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Abstract: Fog computing, which places computing resources close to IoT devices, can offer low latency
data processing for IoT applications. With software-defined networking (SDN), fog computing can
enable network control logics to become programmable and run on a decoupled control plane,
rather than on a physical switch. Therefore, network switches are controlled via the control plane.
However, existing control planes have limitations in providing isolation and high performance,
which are crucial to support multi-tenancy and scalability in fog computing. In this paper, we present
optimization techniques for Linux to provide isolation and high performance for the control plane
of SDN. The new techniques are (1) separate execution environment (SE2), which separates the
execution environments between multiple control planes, and (2) separate packet processing (SP2),
which reduces the complexity of the existing network stack in Linux. We evaluate the proposed
techniques on commodity hardware and show that the maximum performance of a control plane
increases by four times compared to the native Linux while providing strong isolation.

Keywords: fog computing; software-defined networking; Linux network stack

1. Introduction

The low latency requirement of the Internet of Things (IoT) has introduced a new computing
paradigm called fog computing that places a small to medium size of computation resources (e.g., compute,
storage and networking elements) close to IoT devices [1,2]. Despite the massive computing power of
traditional cloud computing, IoT applications can suffer from large latency when they utilize traditional
cloud computing for data processing [3]. This is because cloud data centers may be distant from
latency-sensitive IoT devices [4]. Fog computing resources can be accessed by IoT devices at a one-hop
distance, so that they can process delay-sensitive data generated from IoT devices in a timely
manner. IoT application developers can offload expensive computation tasks from their devices
to fog computing [2], which bridges a distant central cloud and IoT devices [1]. Several studies on fog
computing platforms have been proposed as follows: ParaDrop [5], Mobile fog [6] and Cloudlets [7].

Software-defined networking (SDN) introduces a new networking architecture that separates
control planes and data planes: the former manage network switches and the later forward network
packets. The SDN architecture allows network operators or cloud providers to control remote network
switches with a global network view in a centralized manner. A control plane consists of an SDN
controller and control applications. The SDN controller provides abstractions, essential services
and common application programming interfaces (APIs) to the control applications [8,9]. Based on the
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information and services provided by the controller, control applications determine the behavior of
data planes at runtime.

The programmable characteristic of SDN offers several advantages such as flexibility and
scalability, which can satisfy application-specific requirements of fog computing such as low
latency [10]. For example, SDN controllers can construct virtual networks of different tenants to
isolate network traffics from each other [1] and perform load balancing to distribute traffic loads
between different fog nodes to guarantee latency-sensitive data processing [2].

Both SDN controllers and control applications run as separate processes in user-space on an
operating system (OS), such as Linux. Since existing OSs including Linux are not designed for SDN
controllers and control applications, they face several issues as follows.

• Lack of isolation: Recent studies [11–15] report that rapidly developed prototype control
applications can go awry. Furthermore, third-party control applications can contain unexpected
vulnerabilities, fatal instabilities or even malicious logic. These malfunctioning control planes
can affect other tasks running on the same physical machine. In particular, when different virtual
networks are simultaneously constructed [16,17], the faulty control planes can cause the crash
of the entire system, which leads to the loss of network control. This is because existing OSs
run control planes as user-level processes and do not provide additional access control or an
isolated execution environment. Therefore, it becomes necessary to provide strong isolation in the
execution environment of control planes.

• Low performance: OSs are designed to support various applications including control planes,
which offer a variety of network functions such as encryption/decryption, firewall and rate
limiting. Every packet arriving at the system must go through the entire network stack of the
OS before reaching the SDN controller. Moreover, incoming packets must wait to be processed
in order by the corresponding SDN controller. This is due to the fact that the existing network
stack processes packets one by one. Thus, incoming packets can be dropped, when packets
arrive successively at high speed [18]. This can result in serious performance degradation of the
SDN controller.

Previous studies [11–15,19–23] introduced several techniques to provide isolation and high
performance of control planes. They mainly focused on re-designing the controller architecture.
For example, Drutskoy et al. [20] utilizes container virtualization to separate multiple control
applications on a shared SDN controller platform, while Shin et al. [11] develops context separation
between control applications and the SDN controller. Even though these studies prevent faulty
control applications from affecting the SDN controller, they cannot isolate multiple SDN controllers of
different tenants. In order to assure the integrity of multiple SDN controllers, a trust-oriented controller
proxy (ToCP) [12] is suggested. ToCP provides trustable network environments by inspecting control
messages of different SDN controllers. While these techniques improve the degree of isolation, in
return, they increase performance overhead significantly in processing control messages because
they need an additional layer or components between control and data planes. This can impede
latency-sensitive data processing in fog nodes, which cannot meet the low delay requirement of
fog computing. In addition, re-designing the controller architecture [19,24] can improve controller
performance, but has limitations because the performance bottleneck in the network stack of OSs
still exists.

