of infection: 0%), 1 (1–10%),
2 (11–20%), 3 (21–30%), 4 (31–40%), 5 (41–50%), 6 (51–60%), 7 (61–70%), 8 (71–80%), 9 (81–100%). Of
them, 0% represents no infection and 100% represents the greatest amount of infection. Then the DI
was calculated using:

DI = ∑ x f
n∑ f

× 100 (1)

where x is the value of incidence level, f is the total number of leaves for each degree of disease severity,
and n is the value of highest disease severity gradient.

For simplicity, in this study, disease occurrence severity was grouped into three classes for
subsequent analysis. These classes included: normal (DI = 0), slight infection (0 < DI ≤ 30%), and
severe infection (DI > 30%). The criteria of DI = 30% for these classifications was suggested by China’s
national plant protection department (NY/T 613-2002) [22]. The overview of the field survey is listed
in Table 1. Region 1 is a typical occurrence area of wheat powdery mildew, the investigations in
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this region contained a complete disease severity. Hence, data collected in this region was used to
model and calibrate the optimal multi-temporal combination. Alternatively, region 2 represented the
general situations of wheat powdery mildew and is more in line with the actual situation of the field in
non-large occurrence years, thus, the levels of DI are generally lower than 3. Therefore, data collected
in region 2 was just used for validating in this case.
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Figure 1. Geographic location and spatial distribution of wheat areas and sample points.

Table 1. Basic information for the disease survey experiment.

Location Type Number of Field Survey Samples

Normal Slight Severe Sum

Region 1 Calibration 10 16 10 36
Region 2 Validation 21 5 0 26

2.2. Image Acquisition and Preprocessing

Powdery mildew is wind-dispersed and infects volunteers after harvest and autumn-sown crops.
The disease cycles slowly but can continue during the winter if temperatures are mild. In spring,
the growth increases rapidly in tandem with rising temperature and high humidity, and infects
leaves [26,27]. Generally, a powdery mildew hypha recovers growth during the first ten days in
February. The development period of the disease begins in March and occurs in April and May [34].
Considering the infection, occurrence, and development characteristics of powdery mildew, six
temporal Landsat-8 images were acquired during November, 2013 to May, 2014. These images
were used to combine early growth information for winter wheat and for monitoring powdery mildew
in the late critical development period. The development period refers to the occurrence of wheat
powdery mildew in May, or the filling period of winter wheat. The details regarding the dates and
periods for the images are provided in Table 2. A radiometric calibration and an atmospheric correction
for Landsat-8 images were conducted using ENVI 5.3 software.
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Table 2. Information provided by the images for disease monitoring.

Growth Period Period Number Image Acquisition Date

Wintering period Period 1 16 November 2013
Period 2 2 December 2013

Re-greening period Period 3 8 March 2014
Period 4 24 March 2014

Jointing period Period 5 9 April 2014
Filling period Period 6 11 May 2014

2.3. Planting Area Extraction of Winter Wheat

The spectral divergences among different ground objects, such as farmland, forests, water
bodies, and impervious areas are always greater than that between healthy and diseased areas in
crop fields. Thus, it is necessary to extract information from the winter wheat planting area before
conducting disease monitoring, and a decision tree method was successfully applied to the extraction
of winter wheat planting area [22]. Based on the phenological information for the main crops in the
study area [35], we used this decision tree method for the classification process. The method was
validated using field survey points, and an overall accuracy of 94% for extracting information from
the crop area were obtained. The results satisfied the accuracy required for subsequent analysis and
disease monitoring.

