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Abstract: In order to improve the performance of storage and transmission of massive hyperspectral
data, a prediction-based spatial-spectral adaptive hyperspectral compressive sensing (PSSAHCS)
algorithm is proposed. Firstly, the spatial block size of hyperspectral images is adaptively obtained
according to the spatial self-correlation coefficient. Secondly, a k-means clustering algorithm is used
to group the hyperspectral images. Thirdly, we use a local means and local standard deviations
(LMLSD) algorithm to find the optimal image in the group as the key band, and the non-key bands
in the group can be smoothed by linear prediction. Fourthly, the random Gaussian measurement
matrix is used as the sampling matrix, and the discrete cosine transform (DCT) matrix serves as
the sparse basis. Finally, the stagewise orthogonal matching pursuit (StOMP) is used to reconstruct
the hyperspectral images. The experimental results show that the proposed PSSAHCS algorithm
can achieve better evaluation results—the subjective evaluation, the peak signal-to-noise ratio,
and the spatial autocorrelation coefficient in the spatial domain, and spectral curve comparison
and correlation between spectra-reconstructed performance in the spectral domain—than those
of single spectral compression sensing (SSCS), block hyperspectral compressive sensing (BHCS),
and adaptive grouping distributed compressive sensing (AGDCS). PSSAHCS can not only compress
and reconstruct hyperspectral images effectively, but also has strong denoise performance.
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1. Introduction

Hyperspectral images contain both the spatial and spectral characteristics. In recent years,
they have been widely used in agriculture and forestry research, marine monitoring, natural disaster
monitoring, and military reconnaissance [1]. However, with the increasing development of remote
sensing technology, the requirement to increase the resolution of hyperspectral data has led to an
extreme increase in its amount, which has caused tremendous pressure on the transmission and
storage of hyperspectral images [2,3]. Solving this problem can start from the hardware itself, such as
increasing the storage space of the hardware. However, attempting to solve this problem from the
hardware will inevitably raise the cost significantly, and finally turn the problem into an expensive
hardware cost problem. Another feasible means to solve this problem is to perform effective data
compression and solve the problem at the data source in the form of a small amount of information to
represent all the information.

The compressed sensing theory was proposed by Donoho et al. in 2006 [4]. The theory states that
if the signal is sparse itself or in a certain transform domain, the signal can be sampled with much
less data than those of Nyquist sampling criterion, and reconstructed accurately with these sampled
data [5]. Berger [6] pointed out that the high correlation of the signal itself will help improve the
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compression ratio and the reconstructed quality of compressed sensing. Unlike ordinary 2D images,
hyperspectral images contain high interspectral and interspatial correlation. How to make full use of
these characteristics of hyperspectral images to improve reconstruction performance is a hot research
field of hyperspectral compressive sensing. Huang et al. proposed a block compressive sensing
(BCS) of hyperspectral images based on prediction error [7]. Lin et al. proposed a hyperspectral
image compression algorithm based on adaptive band grouping [8]. Zhang proposed a structured
sparsity-based hyperspectral blind compressive sensing (SSHBCS) method to sparsify hyperspectral
images [9]. Spatial autocorrelation coefficients were involved in the strategy of spatial adaptive
partitioning to determine the size of the block [10]. Gao pointed out that the k-means clustering
algorithm was suitable for spectral adaptive grouping [11]. Gaussian measurement matrix [12],
the discrete cosine transform (DCT) sparse dictionary [13,14], and the stagewise orthogonal matching
pursuit (StOMP) algorithm [15,16] were used in the hyperspectral compressive sensing. Xu et al.
proposed an adaptive grouping distributed compressive sensing reconstruction (AGDCS) of plant
hyperspectral data [17]. A sparse and low-rank near-isometric linear embedding (SLRNILE) method
based on the John-Lindenstrauss lemma for dimensionality reduction and to extract proper features
for hyperspectral imagery (HSI) classification [18]. A robust kernel archetypoid analysis (RKADA)
method was proposed to extract pure endmembers from HSI [19], in which each pixel is assumed to
be a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the
image scene. A fast and robust principal component analysis on Laplacian graph (FRPCALG) method
was proposed to select bands of hyperspectral imagery [20].