In this paper, we investigate how to achieve both isolation and high performance for control
planes simultaneously. This paper presents an innovative approach that focuses on optimizing the OS
that executes control planes rather than modifying the internal architecture of control planes. Previous
studies modified the detailed operations of control planes such as how to manage control applications
on SDN controllers or how to deal with control messages from network switches to improve control
planes in terms of isolation and performance. However, these studies have limitations because the SDN
controllers and the control applications run as user-level processes on OSs such as Linux. Therefore,
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the degree of isolation and the baseline of performance improvement depend on the OS running the
control planes. For further enhancement of isolation and performance, this paper develops the separate
execution environment (SE2) and separate packet processing (SP2), which implement the optimization
techniques at the OS level, which is entirely different from existing approaches. In particular, this paper
focuses on developing optimization techniques for Linux, which is the most popular OS for the
deployment of control planes (Even though this paper presents optimization techniques for Linux, the
fundamental approaches in this paper can be applied to other OSs such as FreeBSD and Windows).
Furthermore, while developing SE2 and SP2, we maintain the semantics of Linux, such as abstracting
system resources and widely-used APIs.

First, we construct SE2 to provide an isolated execution environment to a control plane. We use
virtual machine (VM) abstraction so that SE2 logically isolates the resources of the control planes and
avoids interference between multiple control planes concurrently running on a physical machine.
Using VM abstraction has the following advantages. (1) When different control planes owned
by different tenants run concurrently [25], SE2 can provide an isolated execution environment to
each control plane. This enables each tenant to run its own control plane. (2) In previous studies,
control planes ran as user-level processes that shared the same OS, so that control planes running
simultaneously could interfere with each other. In SE2, a control plane does not access physical
resources directly, and so, SE2 can also prevent the failure of a control plane from affecting others.
(3) VM abstraction can improve the resource efficiency of physical resources in a data center by
consolidating multiple control planes in the same physical machine.

However, VM abstraction brings the virtualization overhead to the control plane, which degrades
packet processing performance. In order to minimize the virtualization overhead and improve
packet processing performance, we proposes a novel packet processing routine called SP2. SP2 is a
software-based optimization technique, rather than using hardware support, such as virtualization
extension of special network interface cards (NICs). Other studies on high performance packet
processing introduced an approach that bypasses the network stack of Linux [26,27]. However,
because the bypassing approach develops new APIs for fast packet processing, existing control planes
need to be modified to include the new APIs. On the other hand, SP2 maintains existing Linux
APIs while achieving high performance in packet processing. SP2 reduces packet processing time
by dividing the Linux network stack into two parts; a minimized poll function (MPF) that delivers
received packets to kernel memory space and a protocol handler (PH) that processes TCP/IP headers.
First, the MPF copies the data of received packets to a lock-free queue (LFQ) for the PH. Then, the PH
invokes appropriate protocol handlers depending on the type of received packets. Using the LFQ,
SP2 removes the use of spin lock in delivering the data of received packets from the MPF to the PH in
order to reduce packet processing overhead. In addition, we utilize a pre-allocated reusable buffer and
batching operation that reduces dynamic memory access (DMA) mapping/unmapping and memory
allocation which are the major packet processing overheads.

We implement SE2 and SP2 on a Linux kernel and evaluate their benefits in terms of throughput.
By reducing the overhead from virtualization of SE2, SP2 increases packet processing performance by
four times compared to an existing controller running on native Linux [19].

The remainder of this paper is organized as follows. We explain existing solutions in Section 2.
Section 3 presents our system design. Section 4 describes our prototype implementation. Section 5
shows the evaluation results of our prototype, and Section 6 concludes the paper.

2. Related Work

Diverse SDN controllers: SDN controllers are critical elements in the SDN architecture, which
generates the network configuration for the control applications. There is a diverse set of SDN
controllers in their design principles and architectural choices. Table 1 classifies existing SDN
controllers with their respective architectures and characteristics. Each SDN controller can be on
different programming languages, including Java, Python and Ruby, requiring different libraries,
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but most SDN controllers run on Linux. In addition, different SDN controllers show various
performances depending on their architecture from 100 k–6000 k packets per second [9], but they are
insufficient to be deployed in larger scale networks. Therefore, even though SDN brings numerous
advantages from its flexibility, it is critical to improve the performance [28], especially control planes.

Table 1. SDN controllers with programming language, target operating systems, general architecture
and the type of northbound API.