2.4. Remotely Sensed Indices Extraction for Disease Monitoring

It is reported that the plant growth status and habitat characteristics are associated with the
susceptibility of plants to diseases, and the physiological and biochemical characteristics will be
changed once the plant is infected by the diseases [3,8,36,37]. Therefore, in this study, four remotely
sensed indices which related to crop vigor, water status and stress were selected to investigate their
sensitivity for winter wheat powdery mildew. These indices included: the triangular vegetation
index (TVI), optimized soil adjusted vegetation index (OSAVI), disease water stress index (DSWI), and
shortwave infrared water stress index (SIWSI). The TVI is known to be a good estimation index for the
leaf area index (LAI), and it is also sensitive to chlorophyll content [38]. The OSAVI was selected to
minimize brightness-related soil effects, and it is an optimization of the soil adjusted vegetation index
(SAVI) [39,40]. The loss of moisture due to lesions or ruptured leaves is an important factor in disease
detection [41]. Thus, the DSWI and SIWSI indices were included to capture the plant’s water status.
Both indices contain NIR and SWIR bands and have potential for detecting water stress in crops at the
canopy level [3,42]. The formulas for these vegetation indices (VIs) are provided in Table 3. In total,
24 VIs (four VIs of each of the six periods) were extracted using the six temporal Landsat-8 images.

Table 3. Summary of the spectral vegetation indices used for monitoring of powdery mildew, with red
band, green band, NIR band, and SWIR band denoted as RR, RG, RNIR, and RSWIR, respectively.

Title Definition Formula Reference

DSWI Disease water stress index (RNIR + RG)/(RSWIR + RR) [43]
OSAVI Optimized soil adjusted vegetation index (RNIR − RR)/(RNIR + RR + 0.16) [40]
SIWSI Shortwave infrared water stress index (RNIR − RSWIR)/(RNIR + RSWIR) [44]

TVI Triangular vegetation index 0.5 × (120 × (RNIR − RG) − 200 × (RR − RG)) [38]

2.5. Disease Occurrence Monitoring Using k-Nearest Neighbors (KNN)

The KNN algorithm was implemented to monitor powdery mildew based on multi-temporal
Landsat-8 imagery and its performance was evaluated. This algorithm consists of training phase and
classification phase. In training phase, the training examples are vectors (each with a class label) in a
multidimensional feature space. The feature vectors and class labels of training samples are stored in
this phase. In the classification phase, k is a user-defined constant, a query or test point (unlabeled
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vector) is classified by assigning a label, which is the most recurrent among the k training samples
nearest to that query point. No actual model or learning is performed during the training phase,
although a training data set is required, it is used solely to populate a sample of the search space with
instances whose class is known, for this reason, this algorithm is also known as lazy learning algorithm.
It means that the training data points are not used to do any generalization and all the training
data is needed during the testing phase. When an instance whose class is unknown is presented
for evaluation, the algorithm computes its k closest neighbors, and the class is assigned by voting
among those neighbors [45]. The main advantage of the KNN algorithm is that it performs well with
multi-modal classes since its decisions are based on a small neighborhood of similar objects. Therefore,
the algorithm can still provide good accuracy even if the target class is multi-modal [46]. One of the key
factors determining the performance of the KNN algorithm classification is the measure of the distance.
Euclidean distance is the most common distance function for the KNN, but it is easily influenced by
the mode characteristic dimension [47]. Compare to Euclidean distance, Pearson Correlation is not
sensitive to magnitude [48]. Thus, we used Pearson Correlation as the distance function for the KNN
algorithm in this study.

2.6. Optimal Multi-Temporal Combination for Monitoring Model

Although VIs of the six different periods were chosen as the primary input variables for the
construction of multi-temporal VIs-based KNN monitoring model, whether the performance of this
multi-temporal combination was optimal or not was uncertain. Hence, a back stepwise elimination [49]
method was used to identify the optimal multi-temporal data set for disease monitoring. First, 24 VIs
(that is, four VIs of each of the six periods) were included as input variables of the KNN monitoring
model. Then, the backward stepwise elimination method started with these VIs based on the KNN
model, with the four VIs of one period subsequently being eliminated at a time. The elimination
started with 1 and proceeded sequentially. At each step, deleted variables are those that result in low
performance of the model. Otherwise, the variables are retained as an improvement to the model, and
a new selection cycle begins. This method of deletion continues until only one period’s variables are
left in the model or until a stopping rule is satisfied. The coefficient of determination (R2) and the
root mean square error (RMSE) were used as accuracy measurements of multi-temporal combination
group estimation.