In our previous research [21], we have developed SSCS technology for plant hyperspectral data in
the spectral domain. Huang et al. introduced BCS for hyperspectral images in the spatial domain [7].
Hyperspectral images have strong spectral and spatial correlations. The compressive sensing of
hyperspectral images using both the spectral and spatial correlations can further improve their sparse
representation, which is also able to improve the accuracy of reconstruction. Therefore, the strategies
of interspatial blocking and interspectral grouping are still needed to be further studied. In order
to further improve the compression and reconstruction performance of hyperspectral compressive
sensing, adaptively interspatial blocking strategy, adaptively interspectral grouping strategy and linear
interspectral prediction technology are integrated to construct the new prediction-based spatial-spectral
adaptive hyperspectral compressive sensing (PSSAHCS) algorithm, which can not only compress and
reconstruct hyperspectral images effectively, but also have strong denoising performance.

In this paper, the row correlation and column correlation of hyperspectral images are studied
according to the spatial autocorrelation coefficients [22], and used to determine the optimal block size.
In addition, after analyzing the interspectral correlation of adjacent bands [22–25], the introduction
of a k-means clustering algorithm [26–28] is used to group the hyperspectral images in the spectral
domain, and all highly correlated bands are divided into the same group. At the same time, it can
be seen that the correlation of some adjacent bands decreases significantly according to the spectral
correlation curve, and that the spectral curves are very jittery near these bands. Gao [11] pointed out
that this phenomenon is caused by the significant absorption of electromagnetic waves in these bands
by the atmosphere, which means that the images in these bands contain a lot of noise. Therefore,
this paper introduced the idea of intragroup prediction to improve the reconstruction quality of these
noise bands. The reference image is chosen in the group, and then the rest of the images in the group
are predicted using the reference image. The residual image can be calculated by using the intragroup
reference image to subtract the intragroup prediction image, and then the residual image is encoded
and compressed. Additionally, the residual image is reconstructed using a reconstruction algorithm.
Finally, the reconstructed image can be obtained by the reconstructed residual image and the reference
image [29].



Sensors 2018, 18, 3289 3 of 17

2. Methods

2.1. PSSAHCS Algorithm

Figure 1 is the flowchart of the PSSAHCS algorithm and experiments. Firstly, the spatial correlation
of hyperspectral images is analyzed and the appropriate ranges of row correlation coefficients and
column correlation coefficients are obtained to determine the spatial block size. Secondly, the spectral
correlation of the adjacent bands is calculated in the spectral domain and the grouping of hyperspectral
images is adaptively decided using the k-means clustering algorithm. Thirdly, the local means and
local standard deviations (LMLSD) criterion is used to choose the optimal band with the lowest noise
as the key band in a group, and the non-keys bands are linearly predicted according to the key bands.
Fourthly, the Gaussian measurement matrix is used to compress key bands, and DCT is used as
the sparse dictionary combining with Gaussian measurement to structure the sensor matrix. Finally,
the reconstruction results are evaluated from the spatial domain and the spectral domain, respectively.
The spatial evaluation is performed from the three perspectives of the subjective evaluation, the peak
signal-to-noise ratio, and the spatial autocorrelation coefficient. The spectral evaluation is performed
using two levels: spectral curve comparison and correlation between spectra.
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2.2. Adaptive Spatial Blocking

Similar to ordinary two-dimensional images, hyperspectral images show a certain spatial correlation.
The spatial correlation of hyperspectral images is caused by the similarities between the local structures of
the objects, adjacent pixels or similar pixels in the same band. The spatial correlation is generally expressed
by the spatial correlation coefficient, η(∆x, ∆y), as follows:

η(∆x, ∆y, z) =
x

fx,y,z × fx+∆x,y+∆y,zdxdy (1)

where fx,y,z represents the gray value of the x-th row and the y-th column pixel in the z-th band. ∆x, ∆y
represent the distances between the target pixel and the current pixel, respectively. Because the above
equation is not convenient for calculation, it is discretized and normalized to the following equation:

η(∆x, ∆y, z) =
∑a

x=1 ∑b
y=1( fx,y,z − fz)× ( fx+∆x,y+∆y,z − fz)

∑a
x=1 ∑b

y=1( fx,y,z − fz)2
(2)

where a and b represent the number of rows and columns of the image, respectively; fz denotes the
average gray level of the z-th band image of the hyperspectral image.

M = min(∆x, ∆y, z) s.t. 0.9 ≤ η(∆x, ∆y, z) ≤ 0.95 (3)

where M is the block size.

2.3. Adaptive Spectral Grouping

2.3.1. Adaptive Spectral Grouping Using k-Means Clustering Algorithm

For the distribution of spectral correlation, high-correlation bands should be divided into the
same group to make full use of the interspectral redundancy. The k-means clustering algorithm is used
to group camellia sinensishyperspectral images.

The basic idea of the k-means clustering algorithm is as follows: In the initial stage, it is necessary
to give k centroids as the initial k cluster centers, and then calculate the distance between each sample
and k centroids. Each class recalculates the mean value as the new k centroids. Finally, repeat the
above steps until the centroids do not change.

In the k-means clustering algorithm, the Euclidean distance is generally used to measure the
distance between the samples and the centroid. For tea hyperspectral images, the distance between
each sample and the centroid can be calculated as follows:

D(zi, zc) =

√
∑a

x=1 ∑b
y=1

(
fx,y,zi − fx,y,zc

)2 (4)

where zi denotes the band, and zc denotes thezc cluster centroid.

2.3.2. LMLSD

After the spectral clustering is grouped, it is necessary to select the image with the least noise
from the group as the key image. In this paper, LMLSD [18] is used to find the minimum noise image
in the group. The calculation equations of LMLSD are as follows:

Mnum(z) =
1

a× b ∑a
i=1 ∑b

j=1 f (i, j, z) (5)

Dnum(z) =

√
1

(a× b− 1) ∑a
i=1 ∑b

j=1( fnum(i, j, z)−Mnum(z))
2 (6)
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R(z) = 20lg
Mmean(z)
Dmean(z)

(7)

In Equation (5), a, b are the row and column of the sub-block image, respectively, z is the z-th band
in the group, fnum is the num-th sub-block, and Mnum is the mean gray value of the num-th sub-block.
In Equation (6), Dnum is the standard deviation of the num-th sub-block. After obtaining the maximum
and minimum values of Dnum, we can get the count of sub-blocks in the same interval, and calculate
the mean gray Mmean and standard deviation Dmean of the all sub-blocks in the interval with the most
sub-blocks. In Equation (7), R is the PSNR value of LMLSD.

2.3.3. Spectral Grouping Based on Linear Prediction

After grouping by the k-means clustering algorithm, there is a high interspectral correlation in
each group, so the linear predictor can be used to predict the images in the group. The linear prediction
model is shown,

fg(x, y) = m× fR(x, y) + n (8)

where fR(x, y) is the gray value of the pixel of the x-th row and the y-th column of the reference image
in the group; fg(x, y) is the gray value of the pixel of the x-th row and y-th column of the image to be
predicted in the group; and m and n are prediction coefficients.