Name Programming Language Operating Systems Architecture Northbound API

Beacon [29] Java Linux centralized multi-threaded Ad hoc API
DISCO [30] Java Linux, Mac OS distributed REST

Floodlight [31] Java Linux, Mac OS centralized multi-threaded RESTful API
HP VANSDN [32] Java Linux (Ubuntu) distributed RESTful API
HyperFlow [33] C++ Linux distributed N/A

Onix [34] Python, C N/A distributed NVP NBAPI
Maestro [35] Java Linux (Ubuntu 32bit) centralized multi-threaded Ad hoc API
Meridian [36] Java Linux, Mac OS centralized multi-threaded extensible API layer

NOX [37] C++ Linux centralized Ad hoc API
NOX-MT [19] C++ Linux centralized multi-threaded Ad hoc API

OpenDaylight [38] Java Linux distributed REST, RESTCONF
OSDN controller [39] Java OS X (Mavericks and later), Linux (Ubuntu 64 bit) distributed RESTful API

PANE [40] Haskell OS X (10.6 and up), Linux (Ubuntu) distributed PANE
POX [41] Python Windows, Mac OS, and Linux centralized Ad hoc API

RyuSDN controller [42] Python Linux centralized multi-threaded Ad hoc API
SMaRtLight [43] Java Linux distributed RESTful API

Support for multiple control planes: As control planes become diverse, research on how to
support multiple control planes has become important. FlowN [20] provides a container-based tenant
logic to control each virtual network, which consolidates multiple control applications. It creates virtual
networks by using a database storage system to maintain a physical-virtual mapping for network
elements. Tenants can share an SDN controller, and the control applications of each tenant are isolated
from each other using an abstraction called container. However, because control applications must be
embedded in the FlowN controller, a tenant is constrained to develop the control application using the
FlowN framework. Similar to FlowN, Sasaki et al. [44] adopted a container virtualization technique to
provide isolation between control planes, which executes a control plane in a container that runs as a
user-level process. Even though the container-based architecture enables running multiple control
planes concurrently, it cannot entirely prevent control planes from affecting each other. This is because
multiple containers running concurrently share the same OS such as Linux. For example, when
a container performs packet transmission, Linux disables softirq, which is a part of the interrupt
processing [45]. As a result, other containers have to wait in order to receive packets that are processed
in softirq until the prior packet transmission of the container is finished. On the other hand, previous
work [46] allows multiple controllers based on different platforms to cooperate on managing the same
shared traffic by compiling different policies in an incremental manner. However, CoVisor does not
consider interference among controllers in terms of computing resources and performance, which can
cause severe performance degradation or security issues.

Lack of robustness and security in a control plane: With the increasing number of SDN
controllers and control applications, the robustness and security of existing SDN controllers and
control applications are of concern owing to unexpected vulnerabilities, fatal instabilities or malicious
logic [11,23]. Because control planes are made of software, bugs are, in a sense, inevitable. When a
buggy control application or SDN controller performs a faulty action and crashes, it can affect other
SDN controllers or control applications in the same physical machine, leading to a loss of network
control. Fixing bugs of control planes is time consuming and difficult, especially in a distributed
environment [13]. Moreover, there is a critical risk that a malicious user will take over the network
control by exploiting the programmability of control planes using the SDN API or tampering with
control applications running on the SDN controller [12].

Previous research [11,12,23] presented solutions to improve the robustness and security of
controllers. Betge et al. [12] presented a trusted execution environment for SDN controllers to prevent a
malicious user from manipulating the control plane. The trusted execution environment in [12] utilized
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additional controllers and a network hypervisor to inspect control messages of control planes. However,
this requires extra resources such as additional controllers and a network hypervisor, which brings
additional performance overhead from 20–30%. Therefore, this paper aims to prevent a faulty control
plane from affecting other tasks with minimal resource consumption and performance overhead.

Performance improvement of a control plane: Tootoonchian et al. [19] pointed out that the
performance of existing SDN controllers is not sufficient for deployment in an actual network
environment. Therefore, they presented a multi-threaded SDN controller that handles up to 1.2 million
requests per second. Even though they showed impressive performance improvement by optimizing
the SDN controller itself, their system does not fully support the peak load of control packets in a
large network [47]. Wang et al. [48] proposed a flow re-directing technique to minimize the response
time of control planes in data centers. However, flow re-directing imposes additional burdens on the
network devices when it is applied to fog networking. For example, flow re-directing requires
periodic information updates in all network devices. Because fog networking includes various
types of network devices such as resource-constraint gateways, the additional operation for the
information update can affect the packet delivery performance. Some studies modify the OpenFlow
control message operation to reduce flow setup latency and boost network throughput [24] or utilize
hardware, such as a multi-core architecture [49] or a GPU [22]. However, those studies did not
resolve the performance bottleneck in Linux, which limits the baseline of performance improvement.
Our optimization techniques improve the performance baseline even better by optimizing the network
stack in Linux, and so, other techniques for SDN controllers can benefit from our techniques.