2.7. Accuracy Assessment of Disease Monitoring

Several statistical accuracy indicators (Somers’ D, Kendall’s Tau-c, Goodman-Kruskal Gamma,
and Spearman correlation) were used to evaluate the performance of the KNN disease monitoring
models. Additionally, an overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and
kappa coefficient were calculated for the monitoring results based on field truths. These accuracy
assessments were used to evaluate the model’s performance in monitoring disease occurrence severity.
For comparison and validation, a classification and regression tree (CART) [50] and back propagation
neural networks (BPNN) [51] were also used. To further compare and verify the performance of
the multi-temporal VIs-based monitoring models, the traditional single-date (period 6) VIs-based
monitoring models were also established using CART, BPNN, and KNN methods. The three methods
models were calibrated using disease data collected from region 1 and validated by disease data
collected from region 2. Figure 2 summarizes the data analysis process. The calibration and validation
of the three approaches were conducted using MATLAB 2016a software. The CART monitoring model
was calibrated using the SPSS Clementine 12.0 software.
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imagery at regional scales. 

Figure 2. Flowchart for constructing monitoring models for powdery mildew using Landsat-8 imagery
at regional scales.

3. Results

3.1. Response of VIs to Powdery Mildew and Its Development

The spectral changes induced by powdery mildew infection forms the basis for remote sensing
monitoring. Generally, the three visible channels (i.e., blue, green, and red bands) display a higher
reflectance in diseased samples than in healthy samples, but the NIR channel exhibits the opposite
pattern [22]. This spectral responses’ abnormality was resulted by the changes of biophysical and
biochemical parameters of plants induced by the crop disease pathogens, such as variations of several
pigments, water content and canopy structure, as well as some leaf color changes due to pustules or
lesions [10,52]. In this study, four selected indices all contained a visible band or NIR band. Figure 3
displays the difference in the response indices among normal, slightly, and severely infected plots.
The indices were compared at all six growing periods using the mean and standard deviation of each
index. All six temporal indices provided the highest values for slightly diseased samples with three
disease occurrence severity (i.e., normal, slight, and severe).
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Figure 3. Mean and standard deviations of the (a) DSWI, (b) OSAVI, (c) SIWSI, and (d) TVI for both
normal and infected (slight and severe) plots at different periods.

The DSWI and SIWSI provided the lowest values for severely diseased samples in six periods.
The OSAVI and TVI provided the lowest values for normal samples in the first three periods, and
which provide the lowest values for severely diseased samples during the remaining three periods.
Additionally, the indices among the three samples exhibited different changing patterns over time.

3.2. Optimal Multi-Temporal Data Set for Mapping Powdery Mildew

For backward stepwise elimination analysis, the results evaluation of different multi-temporal
combination groups are listed in Table 4. The results illustrate that the multi-temporal VIs-based model
composed of six periods had the lowest R2 and highest RMSE. Meanwhile, the other period groups’
assessment results showed that removing VIs of period 1 and period 3 significantly improved the
performance of the model. Additionally, the remaining four periods (periods 2, 4, 5, and 6) were all
important; the absence of any one period VIs would lead to a decline in the accuracy of the model.
Therefore, the VIs of periods 2, 4, 5, and 6 composed the optimal multi-temporal input variables for
disease monitoring model.

Table 4. Estimating results for monitoring models based on different multi-temporal combination
groups.

Period Group Periods 1 to 6 Periods 2 to 6 Periods 3 to 6 Periods 2, 4, 5, 6 Periods 2, 5, 6 Periods 2, 4, 6