Assuming that the size of the image is a× b, the prediction error of each image to be predicted
can be

ε =

√
1

a× b ∑a
x=1 ∑b

y=1

(
fg(x, y)−m× fR(x, y)− n

)2 (9)

For Equation (9), in order to minimize ε, we need to satisfy Equations (10) and (11):

∂ε2

∂m
= 0 (10)

∂ε2

∂n
= 0 (11)

According to Equations (9)–(11), the solutions for m and n can be obtained respectively, as shown
in Equations (12) and (13):

m =
R
(

fR(x, y), fg(x, y)
)
− u( fR(x, y))× u

(
fg(x, y)

)
R( fR(x, y), fR(x, y))− u( fR(x, y))2 (12)

n = u
(

fg(x, y)
)
−

R
(

fR(x, y), fg(x, y)
)
− u( fR(x, y))× u

(
fg(x, y)

)
R( fR(x, y), fR(x, y))− u( fR(x, y))2 × u( fR(x, y)) (13)

where
R
(

fR(x, y), fg(x, y)
)
=

1
a× b ∑a

x=1 ∑b
y=1 fR(x, y)× fg(x, y) (14)

u( fR(x, y)) =
1

a× b ∑a
x=1 ∑b

y=1 fR(x, y) (15)

u
(

fg(x, y)
)
=

1
a× b ∑a

x=1 ∑b
y=1 fg(x, y) (16)

After the prediction is completed, the prediction residual for a certain pixel is obtained by
subtracting the predicted value from the actual gray value of the pixel. The residual image of the
prediction is compressed, and the reconstructed image is then added to the corresponding predicted
image to obtain the reconstructed image.
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2.4. Stagewise Orthogonal Matching Pursuit Algorithm

The stagewise orthogonal matching pursuit (StOMP) algorithm was proposed by Donoho et al.
in 2012 [30]. The algorithm is an improved algorithm of orthogonal matching pursuit (OMP) [31].
Compared with the OMP algorithm, this algorithm selects multiple atoms per iteration. Therefore,
the number of iterations is lower than that of the OMP algorithm, which greatly improves the
reconstruction efficiency while ensuring the reconstruction accuracy.

2.5. The Evaluation Measures

2.5.1. PSNR

Peak signal-to-noise ratio (PSNR) is chosen to evaluate the reconstructed performance in the
spatial domain; mean square error (MSE) and PSNR are defined by

MSE =
1

a× b× c ∑a
x=1 ∑b

y=1 ∑c
z=1| fori(x, y, z)− frec(x, y, z)|2 (17)

where a, b and c are the row, column and band count of the hyperspectral images, respectively, fori is
the original image, and frec is the reconstructed image.

PSNR = 10× log10
(2n − 1)2

MSE
(18)

where n is the bits of the image.

2.5.2. Interspectral Correlation

The interspectral correlation of hyperspectral images is formed by the reflection of a certain object
in different wavebands, and there is a high correlation between adjacent pixels at the same spatial
position in different bands.

The interspectral correlation in hyperspectral images is usually expressed by the spectral
correlation coefficient ζ(z1, z2). The calculation of the spectral correlation coefficient is shown in
Equation (19):

ζ(z1, z2) =
∑a

x=1 ∑b
y=1( fx,y,z1− f z1

)× ( fx,y,z2− f z2
)√

∑a
x=1 ∑b

y=1 ( fx,y,z1− f z1
)2 ×∑a

x=1 ∑b
y=1( fx,y,z2− f z2

)2
(19)

where z1 and z2 represent different bands of hyperspectral images, respectively.

3. Experimental Results and Discussion

3.1. Data Description

A visible and near-infrared hyperspectral imaging system covering the spectral wavelengths
of 380–1030 nm was used in this study. The system includes an imaging spectrograph, a charge
coupled device (CCD) camera (C8484-05, Hamamatsu City, Japan), a lens, two light sources provided
by two 150 W quartz tungsten halogen lamps and V10E software (Isuzu Optics Corp, Hsinchu County,
Taiwan) for operating the hyperspectral image system. The area CCD array detector of the camera has
6726512 pixels and the spectral resolution is 2.8 nm. The data used in the experiment are hyperspectral
images of 12 pieces of camellia sinensis. A single pixel is defined by a 12-bit unsigned integer and the
resolution of the processed image is 128 × 256.
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3.2. Performance Evaluation in the Spatial Domain