Previous studies developed techniques to overcome the limitations of existing SDN controllers in
terms of isolation and performance. However, they focused on enhancing the internal architecture of
SDN controllers or introducing additional components, which still limits the degree of isolation
and performance. In terms of isolation, existing techniques are still implemented as user-level
processes. As SDN controllers running on the same physical server share the same OS such as
Linux, a misbehaving controller can affect others quite easily. With regard to performance, because
major performance bottlenecks in the network stack of the OS were not resolved in the previous work,
their improvement is limited by complex network processing of the existing OS.

We aim to overcome the limitations of control planes running as user-level processes by developing
two optimization techniques for Linux: SE2 and SP2. SE2 provides stronger isolation between control
planes using virtual machine abstraction, which offers an independent Linux environment to each
control plane in order to prevent a controller from affecting other control planes. Furthermore, SP2
revises the existing network stack of Linux and offers faster packet processing for control planes.

3. Design

This paper presents two optimization techniques for Linux specifically to enhance the isolation and
performance of control planes in SDN. In this section, we describe the design goals of our approaches
and explain the details of the proposed techniques.

3.1. Design Goals

In developing optimization techniques, we focus on three principal goals as follows.

• Running existing SDN controllers and control applications without modification: Most of the
SDN controllers and control applications are based primarily on Linux. To be compatible with
existing SDN controllers and control applications, we maintain standard Linux APIs.

• Providing isolated execution environments while removing dependency on specific hardware:
To be used in an existing SDN deployment, we provide a general execution environment
architecture, which is not dependent on specific hardware. In addition, the control plane in
the execution environment does not affect other control planes, when multiple control planes are
co-located in the same physical server.
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• Guaranteeing high control plane performance compared to existing Linux: Even though several
studies improved the control plane performance, they focused on optimizing the control plane itself,
leaving room for further improvement: the Linux kernel. We aim to achieve high performance of
control planes during packet processing by optimizing the network stack of Linux.

By satisfying three design goals, SE2 and SP2 can improve the deployment and the network
performance of fog computing. First, SE2 allows different types of networks in the fog such as 3G, LTE
and WiFi to be managed simultaneously in an independent manner by running multiple controllers in
each isolated environment. In addition, when virtual networks interconnect geographically-dispersed
fog clouds, SE2 can offer different execution environments to the control plane of each virtual network.
This enables the tenants of different virtual networks in the fog to control their own virtual network
independently of other virtual networks. For example, when a smart grid management application
and a smart lighting application construct their own virtual networks individually, SE2 allows the
two virtual networks to be managed independently by employing their different control planes in
each isolated environment. Second, the high performance of control planes can result in low service
latency in fog computing. Because the service latency is determined by network delay, it is important
to deliver data from IoT devices to a destination as fast as possible. When a switch receives a packet of
a service, the switch asks the control plane where the packet should be sent. The packet remains in the
switch until the switch receives the corresponding answer from the control plane, which increases the
service latency. SP2 improves the performance of existing control planes, which can reduce the service
latency in fog computing.

3.2. SE2: Isolated Execution Environment

To provide an isolated execution environment to control planes, we develop SE2 using VM
abstraction. VM abstraction provides a separate execution environment compared to process abstraction
because each VM runs in its own hardware protection domain, which provides strong isolation between
VMs [50]. VM abstraction separates the memory space of each control plane and provides each VM
with the separate memory address space. The actual memory address of each control plane in the VM
abstraction cannot be accessed by another control plane or external users (In general, the physical
address of a process can be identified by using virtual-physical memory mapping in process abstraction.
However, the physical address of the control plane in VM abstraction should be translated into the
actual machine address by using a shadow page or hardware assistance. Therefore, it is difficult to
identify the physical address in VM abstraction without the help of the hypervisor.).

Let us suppose that two tenants A and B have their own virtual networks [51] and run their control
planes in different execution environments provided by SE2. When the control plane of Tenant A crashes
due to malformed control packets, it should not affect the network control of Tenant B. An advantage
of using VMs is that VMs are managed by a hypervisor, and if the hypervisor proves to be trustworthy,
control planes in VM abstraction can be protected from malicious attacks. Moreover, reports on common
vulnerabilities and exposures (CVE) [52] indicate that the number of vulnerabilities of Xen, a representative
open source hypervisor, is much smaller than that of Linux. This shows that Linux is very prone to be
compromised or to be offended by an attack because of its complex architecture and large code size.