R2 0.50 0.69 0.61 0.79 0.53 0.72
RMSE 0.58 0.44 0.51 0.36 0.55 0.42

3.3. Mapping Powdery Mildew through Multi-Temporal Indices

Optimal multi-temporal (including periods 2, 4, 5, and 6) VIs-based models were constructed
using the CART, BPNN, and KNN methods to detect the importance of early period information for
disease monitoring. In the three multi-temporal models, powdery mildew occurred extensively in
region 1, and slightly occurred in region 2 (Figure 4). The monitoring results were supported by field
observations. In region 1, 72% of the plots (44% slightly infected and 28% severely infected) were
infected with powdery mildew. Less than 20% of the plots were slightly infected with the disease
in region 2. The disease infection maps revealed that the area in region 1 had a higher occurrence
severity. In region 2, the results indicated a higher disease infection severity in the western area
(Figure 4). The results from the three models were compared, and the KNN model revealed the highest
amount of severe infection. Moreover, the BPNN model revealed the highest amount of slight disease
infection. A quantitative evaluation of the three models using multi-temporal VIs revealed that all
three models produced high statistical parameters. The KNN model featured the highest Somers’ D,
Kendall’s Tau-c, Goodman-Kruskal Gamma, and Spearman correlation (Table 5). The performance of
the multi-temporal VIs-based models were assessed using field survey truthing in region 2 (Table 6).
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Generally, the powdery mildew-infected areas were successfully monitored by all three methods using
multi-temporal VIs, although the KNN models had obtained the highest OA of 84.6% and the highest
kappa coefficient of 0.516 among three approaches.

The CART, BPNN, and KNN monitoring models were also constructed through traditional
single-date VIs (period 6), and used to map powdery mildew for region 1 and region 2 (Figure 5).
These maps were assessed and a significant difference were observed among the different methods
(Figure 5).
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Figure 4. Maps of powdery mildew occurrence severity in winter wheat produced by the (a) CART, (b)
BPNN, and (c) KNN models using optimal multi-temporal VIs.

Table 5. Statistical measures of the goodness of fit for the optimal multi-temporal VIs-based CART,
BPNN and KNN monitoring models.

Method
Statistical Parameters

Somers’ D Kendall’s Tau-c Goodma-Kruskal Gamma Spearman Correlation

CART 0.305 0.225 0.655 0.309
BPNN 0.332 0.189 0.727 0.333
KNN 0.505 0.314 0.869 0.505
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Table 6. Validation of the optimal multi-temporal VIs-based models using field truth samples in
region 2.

Validation Field Truth

Method Normal Slight Sum UA OA Kappa

CART

Normal 16 2 18 88.9%

73.1% 0.295
Slight 5 3 8 37.5%
Sum 21 5 26
PA 76.2% 60.0%

BPNN

Normal 19 3 22 86.4%

80.8% 0.330
Slight 2 2 4 50.0%
Sum 21 5 26
PA 90.5% 40.0%

KNN

Normal 19 2 21 90.5%

84.6% 0.516
Slight 1 3 4 75.0%
Severe 1 0 1
Sum 21 5 26
PA 90.5% 60.0%
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For example, normal and severely infected wheat were distributed throughout the study area in
the CART single-date VIs-based model. In the BPNN and KNN models, slightly infected and normal
wheat covered most of the entire crop area. Several statistical parameters were used to evaluate the
performance of the single-date VIs-based models (Table 7). The CART and BPNN models displayed
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statistical parameters with low values. Further, validation results using field survey truthing revealed
that only the KNN model had an acceptable monitoring OA of 76.9% (Table 8).

Compared to the traditional single-date VIs, all three models produced higher statistical
parameters for multi-temporal VIs. The multi-temporal VIs models produced the higher values
for Somers’ D, Kendall’s Tau-c, Goodman-Kruskal Gamma, and Spearman correlation. However, the
BPNN method had lower values for Kendall’s Tau-c and Goodman-Kruskal Gamma. The results can
be seen in Tables 6 and 8. In the three multi-temporal VIs-based models, the KNN model produced
the highest statistical parameters, followed by the BPNN and CART models (Table 6). The validation
results revealed that the powdery mildew infected areas were successfully monitored by all three
methods using multi-temporal VIs. In the single-date VIs-based models, only the KNN method
provided an acceptable overall monitoring accuracy (Tables 6 and 8). The accuracy indicators varied
significantly for the three methods when using different data sources. For example, the incorporation
of early period winter wheat growth information increased the overall accuracy of the CART, BPNN,
and KNN models from 34.6% to 73.1%, 50.0% to 80.8%, and 76.9% to 84.6%, respectively. Furthermore,
the kappa coefficients for the BPNN, and KNN models improved from 0.201 to 0.330, and 0.355 to
0.516. The KNN model outperformed both the CART and BPNN models using both single-date and
multi-temporal VIs.