3.2.1. Subjective Performance Comparison

SSCS, block hyperspectral compressive sensing (BHCS), AGDCS and PSSAHCS are also used to
give the experimental results. Figure 2 shows the original images of the 440 nm, 620 nm and 980 nm
bands. Figures 3–14 show the reconstructed hyperspectral images of the 440 nm, 620 nm and 980 nm
bands at different bit rates for different algorithms. It can be seen from Figures 3–14 that the subject
quality of the reconstructed hyperspectral images at different bit rates become better, especially for
the details such as edges, veins, leaf stems and so on, when the bit rate rises for all algorithms. At the
same time, it can be seen that for the 620 nm image with no significant noise, BHCS and PSSAHCS can
achieve a good reconstruction effect for different bit rates. For the reconstructed 440 nm and 980 nm
images with significant noise, there is “edge effect” for SSCS, BHCS and AGDCS at low bit rates, while
PSSAHCS can denoise effectively. Therefore, PSSAHCS can not only retain the details of the original
image, but also remove the noise effectively at different bit rates.Sensors 2018, 18, x 7 of 17 
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3.2.2. The Peak Signal-to-Noise Ratio (PSNR) Performance Comparison

Figure 15 shows the PSNR of the reconstructed hyperspectral images of the 440 nm, 620 nm
and 980 nm bands at different bit rates for different algorithms. As it can be seen from Figure 15,
with the increase of the bit rate, the fidelity of reconstructed images of all algorithms can be improved.
The reconstructed PSNRs of PSSAHCS for most bands are significantly higher than those of SSCS
and BHCS at different bit rates. Table 1 shows that the average PSNR of most bands of PSSAHCS are
significantly higher than those of SSCS, BHCS and AGDCS at the same compression rates.
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Figure 15. PSNR of reconstructed images at different bit rates for different algorithms. (a) SSCS; (b) BHCS;
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Table 1. The average PSNR of reconstructed tea hyperspectral images at different bit rates.

Different Algorithms

Average PSNR of Reconstructed Tea Hyperspectral Images (dB)

Bit Rates

0.10 bpp 0.15 bpp 0.20 bpp 0.25 bpp

SSCS 31.0994 32.4488 33.3739 33.5721
BHCS 32.2594 32.8965 33.4452 33.6834

AGDCS 32.5154 32.8186 33.0399 33.3976
PSSAHCS 34.6838 34.9093 35.0225 35.0945
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Table 1 shows the average PSNR for the different algorithms at different bit rates. PSSAHCS can
achieve about 2 dB higher average PSNR than that of SSCS, BHCS and AGDCS.

3.2.3. Comparison of Spatial Correlation

Spatial correlation is one of the characteristics of hyperspectral images. Figures 16–18 show the
row and column correlation curves of the reconstructed hyperspectral images of 440 nm, 620 nm and
980 nm of different algorithms at different bit rates. It can be seen that the row correlation and column
correlation curves of reconstructed tea hyperspectral images and the original images show the same
trend, that is, as the interval increases, the correlation drops. In addition, the row correlations and
column correlations of different reconstructed algorithms at 440 nm and 980 nm are higher than the row
correlations and column correlations of the original image. This is because the StOMP reconstruction
algorithm has a certain denoising ability, and the correlation is obviously improved after denoising.
Moreover, it also shows that the row correlation and column correlation of PSSAHCS is slightly higher
than that of SSCS, BHCS and AGDCS for different bands.
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Figure 16. Row and column correlations for the 440 nm band of different algorithms. (a) Row correlation
of SSCS; (b) column correlation of SSCS; (c) row correlation of BHCS; (d) column correlation of BHCS;
(e) row correlation of AGDCS; (f) column correlation of AGDCS; (g) row correlation of PSSAHCS;
(h) column correlation of PSSAHCS.
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Figure 17. Row and column correlations for the 620 nm band of different algorithms. (a) Row correlation
of SSCS; (b) column correlation of SSCS; (c) row correlation of BHCS; (d) column correlation of BHCS;
(e) row correlation of AGDCS; (f) column correlation of AGDCS; (g) row correlation of PSSAHCS;
(h) column correlation of PSSAHCS.
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Figure 18. Row and column correlations for the 980 nm band of different algorithms. (a) Row 
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Figure 18. Row and column correlations for the 980 nm band of different algorithms. (a) Row correlation
of SSCS; (b) column correlation of SSCS; (c) row correlation of BHCS; (d) column correlation of BHCS;
(e) row correlation of AGDCS; (f) column correlation of AGDCS; (g) row correlation of PSSAHCS;
(h) column correlation of PSSAHCS.