Though VM abstraction offers strong isolation between multiple control planes, it also brings
performance overhead in network processing. This is because the driver domain intervenes in network
processing of VMs [53]. The driver domain has privileged access to the device hardware, so it delivers I/O
requests of VMs, such as packet transmission and reception, to the corresponding hardware. Because of
additional memory copies and context switching between the driver domain and VMs, packet processing
requires significant CPU cycles in VM abstraction. As a result, the network performance of a VM
environment degrades by up to 65% compared to a non-virtualized environment [54].

In order to overcome the performance issue of VM abstraction, the single root I/O virtualization
(SR-IOV) [55] technology is utilized in SE2. SR-IOV is a part of the Peripheral Component Interconnect
(PCI) specification, which allows VMs to access the device hardware directly without the driver
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domain. We configure each VM to have a virtual NIC (vNIC) per control plane with SR-IOV, and each
vNIC serves as an independent path from a VM to the physical NIC and vice versa. A goal of our SE2
design with SR-IOV is to eliminate the packet delivery delay caused by VM abstraction. In addition,
SE2 can enforce isolation of control planes by adopting SR-IOV, because packets of each control plane
bypass the network stack of the driver domain [56].

Figure 1 shows the architecture of SE2. The dotted line is the route that is used to set the network
environment, and the black solid line shows the route for the data. A physical NIC has one physical
function (PF) and multiple virtual functions (VFs), up to 64. The PF is a PCI function of a physical
NIC that supports the SR-IOV capability. The vNIC manager in the physical NIC driver is responsible
for configuring and offering VFs. A VF is associated with the PF on the physical NIC and represents
a virtualized network interface of the physical NIC. SE2 utilizes VFs and assigns a VF to a control
planes in the form of a vNIC. The creation and setting of a VF must be carried out by the virtual
NIC manager to protect the vNIC from unauthorized access. The vNIC of a control plane sends and
receives packets directly from the reception (RX) and transmission (TX) queues of the corresponding
VF. For instance, when a control plane transmits a packet, it puts the packet in the TX queue of the VF
through its vNIC. In contrast, when a control plane receives a packet, the packet is directly delivered to
the corresponding RX queue of the control planes’ VF. As a result, in the SE2 architecture with SR-IOV,
virtualization overhead from using VM abstraction is minimized by providing direct access to packet
transmission and reception hardware.

SE2 can provide performance isolation between control planes by configuring the transmission
rate of each VF individually. When Tenant A needs to handle a larger number of control packets
compared to Tenant B, SE2 can provide different performance to each tenant by assigning a higher
transmission rate to Tenant A than Tenant B. Using SE2, an administrator can manage resource
allocation according to the purpose and dynamic traffic load of different control planes.

Figure 1. The separate execution environment (SE2) is enabled by the virtual network interface card
(vNIC) manager that assigns a virtual function (VF) to each control plane. PF, physical function.

3.3. Separate Packet Processing

It is quite well known that the Linux network stack impairs the network performance due to
unnecessary protocol handling and memory management overheads inside the kernel itself [57].
This degrades the packet processing performance of the control plane running on Linux. The reason
for the low packet processing performance is that all control packets must go through the network
stack in Linux before arriving at the corresponding control plane. When a control plane receives a
request from a data plane, it is important to respond to the request quickly. For example, when a data
plane sends a request to a control plane for routing information about a newly arrived packet, it cannot
process the packet until receiving the corresponding reply from the control plane.
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Previous research [18,26,27] aimed to solve the performance issue of Linux through bypassing
the network stack of Linux in packet processing. By allowing user-level processes to access physical
network interfaces directly, they accelerate packet processing performance dramatically. However,
they require several dedicated physical cores for polling in order to process incoming/outgoing
packets [16,58]. In addition, existing techniques based on bypassing the Linux kernel cause control
planes’ interference with each other, because they utilize a large memory pool, which is shared by
all processes and VMs running on the same physical machine [59]. For example, when a packet for a
control plane is received in the memory pool, it can be manipulated by other control planes because
every control plane on the physical machine has access to the memory pool.

Different from existing approaches that bypass the network stack of Linux, we do not change
the fundamental semantics of Linux, but only optimize the network stack of Linux for performance
improvement. We develop SP2, which divides complex packet processing into two stages in order
to reduce packet processing time in Linux. By optimizing the packet processing routine of Linux,
we improve the performance of control planes while preventing control planes from affecting each
other. The rest of this section explains the original network processing routine of Linux in detail and
presents how the routine is optimized in SP2.

The packet processing routine in Linux consists of dynamic memory access (DMA) operations and
CPU operations, as depicted in Figure 2. At initialization, Linux allocates buffers (RX and TX Rings) to
store packet descriptors for RX and TX ((1) in Figure 2). Then, Linux notifies the NIC of the allocated
descriptors by writing the addresses of the descriptors into registers in the NIC (2); and DMA fetches
new descriptors (3). When a packet arrives in the NIC (4), DMA writes the received packet in the
memory space connected to the fetched descriptor (5). The NIC generates a hardware interrupt for
packet reception after the write operation of DMA (6). By this hardware interrupt, Linux generates a
software interrupt, and its corresponding software interrupt handler (softirq) is called.