Table 7. Statistical measures of the goodness of fit for the traditional single-date VIs-based CART,
BPNN, and KNN models.

Method
Statistical Parameters

Somers’ D Kendall’s Tau-c Goodma-Kruskal Gamma Spearman Correlation

CART 0.109 0.107 0.257 0.124
BPNN 0.263 0.207 0.778 0.274
KNN 0.361 0.254 0.729 0.364

Table 8. Validation of the traditional single-date VIs-based models using field truth samples in region 2.

Validation Field Truth

Method Normal Slight Sum UA OA Kappa

CART

Normal 7 1 8 87.5%

34.6% 0.035
Slight 8 2 10 20.0%
Severe 6 2 8
Sum 21 5 26
PA 33.3% 40.0%

BPNN

Normal 8 0 8 100%

50.0% 0.201
Slight 12 5 17 29.4%
Severe 1 0 1
Sum 21 5 26
PA 38.1% 100%

KNN

Normal 17 2 19 89.5%

76.9% 0.355
Slight 4 3 7 42.9%
Sum 21 5 26
PA 81.0% 60.0%

4. Discussion

We found that classification using multi-temporal VIs produced higher accuracies than the
traditional single-date VIs when monitoring for powdery mildew in winter wheat. Not all selected
periods were useful for monitoring of disease; in six different periods, only the VIs of period group
which composed with periods 2, 4, 5, and 6 were the optimal multi-temporal data set for monitoring
of powdery mildew in winter wheat. Furthermore, only the KNN model obtained acceptable results
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among the three methods using traditional single-date VIs. The KNN method was also observed
to produce the most accurate classification using the multi-temporal VIs approach. The overall
monitoring accuracy of multi-temporal VIs was obviously higher than that of the traditional single-date
VIs. This suggests that the methodology employed by the multi-temporal VIs improved overall
monitoring accuracy.

Winter wheat undergoes a series of physiological and biochemical changes when infected with
powdery mildew. These changes can alter the spectral response characteristics of winter wheat in
the visible and NIR spectral ranges [8]. For instance, compared to normal wheat leaves, a significant
increasing of the raw reflectances of diseased leaves has been found in the visible spectral region,
while a slight decrease was appeared in the NIR region. Meanwhile, for diseased leaves, the “blue
shifiting” phenomenon of red edge positions is significant [53]. In this study, the chosen remotely
sensed VIs (i.e., DSWI, OSAVI, SIWSI, and TVI) exhibit remarkable performance on monitoring of
powdery mildew occurrence. These VIs enable transformation of raw spectra into more meaningful
metrics of disease severity. Existing research indicates that TVI and OSAVI are both suitable for
representing crop characteristics [38,39,42] while DSWI and SIWSI are both sensitive to water stress in
crops at the canopy level [42], which explained their good performance in the monitoring of powdery
mildew occurrence.

Six periods for the extraction of VIs in this study represent the development of powdery mildew
infection in winter wheat [26,34]. The use of backward stepwise elimination method demonstrated
that period 1 and period 3 had negative response in multi-temporal VIs-based models, and the optimal
multi-temporal period group was the composition of periods 2, 4, 5, and 6. The possible reason for
the negative contribution of period 1 is that the wheat plants in period 1 were small, the VIs affected
seriously by the soil background due to the low vegetation coverage [54,55]. On the other hand, the
result also indicated that period 1 may not be sensitive to wheat powdery mildew. Both period 3
and 4 were in the wheat re-greening period (Table 2), but the performance of the two periods in the
multi-temporal monitoring model was completely different (Table 4), which indicated that period 4
was more sensitive to wheat powdery mildew than period 3. It is speculated that the winter wheat
phenological characteristics were the cause of this phenomenon. In the early March (period 3), winter
wheat just entered the re-greening period from the wintering period, the wheat vigor just began to
recover and its nutritional status was poor, which inhibited the development of the pathogens. By the
late March (period 4), winter wheat had grown vigorously, and the pathogens also became active. This
inference is consistent with the infection cycle of wheat powdery mildew [26,27,34]. In our study area,
no matter from our result or local winter wheat biological characteristics, both period 1 and period
3 had little contribution to the occurrence and development of the disease. However, our method is
just a case analysis, the key periods of different areas would be different due to the effect of local crop
phenological characteristics. Therefore, the robustness of our approach needs to be further validated
in future.