3.3. Comparison in the Spectral Domain

3.3.1. Comparison of Spectral Curve

A spectral curve is an important way to describe and distinguish different features in hyperspectral
images. Figure 19 shows the reconstructed spectral curves of different algorithms at different
compression rates. It can be seen that the reconstructed spectral curves of different algorithms
are closer and closer to the original spectral curves as the compression rate increases. PSSAHCS puts
similar bands into the same group, and then uses the prediction algorithm to perform linear prediction
to improve the degree of linearity within the group. Therefore, the reconstructed spectral curves
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of PSSAHCS are obviously smoother than those of SSCS, BHCS and AGDCS at different bit rates.
At the same time, the linear prediction algorithm plays a role in removing noise and is useful for
hyperspectral imagery.
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3.3.2. Spectral Correlation Comparison

Interspectral correlations of hyperspectral images are actually much higher than their spatial
correlations. Figure 20 shows the spectral correlation curves of reconstructed tea hyperspectral images
of different algorithms at different compression rates. It shows that the ends of the spectral correlation
curves of original tea hyperspectral images decrease significantly. Additionally, the interspectral
correlations of reconstructed tea hyperspectral images of PSSAHCS are better than those of SSCS,
BHCS and AGDCS, especially for those bands with wavelengths larger than 700 nm.



Sensors 2018, 18, 3289 15 of 17
Sensors 2018, 18, x 15 of 17 

 

  
(a) (b) 

  
(c) (d) 

Figure 20. Interspectral correlation of reconstructed tea hyperspectral images for different algorithms 

at different compression rates. (a) SSCS; (b) BHCS; (c) AGDCS; (d) PSSAHCS. 

4. Conclusions 

Spatial adaptive blocking, which is based on the row and column correlations of hyperspectral 

images, can utilize the spatial correlation effectively. Spectral adaptive grouping divides the bands 

with high spectral correlation into the same group, so that it can make full use of interspectral 

correlation. Moreover, the prediction-based strategy is based on the linear model to denoise the 

hyperspectral images significantly. Therefore, the proposed PSSAHCS algorithm shows huge 

potential for hyperspectral images. 

Author Contributions: Conceptualization and Methodology, P.X.; Software and Validation, B.C.; Supervision, 

J.Z. and L.Z.; Funding Acquisition, L.X. and J.Z. 

Funding: This project was funded by the State Scholarship Fund of China Scholarship Council, the Joint Funds 

of National Natural Science Foundation of China under Grants No. U1609218, the National Key Foundation for 

Exploring Scientific Instrument of China under Grants No. 61427808, the National Nature Science Foundation 

of China under Grants Nos. 41671415 and 61205200, and Zhejiang public welfare Technology Application 

Research Project of China under Grants No. 2016C32087. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 20. Interspectral correlation of reconstructed tea hyperspectral images for different algorithms
at different compression rates. (a) SSCS; (b) BHCS; (c) AGDCS; (d) PSSAHCS.

4. Conclusions

Spatial adaptive blocking, which is based on the row and column correlations of hyperspectral
images, can utilize the spatial correlation effectively. Spectral adaptive grouping divides the bands
with high spectral correlation into the same group, so that it can make full use of interspectral
correlation. Moreover, the prediction-based strategy is based on the linear model to denoise the
hyperspectral images significantly. Therefore, the proposed PSSAHCS algorithm shows huge potential
for hyperspectral images.
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