Main 

Memory

NIC

RX Ring

Packet Packet

6. Hardware Interrupt

1. CPU allocates packet buffers 

and build descriptors

5. DMA writes the received packet

3. DMA fetches 

descriptors

4. Packet 

arrives

CPU

Interrupt 

Service 

Routine

SoftIRQ

handler

7. Software 

Interrupt

Poll 

Function

Protocol 

handler

8. Scheduling 2. CPU tells NIC there are new descriptors 

(write to register)

Top Half

Figure 2. Network processing routines in Linux consist of dynamic memory access (DMA) and
CPU operations.

For the efficiency of handling interrupts, an existing interrupt handler is divided into two routines
called top half and bottom half. The top half includes an interrupt service routine (ISR) that deals with
the hardware interrupt generated by the NIC. It only generates a software interrupt, and the top half
is then terminated. Afterward, the bottom half starts by calling the softirq handler, which is a kernel
thread called ksoftirqd. The bottom half is responsible for connecting the descriptor of a packet to its
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associated socket buffer structure, and it then calls protocol handlers (e.g., MAC, IP and TCP protocol
handlers). The separate interrupt processing reduces the processing delay of hardware interrupts
through fast ISR processing of the top half.

However, when a control plane receives packets at high speed, incoming packets can be dropped
because of the long packet process routine in the bottom half. This is because when the speed of
incoming packets is faster than the packet processing time, the RX buffers in the NIC become full
and cannot store more incoming packets. If a request from data planes gets dropped, the data planes
cannot receive necessary information such as routing information. This results in the loss of network
control and affects data processing in fog nodes.

To overcome the limitation of the existing packet processing routine in Linux, we develop SP2,
separate packet processing. Different from the bottom half that processes incoming packets one by one
in a single path, SP2 handles packets in two stages with batching. First, SP2 divides the bottom half
into two parts; a minimized poll function (MPF) and a protocol handler (PH) as depicted in Figure 3.
The MPF and the PH run as an individual kernel thread; the MPF is run in the ksoftirqd kernel thread,
and the PH is run in a new thread called the SP2 thread. Then, SP2 utilizes a lock-free queue (LFQ) for
transferring the data of incoming packets between ksoftirqd and the SP2 thread.

The MPF only copies incoming packets continuously to the LFQ for the PH. The LFQ gets rid of
unnecessary spin lock overhead when the MPF transfers the incoming packets to the PH. Moreover,
incoming packets do not get dropped because the MPF keeps moving incoming packets from the RX
buffers in the NIC to the LFQ. The PH performs packet processing including checksum validation
and firewalling and delivers the packets to the control plane. When the PH delivers the packets to the
control plane, it does not copy the packets one by one. When packets are bound to the same control
plane, the PH copies multiple packets at once. Furthermore, we exploit the multi-core architecture of
modern servers by allocating separate CPU cores to each of the MPF and the PH. Even though the MPF
and the PH run in different CPU cores in parallel, they do not require lock operations for transferring
packets. This is because the MPF and the PH work as a single-producer and a single consumer,
respectively. Through the separation of the bottom half process, SP2 reduces packet processing time in
Linux and prevents performance degradation of the control plane.

Reusable huge buffer: In addition to the separation of the packet processing routine, we adopt
a huge reusable buffer, which is a technique used for high speed packet processing. This reduces
overhead for memory allocation in packet processing, as depicted in Figure 4. Different from previous
studies [18,26], SP2 does not allocate a huge buffer for every process on a server. A huge reusable
buffer is assigned to each control plane individually in order not to allow a control plane to have access
to the huge buffer of another control plane.

In Linux, every time each packet is received or transmitted, memory allocation overhead is caused
by DMA. Every time a control plane receives a packet, a DMA operation for copying the packet from
the device to main memory is required. Then, a page for the packet is allocated in main memory,
and the mapping function is called to translate the virtual address for the page to its physical address.
The physical address is then sent to DMA. After DMA finishes copying, the page is unmapped from
DMA and de-allocated. This increases packet processing time of control planes and brings severe
performance degradation when incoming packets arrive at high speed. This is because the DMA
operation is performed repeatedly for every incoming packet [18]. In order to reduce the overhead
from a DMA mapping/unmapping operation, SP2 enables a vNIC to allocate a huge reusable buffer in
the VM abstraction and to call the mapping function for DMA at initialization of the driver.