In this study, KNN method has been successfully used for the monitoring of powdery mildew
occurrence in winter wheat. No matter based on single-date or multi-temporal VIs, the KNN method
outperformed the CART and BPNN methods, which demonstrated that the KNN [56] model performed
better in describing the local characteristics of wheat field than other two methods (Figures 4 and 5).
For the disease monitoring, the positive contribution of the early wheat growth information was
confirmed in this research by developing models using single-date and multi-temporal VIs. For the
three methods, compared with the single-date based models, the overall accuracies of the homologous
multi-temporal based monitoring models increased by 38.5% (CART), 30.8% (BPNN), and 7.7% (KNN),
respectively. It is reported that there were other factors leading to responses of the same spectral indices
apart from the disease infestations [57]. Hence, the result demonstrated that the multi-temporal VIs not
only enhanced better the wheat disease information, but also eliminated effectively the fluctuation of
indices caused by the phenology, cultivation, and plant condition differences between fields within the
single-date scene. Moreover, compared with the traditional single-date VIs, the multi-temporal VIs set
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produced more reliable nearest neighbor decision for KNN classification. Undesirably, all three
methods had a poor PA (maximum value = 60.0%) for the validation results for slight disease
infection in region 2. This suggests that the methods were unable to monitor lower infection severity.
Different winter wheat cultivars have different response to powdery mildew infection [58], and
intercropping can also influence the occurrence of diseases [59]. However, the field management
(i.e., cultural, phytosanitary treatments, etc.) and wheat variety information across our study area was
very complicated, and the resistance or susceptibility between different varieties was only roughly
reflected in the disease severity in our study. Therefore, in future, more detailed research through
control experiments which include information on pathogen spore concentration, the susceptibility of
winter wheat cultivars, and field management should be considered to improve the model accuracy
and reliability.

Overall, the multi-temporal VIs-based KNN model performed better than existing traditional
models in monitoring occurrence of powdery mildew in winter wheat based on Landsat-8 imagery
data, with a good accuracy of 84.6%. We expect the selection periods to include the whole key periods
of powdery mildew development and to observe the disease’s entire evolution in the entire growth
period of winter wheat. However, due to data limitations, the characteristics of remote sensing in
critical periods of disease infestation were only considered from a phenological perspective in this
study. The occurrence, development, and dispersal of plant diseases are closely associated with local
weather conditions [60–62]. The disease develops rapidly once the weather satisfies certain conditions
and it is inhibited if the weather conditions are not suitable. On the other hand, ground surveys only
collected the powdery mildew occurrence severity in filling period (on May 10 2014, period 6), there
were no corresponding disease occurrence and development situations of other wheat growth periods.
Therefore, our model only monitored the late development of wheat powdery mildew, but the entire
evolution of the disease was not observed. In future research, more disease fieldwork of different
wheat growth periods should be carried out, and the relationship between early growth information
of wheat (i.e., habitat, meteorological conditions, etc.) and disease infestation and evolution should
also be analyzed.

5. Conclusions

This study developed a multi-temporal VIs-based KNN approach based on Landsat-8 imagery to
monitoring powdery mildew in winter wheat. The performance of this approach was evaluated from
two aspects, for one thing, by compared with traditional single-date based methods, the accuracy of
the proposed approach had increased by 7.7%, for another, we also compared this method with the
CART, BPNN, and KNN, which suggested that the multi-temporal VIs-based KNN method has an
excellent performance in monitoring powdery mildew in winter wheat at the regional scale, with the
overall accuracy of 84.6%. This approach provides an evidence for using the satellite observations on
guiding field disease prevention and management. Our future work would focus on: (1) the detection
and classification of multiple diseases at the field scale, and (2) the relationship analysis between early
growth information of wheat (i.e., habitat, meteorological conditions, etc.) and disease evolution.
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