Our huge reusable buffer consists of a ring buffer with 65,536 entries. The size of each entry is
1500 bytes, which is sufficiently large to store one Ethernet packet. The mapping function delivers
the start address and the total length of the buffer to DMA. DMA then writes and reads data from
the start address of the buffer to its end. After all data in the buffer are written and read, the buffer
is not de-allocated and used continuously for other DMA requests until the system is terminated.
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This eliminates memory allocation and mapping overhead for DMA by minimizing the number of
function calls.

SoftIRQ handler

Poll Function

Protocol handler

Deliver to the 

control plane

First part 

of SP2

Second part 

of SP2

Figure 3. Separate packet processing (SP2) divides network processing routines into two stages,
a minimized poll function (first part) and a protocol handler (second part).
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Figure 4. The huge reusable buffer allocates a memory pool for incoming packets at the initialization
of SP2.

4. Implementation

The implementation environment is configured as follows: SE2 is constructed as a virtual machine
(VM) utilizing a kernel image of Linux 2.6.32 on Xen hypervisor 4.0. At the initialization of SE2,
a virtual network device (vNIC) is assigned to the VM by the virtual NIC manager in the network
driver, ixgbe-3.17.3. Multiple vNICs of different VMs can be mapped to a physical NIC simultaneously.
Each vNIC has its own MAC address, and incoming packets are delivered to corresponding control
planes directly by the MAC addresses. When the initialization of SE2 finishes, a tenant can run a
control plane that consists of a controller and control applications on the VM as in Figure 5.

We modify the ixgbevf-2.12 driver and develop an additional kernel module (SP2 module) to
implement SP2, which handles incoming packets from a vNIC in a control plane. At the initialization of
the ixgbevf driver, the driver allocates a huge reusable buffer that stores incoming packets. The buffer
is mapped to direct memory access (DMA) and does not require an additional mapping/unmapping
operation because the buffer is re-used for the next incoming packets after the packet in the buffer is
delivered to the SP2 module.

Followed by the initialization of the ixgbevf driver, the SP2 module allocates a lock-free queue to
retrieve packets from the huge reusable buffer. Furthermore, the SP2 module generates a kernel thread,
a SP2 thread, that performs additional packet processing such as IP header checksum validation and
firewalling. To divide the packet reception procedure into the two parts (the MPF and the PH) in SP2,
we modify the receive function of the ixgbevf driver (i.e., ixgbevf_clean_rx_irq).

The minimized poll function (MPF) performs the first part of SP2. The MPF in the ixgbevf driver
just keeps fetching packets from the huge reusable buffer, which are delivered to the lock-free queue
in the SP2 module. The MPF can deliver the incoming packets in the vNIC to the lock-free queue
immediately without waiting for protocol processing of prior packets. This reduces packet processing
time in the ixgbevf driver and allows the driver to handle more incoming packets.

When the number of fetched packets in the lock-free queue of the SP2 module exceeds a batch
size, the SP2 module wakes up the SP2 thread to execute the protocol handler (PH) as depicted in
Figure 3 of the revised manuscript. The SP2 thread checks the source/destination IP addresses in order
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to identify whether the packet is bound for the control plane. If the packet is for the control plane,
the SP2 thread runs an IP protocol handler. This IP protocol handler conducts the same operation
as the Linux network stack. However, it is more efficient than that of Linux, because the IP protocol
handler performs header checksum validation and firewalling only once for the first packet out of the
incoming packets having the same source/destination IP addresses. When the PH finishes, SP2 copies
the packets of the batch size to the control plane at once.

Hardware

SE2

OS

Control Applica!ons

Controller

SE2

OS

Control Applica!ons

Controller

SE2

OS

Control Applica!ons

Controller

SP2 SP2 SP2

vNIC vNIC vNIC

Figure 5. Each control plane consists of an independent SE2 and SP2.

5. Evaluation

In this section, we first evaluate how much performance improvement is made by SE2 and SP2,
respectively. Then, we present a performance result when multiple control planes run concurrently
with both SE2 and SP2. To observe the baseline performance of Linux regardless of the type of the SDN
controller or control applications, we evaluate the performance of the network stack without SDN
controllers and control applications. We use two physical servers that have six-core dual processors
with an X8DAH+ main board and 12 GB of memory and connect the servers with 10 Gigabit Ethernet.
For SR-IOV, we utilize three Intel 10-Gbps 82599 NICs, each of which has two ports. We assign two
CPUs, 2 GB of memory, and two RX/TX queues on a physical NIC interface to each control plane.

In our evaluation, we run multiple control planes concurrently up to five. This is because three
or four controllers was enough to reduce the average network latency when the network topology
consists of 41 edges [60]. Therefore, the maximum five control planes are sufficient to support the
fog constructed using 40 servers at most [61]. In addition, we configure packet sizes ranging from
64 bytes-1500 bytes. This shows that the control planes with our SE2 and SP2 can support various
control messages where the size of control messages varies depending on the type of requests from fog
network devices [62].

5.1. SE2

In SE2, we adopt VM abstraction and SR-IOV to provide an isolated execution environment
to control planes. We measure the packet processing performance of SE2 and compare the result
with Linux. The packet sizes for the evaluation range from 64 bytes–1500 bytes, and a single core is
utilized for the packet processing. In the evaluation, both Linux and SE2 performs packet reception.
Furthermore, we measure the packet processing performance when we run SE2 with SP2, which
performs the IP protocol handler. As illustrated in Figure 6, SE2 achieves 50% of native performance
when it only performs packet reception. Even with SR-IOV, SE2 shows lower performance than
the non-virtualized environment. When we run SE2 with SP2, SE2 achieves almost 80% of native
performance in packets larger than 1024 bytes, which shows that SP2 effectively reduces the packet
processing overhead of Linux.
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Figure 6. SP2 minimizes the performance overhead of SE2 from adopting VM abstraction, which
achieves 80% of native performance with packets larger than 1024 bytes.

5.2. SP2

We evaluate how much performance improvement is gained by SP2, compared to Linux.
We measure the packet processing rate of Linux and SP2 when Linux and SP2 performs IP forwarding.
In this evaluation, we generate incoming traffic using 64 and 1500 bytes packets to maximize the
processing load on the CPU and NIC, respectively. As shown in Table 2, SP2 increases the packet
processing rate by two times compared to Linux. This is because SP2 handles incoming packets using
two different kernel threads: ksoftirqd for the MPF and the SP2 thread for the PH.

Table 2. SP2 outperforms unmodified Linux by 74% and 77% for 64-byte and 1500-byte
packets, respectively.

Packet Size 64 Bytes 1500 Bytes

Unmodified Linux 374 Kpps 381 Kpps
Linux with SP2 664 Kpps 663 Kpps

In addition, we measure control plane performance when we configure different batch sizes in the
huge reusable buffer. Batch sizes determine how many packets having the same source/destination
addresses will be moved from the MPF to the PH. As depicted in Figure 7, when we increase the batch
size from 1–32, we achieve the highest throughput at eight. This is because the larger batch size results
in a longer time for the memory copy between the huge reusable buffer and the LFQ. Even though SP2
reduces the overhead from memory copy by using the batching operation, the larger batch size does
not guarantee the higher packet processing performance.

5.3. SE2 + SP2

At last, we measure the overall performance when multiple control planes ranging from 1–5
are running simultaneously. The control planes share the same physical NIC and receive packets
through the different vNICs. They transmit to the incoming 384-byte (The average control packet size
varies depending on the SDN controller or the type of request; Floodlight is 510 bytes, for example.
We choose 384-byte packets for our evaluation to impose processing load on both CPU and NIC)
packets by performing the PH. In addition, we assign two physical cores to each control plane to
measure the maximum performance of control planes without CPU contention. Figure 8 demonstrates
the maximum throughput of multiple control planes with a 384-byte control packet that consumes both
CPU and network resources aggressively. A control plane is able to reach 10-Gbps throughput, which
saturates the 10 Gigabit Ethernet network interface. Compared to the performance of the existing
SDN controller, NOX-MT, which processes about 0.7 million packets per second using two threads,
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our technique increases packet processing performance of SDN controllers by four times. When we
increase the number of control planes running concurrently (cp #1, cp #2 . . .), the aggregate performance
increases linearly. As the number of control planes increases, the performance of each control plane
decreases slightly because of resource contention in the physical NIC. The aggregate performance
achieves 38 Gbps with five control planes, which is 76% of the theoretical maximum throughput.
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Figure 7. Packet processing performance of SP2 increases as the batch size increases from 1–8. When the
batch size exceeds eight, there is no further performance improvement.
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Figure 8. Aggregated performance with SE2 and SP2 achieves 38 Gbps when five control planes run
concurrently. cp, control plane.

6. Conclusions

In this paper, we present optimizing techniques for Linux, SE2 and SP2, which provide isolated
execution environments and high performance to control planes in SDN. We allow multiple control
planes to run on a single server by adopting VM abstraction. In addition, we address the technical
challenges of using VM abstraction and achieve high performance in commodity servers. We optimize
the complex network stack of Linux to reduce packet processing time, which causes performance
degradation of control planes. Our evaluation results show that the optimized Linux processes over
three million packets per second, which almost saturates the line rate (10 Gbps) and outperforms
existing SDN controllers by four times. We plan to run various SDN controllers and control applications
on the optimized Linux in a fog computing environment.
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